高性能、Anode-Supported,微管能从Single-Step-Fabricated SOFC准备,Dual-Laye微管能固体氧化物燃料电池(SOFCs)近年来研究开发了主要是由于其高表面积和快速热循环。此前,伪造的微管能SOFCs是通过multiple-step流程。[1 - 3]一个支持层,例如一个阳极的支持,首先是准备和presintered提供机械强度的燃料电池。电解液层然后放置和烧结优先于最终涂层的阴极层。每一步都涉及到至少一个高温热处理,使细胞制造耗时且昂贵,不稳定的控制细胞的质量。对于一个更经济SOFCs制备微管能与可靠性和适应性的质量控制,一个先进的dry-jet wet-extrusion技术,即,一个阶段inversion-based共流程,开发了。使用这种技术,电解液/电极(无论是阳极和阴极)双层中空纤维(HF)可以形成一个单一步骤。通常,电解质与电极材料分别混合溶剂、聚合物粘结剂、添加剂等因素形成的外层和内部层旋转停赛,分别之前,同时通过triple-orifice种吐丝器,穿过一个气隙,最后进入一个无外部凝固浴。同时,一连串的重点是提供内部混凝剂通过中央的圆孔喷。两层的厚度,很大程度上取决于所用的设计,还可以调整相应的挤出速率,而不当或形态的准备高频前体能够控制的调整粘度等参数共暂停,气隙、流量的内部混凝剂。双层的高频前体然后co-sintered获得一旦在高温去除聚合物粘合剂和形式之间的边界陶瓷材料。在以往的研究中,[4 - 6]一个双层微管能SOFCs高频支持,其中包括电解质外层的大约80μm支持非对称阳极内部层状空隙长度35%,成功地捏造使用共和cosintering过程。单个细胞获取的沉积后的多层阴极到双层高频功率密度产生最大的 W厘米2°C−在570年[6]的改进结构的双层HFs是由减少电解液层厚度薄如10μm和最大功率密度相应的细胞显著增加到约 W厘米2°C−在600年。