非齐次线性方程组Ax=b的求解方法:1、对增广矩阵作初等行变换,化为阶梯形矩阵;2、求出导出组Ax=0的一个基础解系;3、求非齐次线性方程组Ax=b的一个特解(为简捷,可令自由变量全为0)4、按解的结构 ξ(特解)+k1a1+k2a2+…+krar(基础解系) 写出通解.注意:当方程组中含有参数时,分析讨论要严谨不要丢情况,此时的特解往往比较繁.【分析】按照非齐次线性方程组的求解方法一步一步来解答对增广矩阵作初等行变换,化为阶梯形1 -1 1 -1 10 0 -2 2 -10 0 0 0 0r(A)=2,基础解系的解向量有4-2=2个令x2=1,x4=0,得x1=1,x3=0 令x2=0,x4=1,得x1=0,x3=1 得到基础解系a1=(1,1,0,0)T a2=(0,0,1,1)T再求方程组的一个特解令x2=x4=0,得x1=1/2,x3=1/2 ξ=(1/2,0,1/2,0)T所以通解为 ξ+k1a1+k2a2,k1,k2为任意常数newmanhero 2015年1月18日11:33:17希望对你有所帮助,