摘要:贝特朗悖论是概率论中一个著名的悖论.在概率论的发展史上,贝特朗悖论起了揭示问题促使人们思考概率理论体系严密性的作用.最后,前苏联数学家柯尔莫哥洛夫建立了概率论的公理化体系.概率论的公理化以及数学的发展,悖论扮演了一个非常特殊的角色.
和所有的数学分支类似,概率论的也是经历了从直觉到严格的过程。其中的一个转折点就是贝特朗悖论。1古典派古典派也就是高中时候学的概率论。它的核心哲学思想是:不充分理由原则。1.1不充分理由原则雅各布·伯努利(1654-1705):提出,如果因为无知,使得我们没有办法判断哪一个结果会...
我猜想在统计学领域,或者说就概率论而言,这也应当具有某种很重要的意义吧,毕竟这种情况在日常生活中并不常见。生日悖论每个人都有生日,我们偶尔会遇到与自己同一天过生日的人,这时,你应该会自然而然地产生一种亲近感吧。
学号:1001114119概率论在生活中的应用学院名称:数学与信息科学学院专业名称:数学与应用数学年级班别:10级二班指导教师:2014河南师范大学本科毕业论文概率论作为数学的一个重要部分,在现实生活中的应用越来越广泛,同样也发挥着越来越重要的作用。
1976年谢尔登·罗斯(SheldonRoss)在他的《概率论第一课》(AFirstCourseinProbability)介绍了这个问题,所以它被称为“罗斯·利特尔伍德悖论”(Ross-LittlewoodParadox)。脑洞:小学奥林匹克暗袋摸球概率题终极版。【12】土豆悖论(potato
〄Banach-Tarski悖论。有兴趣的童鞋可以看看类似这种视频[1]更加直观地了解一下。但如果你不是数学系的,也不用太纠结于Banach-Tarski悖论或者定理到底怎么回事,你只要知道它的重要意义在于让人们意识到有些子集是不可测的。
帕斯卡和法国数学:概率论的诞生2.似是而非的答案:古典概率悖论3.几何概型和贝特朗悖论4.别相信直觉:概率论帮助侦破“财务造假”······(更多)
那时,概率论因其理论根基不牢又悖论丛生,在他们口中就变成了“不幸论”(theoryofmisfortune)。尼古拉·卢津(НиколайНиколаевичЛузин,1883.12.9-1950.1.28),描述集合论的创始人之一,在三角级数、复分析、微分方程和数值计算等领域有杰出贡献。
概率学者所创造的概率理论及对概率本质、意义和方法的认识皆是瑰丽科学文化财富,近年概率论发展愈发凸显其在科学领域的应用性和实用性。如2006年菲尔兹奖获得者有3人应用了概率思想:奥昆科夫(А.Окуньков)解决了与弦物理学有关的一个重要数学问题,进而沟通了概率论、表示论和代数...
摘要:贝特朗悖论是概率论中一个著名的悖论.在概率论的发展史上,贝特朗悖论起了揭示问题促使人们思考概率理论体系严密性的作用.最后,前苏联数学家柯尔莫哥洛夫建立了概率论的公理化体系.概率论的公理化以及数学的发展,悖论扮演了一个非常特殊的角色.
和所有的数学分支类似,概率论的也是经历了从直觉到严格的过程。其中的一个转折点就是贝特朗悖论。1古典派古典派也就是高中时候学的概率论。它的核心哲学思想是:不充分理由原则。1.1不充分理由原则雅各布·伯努利(1654-1705):提出,如果因为无知,使得我们没有办法判断哪一个结果会...
我猜想在统计学领域,或者说就概率论而言,这也应当具有某种很重要的意义吧,毕竟这种情况在日常生活中并不常见。生日悖论每个人都有生日,我们偶尔会遇到与自己同一天过生日的人,这时,你应该会自然而然地产生一种亲近感吧。
学号:1001114119概率论在生活中的应用学院名称:数学与信息科学学院专业名称:数学与应用数学年级班别:10级二班指导教师:2014河南师范大学本科毕业论文概率论作为数学的一个重要部分,在现实生活中的应用越来越广泛,同样也发挥着越来越重要的作用。
1976年谢尔登·罗斯(SheldonRoss)在他的《概率论第一课》(AFirstCourseinProbability)介绍了这个问题,所以它被称为“罗斯·利特尔伍德悖论”(Ross-LittlewoodParadox)。脑洞:小学奥林匹克暗袋摸球概率题终极版。【12】土豆悖论(potato
〄Banach-Tarski悖论。有兴趣的童鞋可以看看类似这种视频[1]更加直观地了解一下。但如果你不是数学系的,也不用太纠结于Banach-Tarski悖论或者定理到底怎么回事,你只要知道它的重要意义在于让人们意识到有些子集是不可测的。
帕斯卡和法国数学:概率论的诞生2.似是而非的答案:古典概率悖论3.几何概型和贝特朗悖论4.别相信直觉:概率论帮助侦破“财务造假”······(更多)
那时,概率论因其理论根基不牢又悖论丛生,在他们口中就变成了“不幸论”(theoryofmisfortune)。尼古拉·卢津(НиколайНиколаевичЛузин,1883.12.9-1950.1.28),描述集合论的创始人之一,在三角级数、复分析、微分方程和数值计算等领域有杰出贡献。
概率学者所创造的概率理论及对概率本质、意义和方法的认识皆是瑰丽科学文化财富,近年概率论发展愈发凸显其在科学领域的应用性和实用性。如2006年菲尔兹奖获得者有3人应用了概率思想:奥昆科夫(А.Окуньков)解决了与弦物理学有关的一个重要数学问题,进而沟通了概率论、表示论和代数...