说起阿卡波糖,糖友都非常熟悉,但起初一听这个名字,都很意外,本身就是糖,怎么还能降血糖呢?没错,阿卡波糖就是能以糖降糖! 阿卡波糖是临床中治疗2型糖尿病常用的口服降糖药,属于α葡萄糖苷酶抑制剂,这类降糖药还有伏格列波糖、米格列醇等,它们在肠道能够抑制糖的吸收,从而降低餐后血糖!其机制是通过竞争性抑制α葡萄糖苷酶(一种双糖类水解酶)的活性而减慢淀粉等多糖分解为蔗糖(一种双糖)和葡萄糖(一种单糖),从而可延缓单糖的吸收。 为何说阿卡波糖最适合国人“胃口”? 阿卡波糖适用于餐后血糖升高的患者,不增加体重,低血糖的风险比较低,并且有使体重下降的趋势。阿卡波糖非常适合中国及亚洲人群,这是因为中国及亚洲人群的饮食谱以碳水化合物为主(欧美国家以牛肉、汉堡和披萨等为主食),口服阿卡波糖后可以有较高的抑制淀粉分解被吸收效果,非常有利于血糖的控制。 服用阿卡波糖,非常有讲究,如果不注意有些事项,可能等于白吃。今天笔者给大家科普下服用阿卡波糖时应重点关注的4个注意事项。 药师提醒:忽略这4点,阿卡波糖等于白吃 1)注意服用方法 服用药物,应选择最适宜的服用药品时间。大部分的药物基本是饭前或者饭后服用,但是饭前或饭后服用却不适用于阿卡波糖。阿卡波糖应于餐中整片(粒)吞服,即与第一口饭同服,若服药与进餐时间间隔过长,则疗效较差,甚至无效。 2)注意服用剂量 阿卡波糖的起始剂量为一次50毫克,一日3次,以后逐渐增加至一次克,一日3次。个别情况下,可增加至一次克,一日3次。若病人在服药4 8周后疗效不明显,可以增加剂量。若病人坚持严格的糖尿病饮食仍有不适时,就不能再增加剂量,有时还需适当减少剂量,平均剂量为一次克,一日3次。 3)与其他降糖药联用时有讲究 阿卡波糖本身是不会导致低血糖,如果与磺酰脲类(比如格列齐特)、双胍类(比如二甲双胍)或胰岛素联合使用时,血糖会下降,甚至导致低血糖,所以联合应用时需减少这些降糖药的剂量。 注意,服用阿卡波糖发生低血糖症状时,一定要直接补充葡萄糖,不能服用蔗糖,因为蔗糖的吸收会被阿卡波糖抑制,就能以解决低血糖危象。 4)一定要吃主食 由于阿卡波糖仅作用于碳水化合物因此服用阿卡波糖的糖尿病患者一定要吃富含碳水化合物的主食(米饭、馒头、大饼、面条或者其他谷类、薯类制品)。若糖尿病患者在进餐时只吃了蔬菜、肉类,比如肉类的主要是脂肪和蛋白质,而没有进食主食,那么服用阿卡波糖也没有任何降糖效果,因此这顿饭就没必要服用阿卡波糖,因为即使服用了阿卡波糖也控制不了餐后血糖。 结语 总之,阿卡波糖是非常适合国人饮食习惯的降糖药,但是也要注意以上4点,同时需要注意有无服用禁忌症,比如孕妇、哺乳期妇女禁用。其他α-糖苷酶抑制剂(如伏格列波糖、米格列醇等的用法与阿卡波糖有较多相似之处。 图文综合于网络
抑制小肠的α葡萄糖苷酶,抑制食物的多糖分解,使糖的吸收相应减缓,从而减少餐后高血糖,配合饮食治疗糖尿病。在NIDDM中可与其他口服药合用,对IDDM病人也可与胰岛素联合应用,以有效控制糖尿病。
阿卡波糖的作用主要是降低血糖,也有一定减肥的作用,也有很多人减肥的时候服用阿卡波糖。阿卡波糖主要是降低餐后的血糖,比如三餐的血糖。一般口服阿卡波糖,开始服用25mg,1天2-3次,剂量可以增加,如果是血糖控制不好的,可以增加到50mg,1天3次,但是每天的量不能超过,尽量在餐前或者是餐时服用。它的不良反应主要是出现胃肠功能的紊乱,比如出现有腹胀、腹泻、腹痛等症状。如果搭配上海藻铬,前者化学降糖,后者在肠道物理作用包裹糖和脂肪,并补充铬,增强胰岛素的敏感性,加快血糖的利用,保持餐后血糖的平稳,又减少并发症的发生。提高胰岛素利用率,延缓糖及脂肪吸收,既平稳降血糖,又减少并发症的发生。(特别适合管不住嘴或餐后血糖高的人)食用方法及食用量 每日3次,每次3粒,饭前服用在选择上注意两点:1看品牌,选择大品牌,质量好,效果佳;2看平台,资质是否齐全、是否有追溯机制,是否与消费者站在一起,售后有保障。
通过抑制α 葡萄糖苷酶,然后延缓人体对于碳水化合物的吸收,就可以达到降血糖的作用。可以调节血压,可以调节血糖,可以预防动脉粥硬化,可以治疗糖尿病,也可以调控人体的代谢。
通过饮食方面搭配,加上口服药物的情况,还有身体的基本变化的控制血糖。可以促进葡萄糖的吸收,也可以减少碳水化合物,还可以抑制肠胃的情况,有着帮助的作用,也有着控制血糖的作用。
阿卡波糖作为糖尿病患者最常用的降糖药,以其良好的降血糖效果和极少的副作用,而被广为使用。但它是如何降血糖的呢?是否所有糖尿病患者都可以使用?服用时又该注意什么?今天就为大家说一说。希望对广大糖友了解自己正在吃的降糖药有所帮助。
阿卡波糖属于α-糖苷酶抑制剂,它主要通过在小肠上皮刷状缘与糖类 竞争糖苷水解酶 ,从而 减慢碳水化合物水解及产生葡萄糖的速度,并延缓葡萄糖的吸收 ,从而降低 餐后血糖 。长期服用阿卡波糖还能降低 空腹血糖 和 糖化血红蛋白 。
阿卡波糖,主要用于 经饮食控制和 体育 锻炼2个月左右血糖控制仍不满意的2型糖尿病患者 ,可单独使用,也可与磺脲类药物(如格列本脲、格列美脲、格列齐特等)、双胍类药物(如二甲双胍)或胰岛素合用。糖耐量异常者也可以使用阿卡波糖来降低餐后血糖。
阿卡波糖的不良反应包括:
①消化道反应。较常见,包括腹胀、腹泻、胃肠痉挛、顽固性便秘等。
②其他不良反应。包括肝功能异常、乏力、头晕、皮肤瘙痒,以及与其他药物合用时的低血糖反应等。
阿卡波糖不适用于下列患者:
①严重肾功能不全,肌酐清除率低于30毫升/分的2型糖尿病患者。
②妊娠和哺乳期妇女及儿童糖尿病患者。
③存在慢性腹泻、慢性胰腺炎、消化性溃疡和严重胃肠功能紊乱者。
④合并糖尿病急性并发症(包括糖尿病酮症酸中毒、高渗性昏迷以及乳酸性酸中毒)、严重创伤、严重感染、急性心肌梗死和脑血管意外者,以及需要进行大手术者。
⑤1型糖尿病患者(不能单独使用)。
阿卡波糖的初始剂量一般为每次50毫克、每日3次,如血糖控制不佳,可逐渐增加至每次100毫克、每日3次,个别情况可增加至每次200毫克、每日3次。 用餐前即刻整片吞服或与前几口食物一起咀嚼服用。
为了减轻胃肠道不适,阿卡波糖可以从小剂量开始服用。 因为本药的主要作用机理是延缓食物的吸收,尤其是多糖类食物,所以本药适用于东方型饮食人群,即以米、面等为主食的人群,而不适用于西方型饮食人群,即以肉、蛋等高蛋白、高脂肪食物为主食的人群。
虽然阿卡波糖具有抗高血糖的作用, 但它本身不会引起低血糖 ,如果与磺脲类药物(格列XX)、二甲双胍或胰岛素一起使用,血糖有可能下降至低血糖的水平,所以,合用时需减少磺脲类药物、二甲双胍或胰岛素的用量。
个别情况下,阿卡波糖可影响 地高辛 的生物利用度,因此,需调整地高辛的用量。
服用阿卡波糖期间,应避免同时服用肠道吸附剂和消化酶类制剂,以免影响本药的疗效。
通过以上讲解,我们知道阿卡波糖主要是通过减慢碳水化合物的水解、延缓葡萄糖的吸收而发挥降血糖作用。不仅可以降餐后血糖,也可以降空腹血糖和糖化血红蛋白,主要用于经饮食控制和 体育 锻炼2个月左右血糖控制仍不满意的2型糖尿病患者。最常见的副作用为腹胀、便秘。有5类糖尿病患者不适合使用,服用时应餐前即刻整片吞服或与前几口食物一起咀嚼服用。
阿卡波糖片是在吃饭第一口嚼服防止餐后血糖高的吃水果应该吃低糖水果不如苹果,木瓜,柚子 应该在两餐之间吃。希望采纳答案。我也是二型。
糖友案例
张先生,60岁,糖尿病2年,偶尔吃主食,偶尔就没有吃主食,饭后也少有运动,最近睡眠质量差、视力下降;目前,在吃二甲双胍控制血糖,空腹血糖控制在6以下,饭前无论吃不吃主食都会先吃阿卡波糖,但是,餐后血糖在9左右;张先生比较困惑,吃药了空腹血糖控制得挺好的,餐后为什么就降不下来呢?
在看案例前,我们先了解阿卡波糖的降糖原理
我们中国人最典型的饮食习惯就是碳水化合物类的主食吃的比较多,如米饭、面等这些富含淀粉的高碳水化合物。碳水化合物在消化成葡萄糖时需要小肠中的α-糖苷酶(消化酶),阿卡波糖主要是通过抑制糖苷酶活性,减少碳水化合物转变为葡萄糖,从而降低餐后血糖。
对此,餐后血糖降不下来,多半都是饮食或者是服用阿卡波糖的方式不正确有关。糖友常犯的几种错误如下:
1、服用时间
随餐吃第一口饭时,嚼碎服用。 如果有咀嚼功能障碍,可选择胶囊剂型或伏格列波糖。
2、哪些人不能吃阿卡波糖?
不吃碳水化合物类主食的不服阿卡波糖。另外,对阿卡波糖过敏者、患有由于肠胀气而可能恶化的疾患(如Roemheld综合征、严重的疝气、肠梗阻和肠溃疡)的病人、严重肾功能损害(肌酐清除率<25ml/分钟)的患者禁用。)
3、阿卡波糖的正确打开方式应该是:从小剂量开始服用。
初始服用,开始剂量25mg,一天一次或一天两次,观察数日,若无胃肠道副作用出现,可增加至每次50mg,一天三次。一般每日150mg即可取得较满意的效果。阿卡波糖足量可加至每次100mg,一天三次。
4、服用阿卡波糖肠胃反应大怎么办?
胃肠功能紊乱是阿卡波糖常见的不良反应,表现为胃胀、腹胀、腹泻、胃肠痉挛性疼痛、顽固性便秘、排气增多等问题。这与药物在小肠内停留时间过长,肠道细菌将其分解、而产气增多有关。一般治疗初期2-3周内出现。多数症状可随服药时间延长而减轻或消失。
5、吃饭时漏服,过后可以补服吗?
如果是进餐过程中发现漏服,应立即按原剂量进行补服;如果是在进餐后半小时以内发现漏服,也应立即按原剂量进行补服,但药效会大打折扣;如果是在进餐结束半小时以后才发现漏服,因降糖机制已经起不到效果,则不必补服。对后两种情况,患者可提高运动量,来消耗血糖,避免血糖过高。
综上所述,阿卡波糖是降餐后血糖的好帮手,如果吃了阿卡波糖餐后血糖还高,可以调整饮食顺序和饮食习惯,若能再加上规律的运动,餐后血糖能长期平稳!
卡博平药理作用:为口服降血糖药。其降糖作用的机制是抑制小肠壁细胞和寡糖竞争,而与α-葡萄糖苷酶可逆性地结合,抑制酶的活性,从而延缓碳水化合物的降解,造成肠道葡萄糖的吸收缓慢,降低餐后血糖的升高。卡博平临床疗效:阿卡波糖主要在肠道降解或以原形方式随粪便排泄,不经过肝肾代谢,长期服用未见积蓄,所以只要不是长期过量服用就不会造成肝肾损伤.但对于肝肾功能不全的患者,由于药物排泄受到障碍,加重肝肾负担,会影响肝肾功能。值得注意的是阿卡波糖片在使用大剂量时会发生无症状的肝酶升高,对于肝功正常的停药后肝酶值会恢复正常,但肝功能不全的患者,就会加重病情造成损伤.对糖尿病患者来说,高血糖对肝肾功能的损害要远远大于降糖药的不良反应。只要能控制好血糖,肝肾就能得到保护。因此,在医生的指导下正规服药、定期监测肝肾功能,降糖药就可以长期使用。
阿卡波糖(拜唐苹、卡博平)和伏格列波糖(倍欣),是同一类的降糖药物,属于a-糖苷酶抑制剂。在我国应用的较广泛。我们一起了解如何使用,更安全,更有效。 一、饮食以碳水化合物为主,效果好 这一类降糖药物只对碳水化合物引起的血糖升高有效果,对蛋白质和脂肪引起的血糖升高没有效果。所以朋友,如果您的饮食中主食(如米饭、面条、馒头等)占一定份量,那么服用这类药物,效果好。如果您的饮食偏西方,以蛋白质和脂肪为主,那就不要用这一类的降糖药物,因为它们的降糖效果就不好了。 二、主要降餐后血糖 三、降糖效果温和 这类药物降糖较果比较温和,降低糖化血红蛋白约为(常用的降糖药物二甲双胍,降糖化血红蛋白大概是1%~)。单独使用很少引起低血糖。可单独使用,也可和其他降糖药物联合使用。 四、正确使用方法非常重要,如果用错了疗效不佳甚至无效 阿卡波糖需要和前几口食物一起嚼服。达格列波糖,餐前服用,服用后即刻就餐。这类药物必须和饭一起服用,才会在食物进入小肠的同时发挥作用。如果饭后服用,食物已经到过小肠,消化吸收的过程已经开始了,故起不到一个很好的降糖作用。 五、阿卡波糖和伏格列波糖各有优势 阿卡波糖和伏格列波糖都是国家基本药物。主要区别是: 六、使用注意事项 七、特殊人群可以使用吗? # 健康 过大年#请关注我,并请转给有需要的朋友
以间充质干细胞 (MSC) 为基础的治疗糖尿病相关代谢紊乱的方法受到细胞存活不足和高葡萄糖应激下治疗效果有限的阻碍。 2021年7月2日,清华大学杜亚楠团队在 Science Advances 在线发表题为“ Exendin-4 gene modification and microscaffold encapsulation promote self-persistence and antidiabetic activity of MSCs ”的研究论文,该研究 使用 Exendin-4(MSC-Ex-4)(一种胰高血糖素样肽 1(GLP-1)类似物)对 MSC 进行基因工程改造,并证明了它们在 2 型糖尿病 (T2DM) 小鼠模型中增强的细胞功能和抗糖尿病功效。 从机制上讲,MSC-Ex-4 通过 GLP-1R 介导的 AMPK 信号通路的自分泌激活实现了自我增强并提高了在高葡萄糖应激下的存活率。同时,MSC-Ex-4 分泌的 Exendin-4 通过内分泌作用抑制胰腺 β 细胞的衰老和凋亡,而 MSC-Ex-4 分泌的生物活性因子(例如,IGFBP2 和 APOM)则通过旁分泌增强胰岛素敏感性并通过 PI3K-Akt 激活减少肝细胞中的脂质积累。此外,该研究将 MSC-Ex-4 封装在 3D 明胶微支架中用于单剂量给药,以将治疗效果延长 3 个月。总之, 该研究结果提供了对 Exendin-4 介导的 MSCs 自我持续性和抗糖尿病活性的机制见解,为 T2DM 提供更有效的基于 MSC 的治疗。 迄今为止,全世界有超过 亿人患有糖尿病,预计到 2045 年这一数字将达到 7 亿。 2 型糖尿病 (T2DM) 约占糖尿病病例的 90%,其特征是胰岛素抵抗和高血糖,这是由肥胖、缺乏运动、不健康饮食和遗传引起的。当肝脏、肌肉和脂肪组织中的细胞对胰岛素无反应并导致葡萄糖摄取失败时,就会发生胰岛素抵抗。胰腺 β 细胞将通过增加胰岛素产生来补偿胰岛素抵抗,最终导致 β 细胞衰竭和不可逆的高血糖。因此, 长期暴露于慢性高血糖会抑制增殖并诱导 β 细胞凋亡,从而导致 β 细胞量减少和 β 细胞功能障碍。 此外, T2DM 与肝功能障碍密切相关,超过 90% 的 T2DM 肥胖患者患有代谢相关性脂肪肝 (MAFLD) 。 肝细胞通过将营养物质以糖原和甘油三酯 (TG) 的形式储存起来,在葡萄糖和脂质稳态中发挥着重要作用。在肝脏胰岛素抵抗状态下,胰岛素不能抑制糖异生,但会加速肝细胞中的脂肪酸合成,从而增加肝脏葡萄糖的产生和 TG 的积累。尽管存在 β 细胞和肝细胞功能障碍,但高血糖和高甘油三酯血症会加剧肌肉和脂肪组织的胰岛素抵抗状态,同时引起其他器官和组织的功能障碍。因此, T2DM 与多种并发症密不可分,包括冠心病、中风和视网膜病变。 除了改变生活方式外,还需应用降糖药物以更好地维持 T2DM 患者的正常血糖水平 。胰高血糖素样肽-1 (GLP-1) 是一种肠促胰岛素激素,通过与 GLP-1 受体 (GLP-1R) 相互作用来增加胰岛素和抑制胰高血糖素分泌,从而帮助控制血糖波动。然而,GLP-1 因其半衰期短而很少用于 T2DM 治疗,它会在几分钟内被二肽基肽酶-4 迅速降解。第一个获批用于 T2DM 治疗的 GLP-1R 激动剂 Exendin-4 是一种 39 个氨基酸的肽,是一种 GLP-1 类似物,半衰期较长,为 小时。它通过抑制细胞凋亡和促进细胞增殖来增强 β 细胞质量,从而增加胰岛素分泌量。此外,已证明 Exendin-4 是一种有效的候选药物,可减轻体重,改善糖尿病和 MAFLD。尽管 Exendin-4 在调节血糖和胰岛素反应方面有所改善,但由于肾脏消除,其血浆半衰期仍然有限。 因此,需要每天给药两次,这会导致血浆浓度的意外波动和 GLP-1R 的间歇性激活。 尽管上述降糖药物治疗带来了益处,但仍有部分患者无法恢复正常血糖或出现低血糖、腹泻、恶心、呕吐等多种副作用。 近年来,基于细胞的疗法已成为对抗包括 T2DM 在内的多种难治性疾病的替代方法。特别是,间充质干/基质细胞 (MSCs) 在一些临床前和临床尝试中已证明其对改善由 T2DM 引起的高血糖、胰岛素抵抗和全身炎症的治疗作用,从而为治疗 T2DM 提供了一种新方案。同时,技术进步仍然迫切需要将基于 MSC 的疗法成功转化为 T2DM 的临床治疗。 要克服的主要障碍之一是体内给药后 MSC 的增殖和存活率降低 。 因此,已 经研究了多种策略,例如生物材料封装、基因工程和 MSC 预处理 ,以提高存活率、延迟清除动力学和维持体内 MSC 分泌因子。 此外,优化 MSCs 的给药途径至关重要,因为静脉内给药的 MSCs 主要滞留在肺部和随后的组织中,导致治疗效果减弱。此外,对 MSCs 在 T2DM 中的治疗机制的全面了解仍然难以捉摸。MSCs 被证明可以促进内源性胰岛素的产生并刺激 β 细胞的增殖。此外, MSC 以其调节免疫反应的能力而闻名,这对于改善由 T2DM 引起的全身炎症至关重要 。 鉴于 Exendin-4 和 MSCs 在治疗 T2DM 方面的上述缺陷, 研究人员已经探索了如何协同 Exendin-4 和 MSCs 的治疗益处。 MSC 也已用 GLP-1 进行基因修饰,在 T2DM 治疗中显示出优于野生型 MSC 的治疗功效。然而,应该强调的是,这些组合疗法继承了许多缺陷。例如,当与 MSC 一起给药时,单剂量游离 Exendin-4 的治疗效果和持续时间是有限的。此外, 考虑到 GLP-1 的半衰期只有 2 分钟,而且治疗 T2DM 需要高有效剂量,预计 GLP-1 修饰的 MSCs 很难显著提高 MSCs 的治疗效果。 在这里,在发现人MSCs表达GLP-1R的基础上,该研究通过慢病毒转导系统构建了Exendin-4基因工程MSCs(MSC-Ex-4)来验证MSC-Ex- 4 分泌的Exendin-4可以通过 GLP-1R 介导的自分泌激活 AMPK 信号通路,从而通过延长其在高糖应激下的存活时间和增强抗糖尿病功效来潜在地促进自我持久性。该研究还探索了有关 MSC-Ex-4 保护胰腺 β 细胞的内分泌作用和 MSC-Ex-4 改善肝细胞功能的旁分泌作用的潜在机制。除了 MSC-Ex-4 分泌的 Exendin-4 外,推测 MSC-Ex-4 的其他分泌组可以减少细胞衰老和凋亡,同时促进胰腺 β 细胞的增殖,以及提高胰岛素敏感性和减少脂质积累。最后,该研究系统地提供了 多剂量的游离 MSC-Ex-4,并用可注射的三维 (3D) 明胶微支架 (GMs) 作为细胞封装和递送载体来辅助 MSC-Ex-4,以实现长效治疗效果单剂量局部给药。 总之, 该研究结果提供了对 Exendin-4 介导的 MSCs 自我持续性和抗糖尿病活性的机制见解,为 T2DM 提供更有效的基于 MSC 的治疗。 WOSCI沃斯编辑,耶鲁大学博士团队匠心打造,专注最新科学动态并提供各类科研学术指导,包括:前沿科学新闻、出版信息、期刊解析、SCI论文写作技巧、学术讲座、SCI论文润色等。
Gut:粪便病毒组移植(FVT)对2型糖尿病和肥胖小鼠模型的缓解作用 近年来,粪便移植已成为治疗由梭状芽胞杆菌引起的严重腹泻的流行方法。最近,丹麦哥本哈根大学Dennis Nielsen课题组在一项小鼠中进行的试验表明,通过粪便病毒组移植减轻肥胖症和2型糖尿病(Type 2 diabetes mellitus, T2DM)患者的临床症状。 研究目的 : 肥胖症和2型糖尿病(T2DM)的发生发展与肠道微生物群(gut microbiota, GM)的改变有关。噬菌体(phages)是一种以宿主特异性方式攻击细菌的病毒,其拮抗作用有可能改变肠道菌群,作为概念验证,Dennis课题组通过较瘦供体粪便病毒组移植(Fecal virome transplantation,FVT)将 转变 肥胖小鼠转变为较瘦小鼠表型,证明FVT对2型糖尿病和肥胖症干预的有效性。 实验设计 : 图1:实验设计流程图。40只5周龄的雄性C57BL/6NTac小鼠分为低脂(Low Fat, LF)饮食、高脂(High Fat, HF)饮食、HF +氨苄青霉素(ampicillin, Amp)、HF+Amp+FVT和HF+FVT 5组:(图1)。在13周内,小鼠被随意喂食HF饲料(研究饲料D12492,美国)和LF饲料(研究饲料D12450J,美国)。在不同方案喂食6周后,HF+FVT和HF+Amp+FVT组的小鼠分别用 mL肠溶酶间隔1周(第6、7周)灌胃进行两次FVT,。第一次接种FVT前一天,HF+Amp和HF+Amp+FVT小鼠在饮用水中给予单剂量Amp(1 g/L)。从18只C57BL/6N小鼠的盲肠含量中提取并混合用于FVT的病毒体,这些小鼠代表3个不同的供体,饲喂LF饲料14周。来自不同供应商的个体小鼠代表了独特和多样的病毒概况。应用的FVT 病毒组的滴度约为2×1010病毒样颗粒/mL。在研究的第20周,对小鼠进行口服葡萄糖耐量试验(OGTT),并监测食物摄入量和小鼠体重。 项目流程 : 结果: 1. 瘦供体FVT降低了DIO小鼠的体重增速,使血糖耐量恢复正常 小鼠分别在FVT前1-2周和FVT后间隔1-2周称量体重。在第一次FVT 后,第4和第6周(15、17周龄)时,HF+FVT小鼠(p<)和HF+Amp小鼠(p<)的体重增加明显低于HF小鼠(图2)。LF和HF+FVT小鼠OGTT无显著差异(p>),而HF小鼠OGTT水平显著升高与LF组和HF+FVT组比较(p<),显示FVT已使HF+FVT小鼠的血糖耐量正常化(图2B)。此外,HF+Amp+FVT的OGTT与HF小鼠相当(p>),说明在HF+Amp+FVT小鼠中,Amp对细菌组成的初始破坏有可能抵消了FVT的作用, 。 这同时表明,与FVT相关的影响是通过肠道菌群成分的改变而发生的。除糖化血红蛋白(HbA1c)水平和每只小鼠的食物消耗量外,还定期测定非禁食血糖。 图2. (A)第一次FVT后2、4、6周(分别为13、15、17周)体重增加的条形图。首次FVT后6周(17周龄)测定OGTT水平。数值是基于tAUC相对于单个小鼠的血糖水平。图中排除了第一次FVT后第4周和第6周两两比较的显著差异,以增加图像的可视性。*P<,**P<, ***P<, ****P< 。Amp,氨苄青霉素;FVT,粪便病毒组移植;HF,高脂;LF,低脂。ns,不显著; OGTT, 口服葡萄糖耐量试验; tAUC, 曲线下总面积。 2. FVT 增强了全身能量稳态相关基因的表达 以肝脏和回肠组织中与肥胖和T2D相关的基因为目标,检测HF+FVT与HF小鼠中相关基因的表达是否有显著差异,并与LF小鼠具有相似性。结果显示,FVT降低了HF饮食引起的基因表达差异,从而形成与健康LF小鼠相似的表达水平。 图3:肝脏和回肠组织中与肥胖和T2D相关的基因表达水平(18周龄)。(A) Ffar2Ileum ,(B) LeprLiver ,(C) KlbLiver ,(D) Ppargc1aLiver ,(E) Igfbp2Liver ,(F) Socs3Liver ,(G) MycLiver 。采用以HF或LF为对照组的线性模型计算组间显著性。样本质检表达量的差异倍数取log2是对相对基因表达的一种度量,它是基于log2转化的表达值归一化到最小值的样本。 Ffar2Ileum ,游离脂肪酸受体; LeprLiver ,胰岛素样生长因子结合蛋白; KlbLiver ,β-klotho; Ppargc1aLiver ,瘦素细胞因子受体; Igfbp2Liver ,过氧化物酶体增殖物激活受体γ共激活剂1-α; Socs3Liver ,细胞因子信号传导抑制因子; MycLiver 转录因子。FVT,粪便病毒组移植;HF,高脂;LF,低脂。ns,不显著; 3. FVT 介导肠道菌群转移 盲肠样本16S rRNA基因拷贝数/g在×1010 ~×1010之间变化。LF小鼠的细菌Shannon多样性指数明显高于HF小鼠(p<),但与HF+FVT小鼠相似(p=)。与HF小鼠相比,盲肠中HF+FVT的Shannon多样性指数也显著增加(p<),但在结肠中Shannon多样性指数没有明显增加。Amp治疗后7周,Amp处理过的HF+Amp小鼠的Shannon多样性指数最低(p<),而FVT提高了Amp干预后的HF+Amp+FVT小鼠的Shannon多样性指数(p<)(图4A)。FVT对病毒Shannon多样性指数无影响(p>),而Amp的处理显著(p<)增加了病毒Shannon多样性指数(图4B和线上补充表S5),其原因可能是由于噬菌体的诱导。 根据Bray- Curtis差异测定法,FVT对细菌组成(图5A, p<)和病毒组成(图5B,P<)都有强烈的影响,如HF+FVT与HF小鼠、HF+Amp+FVT与HF+Amp小鼠的明显分离。 FVT受体的GM特征与供体的GM特征不完全相似,这表明供体病毒组只有部分在接种6周后建立。此外,所有实验组在病毒和细菌群落中两两显著分离(p<),包括LF和HF+FVT (p<)。该研究发现,无论是否经过Amp处理,FVT都强烈地影响和部分重塑了GM的组成。rCCA表明,某些细菌(拟杆菌目和梭菌目)和病毒(尾病毒目,微病毒科和未鉴定的病毒)之间存在强(r>)正或负相关性的潜在宿主-噬菌体对关系。 图4.供体和盲肠(A)细菌和(B)终止时(18周龄)的Shannon多样性指数。括号表示图中每一组的样本数量,灰色点表示异常值。供体是从三个不同供体的盲肠内容物中提取的细菌或菌体的1:1:1混合而成。各组的两两比较见线上补充表S5。*P<。Amp,氨苄青霉素;FVT,粪便病毒组移植;HF,高脂;LF,低脂。ns,不显著。 图5:PCoA图,基于Bray-Curtis不同度测量,取供体和盲肠(A)细菌群落和(B)18周龄病毒群落。Bray- Curtis不同度量的相似度分析(ANOSIM)显示在表中。供体是从三个不同供体的盲肠内容物中提取的细菌或菌体的1:1:1混合而成。各组的两两比较见线上补充表,氨苄青霉素;FVT,粪便病毒组移植;HF,高脂;LF,低脂。 图6.说明所有五个实验组细菌(A)和病毒(B)概况的热图,以及某些细菌和病毒簇之间的强烈相关性(C)。 4. FVT 介导的血浆代谢组谱的改变 采用非靶向UPLC- MS分析血浆样品,测定FVT对宿主代谢组的影响。基于数据集建立了PCA模型,比较LF、HF和HF+FVT的概况(图7,所有组的在线上补充图S111)。与其他测量方法一致,HF+FVT小鼠的血浆谱位于HF和LF小鼠之间。两两建立OPLS-DA模型,所有模型(LF vs HF、LF vs HF+FVT、HF vs HF+FVT)均具有统计学意义(p<),支持三组分离。在筛选出的VIP评分为>2的特征中,仅对与相关基因表达相关(基于rCCA)和细菌或病毒丰度相关的特征进行进一步检测以进行注释。研究的特征主要包括饱和/不饱和溶血磷脂(LysoPC)和/或磷脂磷脂胆碱(PCs), 而 其余的特征包括各种氨基酸或无法识别的代谢物。总体而言,与LF小鼠相比,HF小鼠的LysoPC(18:2)、LysoPC(22:2)、PC(16:0/22:6)水平更高,血浆LysoPC(22:4)和PC (18:1/O-18:2)水平更低。与LF小鼠相比,HF+FVT小鼠循环LysoPC(16:0)、LysoPC(18:2)和PC(16:0/22:6)水平升高,而LysoPC(22:4)和PC (18:1/O-18:2)水平降低。与HF小鼠相比,HF+FVT小鼠的LysoPC(16:0)、LysoPC(18:0)和PC (18:1/O-18:2)水平更高。 图分析图,原始数据各维度和每个主成分的相关度由电喷雾电离(ESIZ)+UPLC-MS处理的终止妊娠(18周龄)时LF、HF和HF+FVT(R2=和Q2=)得到,表包括由两两比较生成的监督的OPLS-DA模型。HF,高脂;LF,低脂;OPLS- DA,潜结构正交投影判别分析;PCA,主成分分析;UPLC- MS,超高效液相色谱-质谱分析。 结论 : ① 对高脂喂养的小鼠进行粪便病毒组移植(FVT),移植来源为低脂喂养14周的瘦小鼠的盲肠病毒组;② FVT 后第 6 周,受体小鼠的体重增长显著降低,且 葡萄糖耐受性 OGTT与 瘦 低脂喂养的对照组小鼠相似,没有出现 发生 因高脂喂养诱发 引起 的糖耐受损;③与此一致的是,FVT 显著改变了小鼠的肠道细菌和病毒组成、血浆代谢物以及与肥胖和 2 型糖尿病相关基因的表达水平;④ 但在 FVT 前进行抗生素预处理,反而会削弱 FVT 的有益效果。这项研究说明,噬菌体介导的疗法或能用来治疗肥胖和糖尿病等肠道菌群相关疾病。
我们这里用65mg/kg STZ对一定种属动物的胰岛β细胞有选择性破坏作用,而使许多动物产生糖尿病。最常用的是大鼠模型。一般常用的诱导方法如下:将大鼠禁食12h,按60mg/kg体重腹腔注射STZ,每日1次,连续2次,成功制备Ⅰ型糖尿病大鼠模型,并且该模型具有高血糖、体重减轻、多饮多食多尿的特点,与临床Ⅰ型糖尿病吻合;但在此实验中,若造模组只腹腔注射STZ一次,并给予高热量饲料饲养12周,则可制备Ⅱ型糖尿病动物模型,且按该法制备出的模型具有超重、糖耐量减低、血脂升高、血清胰岛素升高及胰岛素受体结合力降低伴胰岛素抵抗的特点,类似于Ⅱ型糖尿病病人的临床特征。Ⅰ型糖尿病与Ⅱ型糖尿病动物模型的制备可能与STZ注射的剂量有关系:大剂量(常为120mg/kg)注射时,由于直接引起胰岛β细胞的广泛破坏,可造成Ⅰ型糖尿病模型;而注射较少量STZ时,由于只是破坏一部分胰岛β细胞的功能,造成外周组织对胰岛素不敏感,同时给予高热量饲料喂养,两者结合便诱导出病理、生理改变都接近于人类Ⅱ型糖尿病的动物模型。 也有研究表明,用STZ按90mg/kg体重处理过的新生大鼠长至成鼠后,表现出糖耐量异常、胰岛素分泌下降、体重下降等特征。其主要机制是新生鼠出生后一周内β细胞对STZ敏感性不同,以及再生力不同,导致成鼠后β细胞数量相对减少。故大鼠出生后一周内注射STZ ,其β细胞坏死及增生可使成鼠β细胞数量及生化特点稳定。这说明该方法稳定性好,是研究非肥胖型非胰岛素依赖性糖尿病的理想载体。
以间充质干细胞 (MSC) 为基础的治疗糖尿病相关代谢紊乱的方法受到细胞存活不足和高葡萄糖应激下治疗效果有限的阻碍。 2021年7月2日,清华大学杜亚楠团队在 Science Advances 在线发表题为“ Exendin-4 gene modification and microscaffold encapsulation promote self-persistence and antidiabetic activity of MSCs ”的研究论文,该研究 使用 Exendin-4(MSC-Ex-4)(一种胰高血糖素样肽 1(GLP-1)类似物)对 MSC 进行基因工程改造,并证明了它们在 2 型糖尿病 (T2DM) 小鼠模型中增强的细胞功能和抗糖尿病功效。 从机制上讲,MSC-Ex-4 通过 GLP-1R 介导的 AMPK 信号通路的自分泌激活实现了自我增强并提高了在高葡萄糖应激下的存活率。同时,MSC-Ex-4 分泌的 Exendin-4 通过内分泌作用抑制胰腺 β 细胞的衰老和凋亡,而 MSC-Ex-4 分泌的生物活性因子(例如,IGFBP2 和 APOM)则通过旁分泌增强胰岛素敏感性并通过 PI3K-Akt 激活减少肝细胞中的脂质积累。此外,该研究将 MSC-Ex-4 封装在 3D 明胶微支架中用于单剂量给药,以将治疗效果延长 3 个月。总之, 该研究结果提供了对 Exendin-4 介导的 MSCs 自我持续性和抗糖尿病活性的机制见解,为 T2DM 提供更有效的基于 MSC 的治疗。 迄今为止,全世界有超过 亿人患有糖尿病,预计到 2045 年这一数字将达到 7 亿。 2 型糖尿病 (T2DM) 约占糖尿病病例的 90%,其特征是胰岛素抵抗和高血糖,这是由肥胖、缺乏运动、不健康饮食和遗传引起的。当肝脏、肌肉和脂肪组织中的细胞对胰岛素无反应并导致葡萄糖摄取失败时,就会发生胰岛素抵抗。胰腺 β 细胞将通过增加胰岛素产生来补偿胰岛素抵抗,最终导致 β 细胞衰竭和不可逆的高血糖。因此, 长期暴露于慢性高血糖会抑制增殖并诱导 β 细胞凋亡,从而导致 β 细胞量减少和 β 细胞功能障碍。 此外, T2DM 与肝功能障碍密切相关,超过 90% 的 T2DM 肥胖患者患有代谢相关性脂肪肝 (MAFLD) 。 肝细胞通过将营养物质以糖原和甘油三酯 (TG) 的形式储存起来,在葡萄糖和脂质稳态中发挥着重要作用。在肝脏胰岛素抵抗状态下,胰岛素不能抑制糖异生,但会加速肝细胞中的脂肪酸合成,从而增加肝脏葡萄糖的产生和 TG 的积累。尽管存在 β 细胞和肝细胞功能障碍,但高血糖和高甘油三酯血症会加剧肌肉和脂肪组织的胰岛素抵抗状态,同时引起其他器官和组织的功能障碍。因此, T2DM 与多种并发症密不可分,包括冠心病、中风和视网膜病变。 除了改变生活方式外,还需应用降糖药物以更好地维持 T2DM 患者的正常血糖水平 。胰高血糖素样肽-1 (GLP-1) 是一种肠促胰岛素激素,通过与 GLP-1 受体 (GLP-1R) 相互作用来增加胰岛素和抑制胰高血糖素分泌,从而帮助控制血糖波动。然而,GLP-1 因其半衰期短而很少用于 T2DM 治疗,它会在几分钟内被二肽基肽酶-4 迅速降解。第一个获批用于 T2DM 治疗的 GLP-1R 激动剂 Exendin-4 是一种 39 个氨基酸的肽,是一种 GLP-1 类似物,半衰期较长,为 小时。它通过抑制细胞凋亡和促进细胞增殖来增强 β 细胞质量,从而增加胰岛素分泌量。此外,已证明 Exendin-4 是一种有效的候选药物,可减轻体重,改善糖尿病和 MAFLD。尽管 Exendin-4 在调节血糖和胰岛素反应方面有所改善,但由于肾脏消除,其血浆半衰期仍然有限。 因此,需要每天给药两次,这会导致血浆浓度的意外波动和 GLP-1R 的间歇性激活。 尽管上述降糖药物治疗带来了益处,但仍有部分患者无法恢复正常血糖或出现低血糖、腹泻、恶心、呕吐等多种副作用。 近年来,基于细胞的疗法已成为对抗包括 T2DM 在内的多种难治性疾病的替代方法。特别是,间充质干/基质细胞 (MSCs) 在一些临床前和临床尝试中已证明其对改善由 T2DM 引起的高血糖、胰岛素抵抗和全身炎症的治疗作用,从而为治疗 T2DM 提供了一种新方案。同时,技术进步仍然迫切需要将基于 MSC 的疗法成功转化为 T2DM 的临床治疗。 要克服的主要障碍之一是体内给药后 MSC 的增殖和存活率降低 。 因此,已 经研究了多种策略,例如生物材料封装、基因工程和 MSC 预处理 ,以提高存活率、延迟清除动力学和维持体内 MSC 分泌因子。 此外,优化 MSCs 的给药途径至关重要,因为静脉内给药的 MSCs 主要滞留在肺部和随后的组织中,导致治疗效果减弱。此外,对 MSCs 在 T2DM 中的治疗机制的全面了解仍然难以捉摸。MSCs 被证明可以促进内源性胰岛素的产生并刺激 β 细胞的增殖。此外, MSC 以其调节免疫反应的能力而闻名,这对于改善由 T2DM 引起的全身炎症至关重要 。 鉴于 Exendin-4 和 MSCs 在治疗 T2DM 方面的上述缺陷, 研究人员已经探索了如何协同 Exendin-4 和 MSCs 的治疗益处。 MSC 也已用 GLP-1 进行基因修饰,在 T2DM 治疗中显示出优于野生型 MSC 的治疗功效。然而,应该强调的是,这些组合疗法继承了许多缺陷。例如,当与 MSC 一起给药时,单剂量游离 Exendin-4 的治疗效果和持续时间是有限的。此外, 考虑到 GLP-1 的半衰期只有 2 分钟,而且治疗 T2DM 需要高有效剂量,预计 GLP-1 修饰的 MSCs 很难显著提高 MSCs 的治疗效果。 在这里,在发现人MSCs表达GLP-1R的基础上,该研究通过慢病毒转导系统构建了Exendin-4基因工程MSCs(MSC-Ex-4)来验证MSC-Ex- 4 分泌的Exendin-4可以通过 GLP-1R 介导的自分泌激活 AMPK 信号通路,从而通过延长其在高糖应激下的存活时间和增强抗糖尿病功效来潜在地促进自我持久性。该研究还探索了有关 MSC-Ex-4 保护胰腺 β 细胞的内分泌作用和 MSC-Ex-4 改善肝细胞功能的旁分泌作用的潜在机制。除了 MSC-Ex-4 分泌的 Exendin-4 外,推测 MSC-Ex-4 的其他分泌组可以减少细胞衰老和凋亡,同时促进胰腺 β 细胞的增殖,以及提高胰岛素敏感性和减少脂质积累。最后,该研究系统地提供了 多剂量的游离 MSC-Ex-4,并用可注射的三维 (3D) 明胶微支架 (GMs) 作为细胞封装和递送载体来辅助 MSC-Ex-4,以实现长效治疗效果单剂量局部给药。 总之, 该研究结果提供了对 Exendin-4 介导的 MSCs 自我持续性和抗糖尿病活性的机制见解,为 T2DM 提供更有效的基于 MSC 的治疗。 WOSCI沃斯编辑,耶鲁大学博士团队匠心打造,专注最新科学动态并提供各类科研学术指导,包括:前沿科学新闻、出版信息、期刊解析、SCI论文写作技巧、学术讲座、SCI论文润色等。
Gut:粪便病毒组移植(FVT)对2型糖尿病和肥胖小鼠模型的缓解作用 近年来,粪便移植已成为治疗由梭状芽胞杆菌引起的严重腹泻的流行方法。最近,丹麦哥本哈根大学Dennis Nielsen课题组在一项小鼠中进行的试验表明,通过粪便病毒组移植减轻肥胖症和2型糖尿病(Type 2 diabetes mellitus, T2DM)患者的临床症状。 研究目的 : 肥胖症和2型糖尿病(T2DM)的发生发展与肠道微生物群(gut microbiota, GM)的改变有关。噬菌体(phages)是一种以宿主特异性方式攻击细菌的病毒,其拮抗作用有可能改变肠道菌群,作为概念验证,Dennis课题组通过较瘦供体粪便病毒组移植(Fecal virome transplantation,FVT)将 转变 肥胖小鼠转变为较瘦小鼠表型,证明FVT对2型糖尿病和肥胖症干预的有效性。 实验设计 : 图1:实验设计流程图。40只5周龄的雄性C57BL/6NTac小鼠分为低脂(Low Fat, LF)饮食、高脂(High Fat, HF)饮食、HF +氨苄青霉素(ampicillin, Amp)、HF+Amp+FVT和HF+FVT 5组:(图1)。在13周内,小鼠被随意喂食HF饲料(研究饲料D12492,美国)和LF饲料(研究饲料D12450J,美国)。在不同方案喂食6周后,HF+FVT和HF+Amp+FVT组的小鼠分别用 mL肠溶酶间隔1周(第6、7周)灌胃进行两次FVT,。第一次接种FVT前一天,HF+Amp和HF+Amp+FVT小鼠在饮用水中给予单剂量Amp(1 g/L)。从18只C57BL/6N小鼠的盲肠含量中提取并混合用于FVT的病毒体,这些小鼠代表3个不同的供体,饲喂LF饲料14周。来自不同供应商的个体小鼠代表了独特和多样的病毒概况。应用的FVT 病毒组的滴度约为2×1010病毒样颗粒/mL。在研究的第20周,对小鼠进行口服葡萄糖耐量试验(OGTT),并监测食物摄入量和小鼠体重。 项目流程 : 结果: 1. 瘦供体FVT降低了DIO小鼠的体重增速,使血糖耐量恢复正常 小鼠分别在FVT前1-2周和FVT后间隔1-2周称量体重。在第一次FVT 后,第4和第6周(15、17周龄)时,HF+FVT小鼠(p<)和HF+Amp小鼠(p<)的体重增加明显低于HF小鼠(图2)。LF和HF+FVT小鼠OGTT无显著差异(p>),而HF小鼠OGTT水平显著升高与LF组和HF+FVT组比较(p<),显示FVT已使HF+FVT小鼠的血糖耐量正常化(图2B)。此外,HF+Amp+FVT的OGTT与HF小鼠相当(p>),说明在HF+Amp+FVT小鼠中,Amp对细菌组成的初始破坏有可能抵消了FVT的作用, 。 这同时表明,与FVT相关的影响是通过肠道菌群成分的改变而发生的。除糖化血红蛋白(HbA1c)水平和每只小鼠的食物消耗量外,还定期测定非禁食血糖。 图2. (A)第一次FVT后2、4、6周(分别为13、15、17周)体重增加的条形图。首次FVT后6周(17周龄)测定OGTT水平。数值是基于tAUC相对于单个小鼠的血糖水平。图中排除了第一次FVT后第4周和第6周两两比较的显著差异,以增加图像的可视性。*P<,**P<, ***P<, ****P< 。Amp,氨苄青霉素;FVT,粪便病毒组移植;HF,高脂;LF,低脂。ns,不显著; OGTT, 口服葡萄糖耐量试验; tAUC, 曲线下总面积。 2. FVT 增强了全身能量稳态相关基因的表达 以肝脏和回肠组织中与肥胖和T2D相关的基因为目标,检测HF+FVT与HF小鼠中相关基因的表达是否有显著差异,并与LF小鼠具有相似性。结果显示,FVT降低了HF饮食引起的基因表达差异,从而形成与健康LF小鼠相似的表达水平。 图3:肝脏和回肠组织中与肥胖和T2D相关的基因表达水平(18周龄)。(A) Ffar2Ileum ,(B) LeprLiver ,(C) KlbLiver ,(D) Ppargc1aLiver ,(E) Igfbp2Liver ,(F) Socs3Liver ,(G) MycLiver 。采用以HF或LF为对照组的线性模型计算组间显著性。样本质检表达量的差异倍数取log2是对相对基因表达的一种度量,它是基于log2转化的表达值归一化到最小值的样本。 Ffar2Ileum ,游离脂肪酸受体; LeprLiver ,胰岛素样生长因子结合蛋白; KlbLiver ,β-klotho; Ppargc1aLiver ,瘦素细胞因子受体; Igfbp2Liver ,过氧化物酶体增殖物激活受体γ共激活剂1-α; Socs3Liver ,细胞因子信号传导抑制因子; MycLiver 转录因子。FVT,粪便病毒组移植;HF,高脂;LF,低脂。ns,不显著; 3. FVT 介导肠道菌群转移 盲肠样本16S rRNA基因拷贝数/g在×1010 ~×1010之间变化。LF小鼠的细菌Shannon多样性指数明显高于HF小鼠(p<),但与HF+FVT小鼠相似(p=)。与HF小鼠相比,盲肠中HF+FVT的Shannon多样性指数也显著增加(p<),但在结肠中Shannon多样性指数没有明显增加。Amp治疗后7周,Amp处理过的HF+Amp小鼠的Shannon多样性指数最低(p<),而FVT提高了Amp干预后的HF+Amp+FVT小鼠的Shannon多样性指数(p<)(图4A)。FVT对病毒Shannon多样性指数无影响(p>),而Amp的处理显著(p<)增加了病毒Shannon多样性指数(图4B和线上补充表S5),其原因可能是由于噬菌体的诱导。 根据Bray- Curtis差异测定法,FVT对细菌组成(图5A, p<)和病毒组成(图5B,P<)都有强烈的影响,如HF+FVT与HF小鼠、HF+Amp+FVT与HF+Amp小鼠的明显分离。 FVT受体的GM特征与供体的GM特征不完全相似,这表明供体病毒组只有部分在接种6周后建立。此外,所有实验组在病毒和细菌群落中两两显著分离(p<),包括LF和HF+FVT (p<)。该研究发现,无论是否经过Amp处理,FVT都强烈地影响和部分重塑了GM的组成。rCCA表明,某些细菌(拟杆菌目和梭菌目)和病毒(尾病毒目,微病毒科和未鉴定的病毒)之间存在强(r>)正或负相关性的潜在宿主-噬菌体对关系。 图4.供体和盲肠(A)细菌和(B)终止时(18周龄)的Shannon多样性指数。括号表示图中每一组的样本数量,灰色点表示异常值。供体是从三个不同供体的盲肠内容物中提取的细菌或菌体的1:1:1混合而成。各组的两两比较见线上补充表S5。*P<。Amp,氨苄青霉素;FVT,粪便病毒组移植;HF,高脂;LF,低脂。ns,不显著。 图5:PCoA图,基于Bray-Curtis不同度测量,取供体和盲肠(A)细菌群落和(B)18周龄病毒群落。Bray- Curtis不同度量的相似度分析(ANOSIM)显示在表中。供体是从三个不同供体的盲肠内容物中提取的细菌或菌体的1:1:1混合而成。各组的两两比较见线上补充表,氨苄青霉素;FVT,粪便病毒组移植;HF,高脂;LF,低脂。 图6.说明所有五个实验组细菌(A)和病毒(B)概况的热图,以及某些细菌和病毒簇之间的强烈相关性(C)。 4. FVT 介导的血浆代谢组谱的改变 采用非靶向UPLC- MS分析血浆样品,测定FVT对宿主代谢组的影响。基于数据集建立了PCA模型,比较LF、HF和HF+FVT的概况(图7,所有组的在线上补充图S111)。与其他测量方法一致,HF+FVT小鼠的血浆谱位于HF和LF小鼠之间。两两建立OPLS-DA模型,所有模型(LF vs HF、LF vs HF+FVT、HF vs HF+FVT)均具有统计学意义(p<),支持三组分离。在筛选出的VIP评分为>2的特征中,仅对与相关基因表达相关(基于rCCA)和细菌或病毒丰度相关的特征进行进一步检测以进行注释。研究的特征主要包括饱和/不饱和溶血磷脂(LysoPC)和/或磷脂磷脂胆碱(PCs), 而 其余的特征包括各种氨基酸或无法识别的代谢物。总体而言,与LF小鼠相比,HF小鼠的LysoPC(18:2)、LysoPC(22:2)、PC(16:0/22:6)水平更高,血浆LysoPC(22:4)和PC (18:1/O-18:2)水平更低。与LF小鼠相比,HF+FVT小鼠循环LysoPC(16:0)、LysoPC(18:2)和PC(16:0/22:6)水平升高,而LysoPC(22:4)和PC (18:1/O-18:2)水平降低。与HF小鼠相比,HF+FVT小鼠的LysoPC(16:0)、LysoPC(18:0)和PC (18:1/O-18:2)水平更高。 图分析图,原始数据各维度和每个主成分的相关度由电喷雾电离(ESIZ)+UPLC-MS处理的终止妊娠(18周龄)时LF、HF和HF+FVT(R2=和Q2=)得到,表包括由两两比较生成的监督的OPLS-DA模型。HF,高脂;LF,低脂;OPLS- DA,潜结构正交投影判别分析;PCA,主成分分析;UPLC- MS,超高效液相色谱-质谱分析。 结论 : ① 对高脂喂养的小鼠进行粪便病毒组移植(FVT),移植来源为低脂喂养14周的瘦小鼠的盲肠病毒组;② FVT 后第 6 周,受体小鼠的体重增长显著降低,且 葡萄糖耐受性 OGTT与 瘦 低脂喂养的对照组小鼠相似,没有出现 发生 因高脂喂养诱发 引起 的糖耐受损;③与此一致的是,FVT 显著改变了小鼠的肠道细菌和病毒组成、血浆代谢物以及与肥胖和 2 型糖尿病相关基因的表达水平;④ 但在 FVT 前进行抗生素预处理,反而会削弱 FVT 的有益效果。这项研究说明,噬菌体介导的疗法或能用来治疗肥胖和糖尿病等肠道菌群相关疾病。
我们这里用65mg/kg STZ对一定种属动物的胰岛β细胞有选择性破坏作用,而使许多动物产生糖尿病。最常用的是大鼠模型。一般常用的诱导方法如下:将大鼠禁食12h,按60mg/kg体重腹腔注射STZ,每日1次,连续2次,成功制备Ⅰ型糖尿病大鼠模型,并且该模型具有高血糖、体重减轻、多饮多食多尿的特点,与临床Ⅰ型糖尿病吻合;但在此实验中,若造模组只腹腔注射STZ一次,并给予高热量饲料饲养12周,则可制备Ⅱ型糖尿病动物模型,且按该法制备出的模型具有超重、糖耐量减低、血脂升高、血清胰岛素升高及胰岛素受体结合力降低伴胰岛素抵抗的特点,类似于Ⅱ型糖尿病病人的临床特征。Ⅰ型糖尿病与Ⅱ型糖尿病动物模型的制备可能与STZ注射的剂量有关系:大剂量(常为120mg/kg)注射时,由于直接引起胰岛β细胞的广泛破坏,可造成Ⅰ型糖尿病模型;而注射较少量STZ时,由于只是破坏一部分胰岛β细胞的功能,造成外周组织对胰岛素不敏感,同时给予高热量饲料喂养,两者结合便诱导出病理、生理改变都接近于人类Ⅱ型糖尿病的动物模型。 也有研究表明,用STZ按90mg/kg体重处理过的新生大鼠长至成鼠后,表现出糖耐量异常、胰岛素分泌下降、体重下降等特征。其主要机制是新生鼠出生后一周内β细胞对STZ敏感性不同,以及再生力不同,导致成鼠后β细胞数量相对减少。故大鼠出生后一周内注射STZ ,其β细胞坏死及增生可使成鼠β细胞数量及生化特点稳定。这说明该方法稳定性好,是研究非肥胖型非胰岛素依赖性糖尿病的理想载体。