首页

医学论文

首页 医学论文 问题

透明质酸凝胶医学论文

发布时间:

透明质酸凝胶医学论文

克隆 克隆是英文clone的音译,简单讲就是一种人工诱导的无性繁殖方式。但克隆与无性繁殖是不同的。无性繁殖是指不经过雌雄两性生殖细胞的结合、只由一个生物体产生后代的生殖方式,常见的有孢子生殖、出芽生殖和分裂生殖。由植物的根、茎、叶等经过压条或嫁接等方式产生新个体也叫无性繁殖。绵羊、猴子和牛等动物没有人工操作是不能进行无性繁殖的。科学家把人工遗传操作动物繁殖的过程叫克隆,这门生物技术叫克隆技术。 克隆的基本过程是先将含有遗传物质的供体细胞的核移植到去除了细胞核的卵细胞中,利用微电流刺激等使两者融合为一体,然后促使这一新细胞分裂繁殖发育成胚胎,当胚胎发育到一定程度后,再被植入动物子宫中使动物怀孕,便可产下与提供细胞者基因相同的动物。这一过程中如果对供体细胞进行基因改造,那么无性繁殖的动物后代基因就会发生相同的变化。

1、透明质酸凝胶的作用:透明质酸凝胶有补水、保湿的作用,透明质酸是真皮里面,还有其它的组织器官都含有的一种成分,比如眼睛、关节软骨里面都含有透明质酸。它可以和大量水分子结合,所以是一个非常好的保湿剂。 2、作为外用,因为它不能透过皮肤,吸收到皮肤里边去,所以它只是皮肤表面的保湿、润肤的作用。 3、除了外用之外,还可以通过水光针注射,把它注射到真皮浅层,或者用注射器针头注射到真皮里边,可以起到保湿的作用,还有局部填充的作用。透明质酸在皮肤科、整形科应用都非常广泛,但是在注射进去之后,会随着时间代谢流失掉,需要重新补充注射。

“克隆”是从英文“clone”音译而来,在生物学领域有3个不同层次的含义。 1.在分子水平,克隆一般指DNA克隆(也叫分子克隆)。含义是将某一特定DNA片断通过重组DNA技术插入到一个载体(如质粒和病毒等)中,然后在宿主细胞中进行自我复制所得到的大量完全相同的该DNA片断的“群体”。 2.在细胞水平,克隆实质由一个单一的共同祖先细胞分裂所形成的一个细胞群体。其中每个细胞的基因都相同。比如,使一个细胞在体外的培养液中分裂若干代所形成的一个遗传背景完全相同的细胞集体即为一个细胞克隆。又如,在脊椎动物体内,当有外源物(如细菌或病毒)侵入时,会通过免疫反应产生特异的识别抗体。产生某一特定抗体的所有浆细胞都是由一个B细胞分裂而成,这样的一个浆细胞群体也是一个细胞克隆。细胞克隆是一种低级的生殖方式-无性繁殖,即不经过两性结合,子代和亲代具有相同的遗传性。生物进化的层次越低,越有可能采取这种繁殖方式。 3.在个体水平,克隆是指基因型完全相同的两个或更多的个体组成的一个群体。比如,两个同卵双胞胎即为一个克隆!因为他(她)们来自同一个卵细胞,所以遗传背景完全一样。按此定义,“多利”并不能说成是一个克隆!因为“多利”只是孤单的一个。只有当那些英国胚胎学家能将两个以上完全相同的细胞核移植到两个以上完全相同的去核卵细胞中,得到两个以上遗传背景完全相同的“多利”时才能用克隆这个词来描述。所以在那篇发表于1997年2月出版在《Nature》杂志上的轰动性论文中,作者并没有把“多利”说成是一个克隆。 另外,克隆也可以做动词用,意思是指获得以上所言DNA、细胞或个体群体的过程。 二、克隆技术 1.DNA克隆 现在进行DNA克隆的方法多种多样,其基本过程如下图所示(未按比例) 可见,这样得到的DNA可以应用于生物学研究的很多方面,包括对特异DNA的碱基顺序的分析和处理,以及生物技术工业中有价值蛋白质的大量生产等等。 2.生物个体的克隆 (1)植物个体的克隆 在20世纪50年代,植物学家用胡萝卜为模型材料,研究了分化的植物细胞中遗传物质是否丢失问题,他们惊奇地发现,从一个单一已经高度分化的胡萝卜细胞 可以发育形成一棵完整的植株!由此,他们认为植物细胞具有全能性。从一棵胡萝卜中的两个以上的体细胞发育而成的胡萝卜群体的遗传背景完全一样,故为一个克隆。如此的植物的克隆过程是一个完全的无性繁殖过程! (2)动物个体的克隆 ① “多利”的诞生 1997年2月27日英国爱丁堡罗斯林(Roslin)研究所的伊恩·维尔莫特科学研究小组向世界宣布,世界上第一头克隆绵羊“多利”(Dolly)诞生,这一消息立刻轰动了全世界。 “多莉”的产生与三只母羊有关。一只是怀孕三个月的芬兰多塞特母绵羊,两只是苏格兰黑面母绵羊。芬兰多塞特母绵羊提供了全套遗传信息,即提供了细胞核(称之为供体);一只苏格兰黑面母绵羊提供无细胞核的卵细胞;另一只苏格兰黑面母绵羊提供羊胚胎的发育环境——子宫,是“多莉”羊的“生”母。其整个克隆过程简述如下: 从芬兰多塞特母绵羊的乳腺中取出乳腺细胞,将其放入低浓度的营养培养液中,细胞逐渐停止了分裂,此细胞称之为供体细胞;给一头苏格兰黑面母绵羊注射促性腺素,促使它排卵,取出未受精的卵细胞,并立即将其细胞核除去,留下一个无核的卵细胞,此细胞称之为受体细胞;利用电脉冲的方法,使供体细胞和受体细胞发生融合,最后形成了融合细胞,由于电脉冲还可以产生类似于自然受精过程中的一系列反应,使融合细胞也能象受精卵一样进行细胞分裂、分化,从而形成胚胎细胞;将胚胎细胞转移到另一只苏格兰黑面母绵羊的子宫内,胚胎细胞进一步分化和发育,最后形成一只小绵羊。出生的“多莉”小绵羊与多塞特母绵羊具有完全相同的外貌。 一年以后,另一组科学家报道了将小鼠卵丘细胞(围绕在卵母细胞外周的高度分化细胞)的细胞核移植到去除了细胞核的卵母细胞中得到20多只发育完全的小鼠。如呆“多利”因为只有一只,还不够叫做克隆羊的话,这些小鼠 就是名副其实的克隆鼠了。 ② 通过细胞核移植克隆小鼠的基本过程 在本实验中,卵丘细胞是经如下过程得到的:通过连续几次注射绒毛膜促性腺激素,使雌鼠诱导成高产卵量状态。然后从雌鼠输卵管中收集卵丘细胞与卵母细胞的复合体。经透明质酸处理使卵丘细胞散开。选择直径为10-12微米的卵丘细胞用作细胞核供体(前期实验表明,若用直径更小或更大的卵丘细胞的细胞核,经过细胞核移植的卵母细胞很少发育到8细胞期)。所选择的卵丘细胞保持在一定的溶液环境中,在3小时内进行细胞核移植(与此不同的是,在获得“多利”时用作细胞核供体的乳腺细胞先在培养液中传代了3-6次) 卵母细胞(一般处于减数分裂中期 II )通过与上面描述类似的方法,从不同种的雌鼠中收集。在显微镜下小心地用直径大约7微米的细管取出卵母细胞的细胞核,尽量不取出细胞质。同样小心取出卵丘细胞的细胞核,也尽量去除所带的细胞质(通过使取出的细胞核在玻璃管中往复运动数次,以去除所带的少量的细胞质)。在细胞核被取出后5分钟之内,直接注射到已经去除了细胞核的卵母细胞中。进行了细胞核移植的卵母细胞先放在一种特制的溶液中1-6小时,然后加入二价的锶离子(Sr2+)和细胞分裂抑素B。前者使卵母细胞激活,后者抑制极体的形成和染色体的排除。再取出处理过的卵母细胞,放在没有锶和细胞分裂抑素B的特制的溶液中使细胞分裂形成胚胎。 不同阶段的胚胎(从2细胞期到胚泡期)被分别植入几天前与已经结扎雄鼠交配过的假孕母鼠的输卵管或子宫中发育。发育完全的胎儿鼠在大约19天后通过手术取出。 目前胚胎细胞核移植克隆的动物有小鼠、兔、山羊、绵羊、猪、牛和猴子等。在中国,除猴子以外,其他克隆动物都有,也能连续核移植克隆山羊,该技术比胚胎分割技术更进一步,将克隆出更多的动物。因胚胎分割次数越多,每份细胞越少,发育成的个体的能力越差。体细胞核移植克隆的动物只有一个,就是“多利”羊。 三、克隆技术的福音 1. 克隆技术与遗传育种 在农业方面,人们利用“克隆”技术培育出大量具有抗旱、抗倒伏、抗病虫害的优质高产品种,大大提高了粮食产量。在这方面我国已迈入世界最先进的前列。 2. 克隆技术与濒危生物保护 克隆技术对保护物种特别是珍稀、濒危物种来讲是一个福音,具有很大的应用前景。从生物学的角度看,这也是克隆技术最有价值的地方之一。 3. 克隆技术与医学 在当代,医生几乎能在所有人类器官和组织上施行移植手术。但就科学技术而言,器官移植中的排斥反应仍是最为头痛的事。排斥反应的原因是组织不配型导致相容性差。如果把“克隆人”的器官提供给“原版人”,作器官移植之用,则绝对没有排斥反应之虑,因为二者基因相配,组织也相配。问题是,利用“克隆人”作为器官供体合不合乎人道?是否合法?经济是否合算? 克隆技术还可用来大量繁殖有价值的基因,例如,在医学方面,人们正是通过“克隆”技术生产出治疗糖尿病的胰岛素、使侏儒症患者重新长高的生长激素和能抗多种病毒感染的干挠素,等等。

这种物质早在近百年前就被应用,它可以分离出高分子多糖,应用在白内障手术之中,起到手术器械的作用,在外科骨科的手术中都有运用,透明质酸钠注射液主要从鸡冠中提取,还要增加一些辅料,例如磷酸二氢钾,磷酸氢二钠等等,分子量在80万道尔顿到250万道尔顿之间,透明质酸钠凝胶的弹性较好,在进行人工晶体手术,白内障摘除术等等领域都要用到。在骨科手术中也可以预防肌腱粘连,还可以用作注射液,治疗风湿性关节炎和骨关节炎,腹腔手术,腹腔镜手术,美容手术和泌尿外科手术当中,透明质酸钠凝胶都被广泛的运用,它不可缺少,以上就是透明质酸钠凝胶的作用,在使用时应该注意无菌操作,该产品为一次性使用,并且要做好止血条件才能够开始手术,一部分对鸟类蛋白敏感的人群不能够使用透明质酸钠凝胶。

聚氨基酸水凝胶的医学论文

主要看你要了解什么酶,我这里有些食品工业酶的相关文章,不能在这里一一贴出来,如果需要,可以给你发到邮箱里。 酶制剂工业是知识密集的高科技产业,是生物工程的经济实体。据台湾食品工业发展研究所统计,全世界酶制剂市场以年平均11 %的速度逐年增加。从1995 年的12. 5 亿美元增加到1999 年的19. 2 亿美元,预计到2002 年市场规模将达到25 亿美元。就酶在各领域的应用来说,食品、饲料工业用量最大,占销售总额的45 % ,洗涤剂占32 % ,纺织工业占11 % ,造纸工业占7 % ,化学工业占4 %。权威部门预测1997 年至2002 年,5 年中酶制剂市场的发展趋势,食品用酶将由7. 25 亿美元增至11. 76 亿美元,年增长率11. 4 %;洗涤剂用酶将由4. 89 亿美元增到8. 48 亿美元,年增长率13. 3 %;纺织用酶将由1. 65 亿美元增到2. 58 亿美元,增长率10. 3 %;造纸工业用酶将由1 亿美元增加到1. 92 亿美元,年增长率为最高,达到16. 2 %;化学工业将由0. 61 亿美元增加到0. 96 亿美元, 年增长率10. 5 %。与1985 年时,食品工业用酶占酶制剂市场62 % ,洗涤剂用酶占33 % ,制革纺织工业用酶占5 %相比,其明显的变化是,非食品工业用酶领域在迅速扩大,反映了人们对环保意识的增强。在全世界上百个有名的酶制剂企业中, 丹麦NOVO 公司牢牢把持着龙头地位,占有50 %以上市场份额,杰能科则其次,占25 %左右市场份额,其它各国酶制剂生产企业分享余下的25 %市场份额。工业上使用的酶制剂基本上分为二类:一类是水解酶类,包括淀粉酶、纤维素酶、蛋白酶、脂肪酶、果胶酶、乳糖酶等,占有市场销售额的75 %以上。目前约有60 %以上的酶制剂已用基因改良菌株生产,NOVO 公司使用的菌种有80 %是基因重组菌株。第二类是非水解酶,占市场销售额10 %左右,并有逐年增大的倾向,主要是分析试剂用酶和医药工业用酶。食品工业中,用于淀粉加工的酶所占比例仍是最大,为15 %;其次是乳制品工业,占14 %。酶在食品、纺织、制革工业等传统的应用虽然已相当广泛,技术上也已很成熟,但是仍在不断发展。以下就近年来对酶的生产安全与在工业应用方面的新发展作一简单介绍:1 酶制剂生产的安全卫生管理我国加入WTO 在即,对于酶制剂生产的安全卫生管理不可不加注意。食品用酶制剂国外是作为食品添加剂的,对其安全卫生规定很严。酶本身虽是生物产品,比化学制品安全,但酶制剂并非单纯制品,常含有培养基残留物、无机盐、防腐剂、稀释剂等。在生产过程中还可能受到沙门氏菌、金黄葡萄球菌、大肠杆菌之污染。此外还可能会含生物毒素,尤其是黄曲霉毒素,即使是黑曲霉,有些菌种也可能产生黄曲霉毒素。黄曲霉毒素或由于菌种本身产生或由于原料(霉变粮食原料) 所带入。此外培养基中都要使用无机盐,难免混入汞、铜、铅、砷等有毒重金属。为保证产品绝对安全,对原料、菌种、后处理等道道工序都要严格把关。生产场地要符合GMP(Good Manufactur2ing Practice 即良好的生产规程) 要求。对酶制剂产品的安全性要求,联合国粮农组织(FAO) 和世界卫生组织(WHO) 食品添加剂专家委员会(Joint FAO/ WHO Expert Committee on Foodadditives , J ECFA) 早在1978 年WHO 第21 届大会提出了对酶制剂来源安全性的评估标准:(1) 来自动植物可食部位及传统上作为食品成份,或传统上用于食品的菌种所生产的酶,如符合适当的化学与微生物学要求,即可视为食品,而不必进行毒性试验。(2) 由非致病的一般食品污染微生物所产的酶要求作短期毒性试验。(3) 由非常见微生物所产之酶要作广泛的毒性试验,包括老鼠的长期喂养试验。这一标准为各国酶的生产提供了安全性评估的依据。生产菌种必须是非致病性的,不产生毒素、抗生素和激素等生理活性物质,菌种需经各种安全性试验证明无害才准使用于生产。对于毒素之测定,除化学分析外,还要做生物分析。英国对添加剂的安全性是由化学毒性委员会(简写COT) 进行评估的,并向政府专家咨议委员会FACE(食品添加剂和污染委员会) 提出建议。COT最关心的是菌种毒性问题,建议微生物酶至少做90天的老鼠喂养试验, 并以高标准进行生物分析。COT 认为菌种改良是必要的,但每次改良后应作生物检测。美国对酶制剂的管理制度有二种: 一是符合GRAS( General recognized as safe) 物质;二是符合食品添加剂要求。被认为GRAS 物质的酶,在生产时只要符合GMP 就可以。而认为食品添加剂的酶,在上市前须经批准,并在联邦管理法典(CFR , TheCode of Federal Regulation) 上登记。申请GRAS 要通过二大评估,即技术安全性和产品安全性试验结果的接受性评估。GRAS 的认可除FDA 有权进行外,任何对食品成份安全性具有评估资格的专家也可独立进行评估。在美国用以生产食品酶的动物性原料,必须符合肉类检验的各项要求,并执行GMP 生产,而植物原料或微生物培养基成份在正常使用条件下,进入食品的残留量,不得有碍健康。所用设备、稀释剂、助剂等都应是适用于食品的物质。须严格控制生产方法及培养条件,使生产菌不致成为毒素与有碍健康之来源此外,近年来世界食品市场推行KOSHER 食品认证制度,即符合犹太教规要求的食品制度。有了KOSHER 证书,才可进入世界犹太组织的市场。在美国不仅是犹太人,连穆斯林、素食者、对某些食物过敏的人,大多数也购买KOSHER 食品。按规定KOSHER 食品中不得含有猪、兔、马、驼、虾、贝类、有翼昆虫和爬虫类的成份。加工KOSHER 食品的酶制剂同样要符合KOSHER 食品的要求。故国外许多食品酶制剂都有符合KOSHER 食品的标记。要将我国酶制剂向海外开拓,对此不可不加以注意。符合KOSHER 食品要求由专门权威机构审批,比FDA 还严。2 酶在工业中的新用途2. 1 功能性低聚糖的制造近20 年来,以双歧杆菌、乳酸菌为主的益生菌和以低聚果糖、异麦芽糖、低聚半乳糖为首的益生原作为新一代保健食品在世界各国广泛流行。通过酶法转化的各种功能性低聚糖年销售量已超过10 万吨。功能性低聚糖是指那些人体不消化或难消化吸收的低聚糖,摄取后直入大肠,选择性地被人体自身的有益菌(双歧杆菌等) 所优先利用。使体内双歧杆菌成倍、上百倍地增殖而促进宿主的健康,故也称为双歧因子。这些低聚糖也不被龋齿病源突变链球菌所利用,食之不会引起蛀牙。每天摄取3~10 g 功能性低聚糖,可改善胃肠功能,防止便泌和轻度腹泻,减少肠内毒素生成和吸收,提高机体抗病免疫功能。功能性低聚糖正在成为21 世纪流行的健康糖源。 (1) 异麦芽低聚糖:是难消化低聚糖,不被唾液、胰液所分解,但在小肠可部分被分解和吸收。热值约为蔗糖和麦芽糖的70 %~80 %。对肠道直接刺激性较小。小鼠急性毒性试验LD50 为44g/ kg 以上,安全性不逊于蔗糖和麦芽糖。人体最大无作用量1. 5 g/ kg (摄取后24 小时不发生腹泻之上限量) ,而其它难消化低聚糖或糖醇的最大无作用量只有0. 1~0. 4 g/ kg。摄取异麦芽糖16g ,一周后肠道中双歧杆菌、乳酸菌等有益菌明显增加,而拟杆菌、梭状杆菌等有害菌受到抑制,便秘改善,粪便pH 下降,有机酸增加,腐败物减少。小鼠试验表明,摄取异麦芽糖后免疫力增强,血脂改善。异麦芽糖在高温、微酸性和酸性环境下稳定,可以添加于各种食品和饮料中。异麦芽低聚糖是淀粉经α- 淀粉酶液化,β- 淀粉酶糖化和α- 葡萄糖苷酶转苷反应而生成的包括含α- 1 ,6 键的异麦芽糖,潘糖,异麦芽三糖等分枝低聚糖的糖浆。市场上的异麦芽糖分含量50 %与90 %两种,后者是将含量50 %的异麦芽糖用离子交换法或酵母发酵法去除葡萄糖而成。粉状糖是糖浆经喷雾干燥而成。生产异麦芽糖的α- 葡萄糖苷酶是黑曲霉生产糖化酶之副产品,将糖化酶发酵液经离子交换吸附去除所含α- 葡萄糖苷酶经洗脱浓缩而成。虽然发表过不少培养黑曲霉生产α- 葡萄糖苷酶的研究的报道,但未见用于商品生产。用α- 葡萄糖苷酶转化麦芽糖生产异麦芽低聚糖,其生成量一般仅50 %左右,另外还含有20 %~40 %的麦芽糖与葡萄糖。为了提高异麦芽低聚糖产量,曾有不少研究报导,例如使用臭曲霉α- 葡萄糖苷酶,产品中潘糖产量可达30 %葡萄糖量可降至20 %。高崎发现脂肪嗜热芽孢杆菌所产普鲁兰酶在高浓度麦芽三糖存在下有转苷作用。将其结构基因导入枯草杆菌NA - 1 ,生产的新普鲁兰酶,与枯草杆菌糖化型α- 淀粉酶(可产生麦芽三糖) 一起作用于淀粉,异麦芽低聚糖的产率可达60 % ,而葡萄糖含量由40 %降至20 %。为了提高黑曲霉α- 葡萄糖苷酶的活力,东京大学生物工程系将α- 葡萄糖苷酶基因AGLA 导入黑曲霉GN - 3 ,得到转化子GIZ 155 - A3 - 4 ,产酶能力提高了11 倍。目前我国生产异麦芽糖的企业多达50~60 家,生产能力约5 万吨以上,α- 葡萄糖苷酶的用量以0. 1 %计,需50 吨,消耗外汇甚巨(以每吨75 万元计,就需3750 万元人民币) 。有必要立足自给。(2) 海藻糖:是二分子葡萄糖以α,α- 1. 1 键连结而成的非还原性低聚糖。广泛存在于动植物和微生物(如菌覃、海藻、虾、啤酒酵母、面包酵母) 中,是昆虫主要血糖,作为飞翔时之能源来利用。海藻糖能保护某些动植物适应干燥和冰冻的环境。海藻糖是一种很好的糖源,因非还原性,故耐酸耐热性好,不易同蛋白质、氨基酸发生反应。对淀粉老化,蛋白质变性,脂肪氧化有较强抑制作用。此外还可消除某些食物之苦涩味、肉类之腥臭。海藻糖不被龋齿突变链球菌利用,食之不会引起蛀牙。活性干酵母的活存率全赖酵母细胞中海藻糖含量所决定。过去海藻糖系从酵母中提取(最大含量也只有20 %) ,成本甚高,每公斤高达2~3 万日元。现在可以用酶或发酵法生产,成本大大下降。久保田等从节杆菌、小球菌、黄杆菌、硫化叶菌等土壤细菌中发现一组海藻糖生成酶(海藻糖合成酶MTSASE 与麦芽低聚糖海藻糖水解酶MTHASE) ,当将其同异淀粉酶、环糊精生成酶、α- 淀粉酶、糖化酶一起作用于液化淀粉时,可得到85 %收率的海藻糖。(3) 帕拉金糖( Palatinose) 学名为异麦芽酮糖( Isomaltotulose) :以蔗糖为原料,经产朊杆菌或普利茅斯沙雷氏菌的α- 葡萄糖基转移酶(又称蔗糖变换酶Sucrose multase) 的作用,蔗糖分子的葡萄糖和果糖由α- 1 ,2 键结合转变为α- 1 ,6 键结合而成。由于结构的改变,其甜度减少到蔗糖之42 % ,吸湿性较低,对酸的稳定性增加,耐热性略为降低,生物学、生理学特性发生改变,不能为多数细菌、真菌所利用。食后不被口腔、胃中的酶所分解,直到小肠才可被酶水解成为葡萄糖和果糖而进入代谢。帕拉金糖不为口腔龋齿突变链球菌所利用,食之不易发生蛀牙,食后血糖也不会迅速升高,故可为糖尿病人使用。帕拉金糖在低水份和低pH 下便会失水而缩合成为2~4 个分子的低聚帕拉金糖,甜度为蔗糖之30 % ,不为肠道消化酶所消化,食后可直达大肠而为双歧杆菌选择性利用,起到双歧因子的保健作用。将帕拉金糖在高温高压下,用雷尼尔镍为催化剂氧化便生成帕拉金糖醇。这种糖醇甜度为蔗糖的45~60 % ,热值为蔗糖的二分之一。食后不易消化吸收,不会引起血糖和胰岛素升高,不会引起蛀牙,适合糖尿病人、老人、肥胖者作甜味剂。因其物理性质酷似蔗糖,可用其制作低热值糖果,是国际上流行的新一代甜味剂。上述三种糖在欧美、日本等已经大量生产,并被广泛利用;而在国内虽已研究成功,但在生产和应用上尚存在不少阻力。(4) 低聚果糖:是以蔗糖为原料经黑曲霉β2果糖基转移酶的作用,将蔗糖分子的D2果糖以β22 ,1 链连接123 个果糖分子而成的蔗果三糖、蔗果四糖以及蔗果五糖与蔗糖、葡萄糖以及果糖的混合物,甜度为蔗糖的60 %。用离子交换树脂将其中葡萄糖与果糖除去后,可得到含低聚果糖95 %以上的产品,甜度为蔗糖的30 %。低聚果糖的主要成份蔗果三糖与蔗果四糖在人体中完全不被唾液、消化道、肝脏、肾脏中的α2葡萄糖苷酶水解,本身是一种膳食纤维,食后可直达大肠,为大肠中的有益细菌优先利用。食低聚果糖不会引起血糖、胰岛素水平的升高,热值为1. 5kCal/ g ,通过双歧杆菌的增殖,肠道得以净化,肌体免疫力增强,营养改善,血脂降低。以年龄50~90 岁老人进行试验,日食低聚果糖8g ,8 天后肠道双歧杆菌可由5 %增加到25 %。便秘者食用低聚果糖每天5~6g ,4 天后80 %便秘者症状改善,粪便变为柔软,色泽转黄,臭味减少,肠道腐败得到控制。低聚果糖也存在于菊芋、菊苣、芦笋等植物,西欧都用菊粉做原料,用菊粉酶局部水解而成。日本政府将低聚果糖批准为特定保健食品;西欧、芬兰、新加坡、台湾等地将低聚果糖作为功能性食品配料,广泛使用在各种食品。我国大陆低聚果糖的年生产能力为15000 吨,广东江门量子高科10000 吨,云南天元3000 吨,张家港梁丰1000 吨,广西大学奥立高500 吨。此外五粮液酿酒公司、上海中科生物医学高科技开发有限公司也在销售。(5) 低聚木糖的特点是对酸、热稳定性强,故可用于果汁等酸性饮料,因其不被多数肠道细菌利用,只有双歧杆菌等少数细菌能利用,因此是一种强力双歧因子,每天摄取0. 7g 即可见效。这种糖是以玉米芯为原料,提取其木聚糖后,用曲霉木聚糖酶水解而得。由日本三得利公司首先生产,我国山东龙力公司在中国农大的支持下开发成功。山东食品发酵研究院亦已宣告研制成功。此外,其它功能性低聚糖如低聚半乳糖,低聚甘露糖等我国也已开发成功。2. 2 酶用于功能性多肽的生产近年发现蛋白酶水解蛋白质生成的肽类,其吸收性比蛋白质或由蛋白质的组成的氨基酸为好,因此可作为输液、运动员食品、保健食品等。在蛋白质水解物中,有些肽具有生理活性功能,如酪蛋白经胰酶或碱性蛋白酶水解可生成酪蛋白磷酸肽(CPP) ,具有促进Ca 、Fe 吸收的功能。由鱼肉、大豆、酪蛋白经酶水解得到的水解物中含有一种氨基酸,序列是Ala - Val - Pro - Tyr - Pro - Gln - Arg 的七肽,是一种血管紧张素转化酶抑制剂(ACEI , An2giotensin Converting Enzyme Inhibitor) 。它可同血管紧张素相结合影响其活性的表达,从而防止血压升高,是较理想的降压保健食品。由不同蛋白质原料,不同的蛋白酶水解得到不同结构的肽类中,有些肽还具有降血脂,促进酒精代谢、抗疲劳、抗过敏的生理功能。常食豆酱、豆豉、纳豆、乳腐等酿造食品有益健康,原因也在此。胨是细菌培养基原料,因发现其有生理功能,竟然也有人将它装入胶囊,当保健品销售,获利甚丰。2. 3 酶用于油脂工业酶在油脂工业上的应用还处于萌芽阶段。(1) 纤维素酶、半纤维素酶用于榨油工业:油料用溶剂抽提油后,残渣中残留溶剂很难完全去除,影响饲料应用,为此日本开发了采用纤维素酶、半纤维素酶和果胶酶分解植物组织,来提取油脂。方法是将油橄榄、菜籽等先经破碎或热处理,然后加半纤维素酶反应数小时,离心分离油脂和渣粕。这种工艺已用在橄榄油、桔油提取上,菜籽油已进入中试阶段。在动物油脂生产上,利用蛋白酶处理,使蛋白质同油脂分离,因可避免高温处理,油脂的质量也就更好。为了去除油脂残余卵磷脂,使用磷酸酯酶去除油中水溶性卵磷脂。(2) 制造脂肪酸脂肪酶对底物有位置专一性和非专一性之分,此外对底物脂肪酸链长、不饱和度也有选择性,用对位置无专一性脂肪酶水解猪油生产脂肪酸,作为制造肥皂的原料。用对不饱和脂肪酸酯无作用的脂肪酶,水解鱼油时,因对高度不饱和脂肪酸DHA 的甘油三酯难水解而保留下来,用此法来制造DHA 等ω3 脂肪酸。(3) 酯交换利用脂肪酶之酯交换作用,改变油脂脂肪酸组成可改变油脂性质,例如用棕榈油改性成为可可脂。2. 4 转谷酰胺酶( TGASE) 用于肉类加工转谷酰胺酶可催化蛋白质分子中谷氨酸残基上γ2酰胺基和各种伯胺间的转酰基反应,当蛋白质中赖氨酸残基的ε2氨基作为酰基受体时,可在分子间形成ε2(γ2Gln) Lys 共价键而交联,从而可增加蛋白质之凝胶强度,改善蛋白质结构和功能性质,利用此作用,可将低值碎肉重组,改善鱼、肉制品外观和口感,减少损耗, 从而提高经济价值。还可将Met .Lys. 等必须氨基酸导入缺乏此氨基酸的蛋白质而改善营养价值。此酶也可用于毛织物加工,用于酶的固定化或将不同分子进行联结,将抗体与药剂进行联结等。生产菌种为茂原链轮丝菌( S t reptoverticill ummobaracens) ,日本已商业化生产,我国无锡轻工业大学也已研究成功,转入试生产阶段。2. 5 酶在果蔬加工上的新用途(1) 原果胶酶用于果胶提取:果实中的果胶在未成熟前是以不溶性的原果胶形式存在的,在水果成熟过程中逐渐转变成可溶性之果胶。原果胶也可在酸、热作用下转变为可溶性。由枯草杆菌、黑曲霉、酵母、担子菌所生产的原果胶酶已被开发用于桔皮、苹果、葡萄皮、胡萝卜中果胶的提取。用酶法提取果胶与酸热法相比工艺简单,无污染,成本低,产品质量除含糖量稍高外,无甚区别。(2) 粥化酶(Macerating enzymes) 之用于提高果汁得率:粥化酶是果胶酶、半纤维素酶(包括木聚糖酶、阿拉伯聚糖酶、甘露聚糖酶) 、纤维素酶之混合物,作用于溃碎果实,对促进过滤,提高果汁收率的效果比单一果胶酶为好。已是果汁加工主要的酶。(3) 真空或加压渗酶法处理完整果蔬:利用加压或真空浸渍果蔬,使果胶酶渗入细胞间隙或细胞壁中而起作用。此法已用于完整桔子的软化,桔皮容易剥除。还用于桃肉硬化处理,将果胶甲基酯酶与Ca2 + 渗入桃肉,可使罐头糖水桃子硬度提高4 倍(因脱甲酯之果胶可同Ca2 + 结合而增强硬度) 。腌制蔬菜用此法处理可防止软化而保持脆性。此法也用于桔皮之柚苷酶脱苦处理, 脱苦率达81 %。(4) 柒酶用于去除酚类化物澄清果汁经超滤过滤,浓缩后仍发生白色混浊,此乃由于果汁中酚类化合物所引起,为此在过滤前可用柒酶处理,使之氧化聚合成不溶性高分子而过滤去除之。(5) 果胶酶用于洗清滤膜果胶污染物。(6) β2葡聚糖酶用于去除葡萄汁中由感染Cot rytis cinerea 而产生的β- 葡聚糖,Vinozyme促使不溶物沉降。2. 6 酶在纺织工业上的应用棉布用淀粉酶退浆已有100 多年历史了,随着酶制剂工业的发展,纤维素酶、果胶酶、木聚糖酶、柒酶、蛋白酶等酶类先后被纺织工业所采用。(1) 棉布整理用酶随着牛仔服的流行,纤维素酶整理棉布,改善织物观感和手感,已受到纺织业的广泛重视。纤维素酶作用于天然纤维非结晶区,使纤维发生部分降解和改性,可使织物柔软、光洁、手感和外观舒适。通常用酶处理以后,棉布重量减轻3~5 % ,但牢度要损失20 %左右。在发达国家为追求时尚,不在乎布的牢度。过氧化氢酶常用于经H2O2 漂白后除去残留的H2O2 , 最近发现A rthromyces ramosus , 鬼伞菌Coprinus cinereus可大量生产过氧化氢酶,过氧化氢酶也用于洗涤剂。果胶酶用于棉布整理,主要是分解棉、麻织物纤维表面的果胶,以利漂白与染色。柒酶是种酚氧化酶,以O 为H 受体,主要用在牛仔布靛蓝染色时脱色处理,NOVO 公司采用基因技术改良黑曲霉生产。柒酶也可作用于木质素,有分解木质素的作用。木聚糖酶用于布坯漂白处理,可去除木质素及粘附纤维上之棉子壳。(2) 毛织物蛋白酶防毡缩整理毛织品若不经整理水洗后便发生收缩毡化不能再穿(如劣质羊毛衫洗涤后缩得很小) ,必须防缩防毡化处理,洗后才能保持原状。防毡化防腐处理已有100 多年历史,过去用氯、H2O2 、过硫酸盐处理,污染严重,90 年代才开发了无氯防缩剂。利用蛋白酶改变羊毛结构可用于防毡防缩处理,40 年代就有人研究,60 年代日本报道,用木瓜酶处理可防毡缩,并可进行低温染色,提高染色率,减少污水,改善毛织物手感和观感。70 年代我们也曾试用酸性蛋白酶处理,进行低温染色,取得良好结果,染色率提高3. 6 % ,污水减少62 %。每千锭断纱率降到145 根,抗伸力、抗拉力、手感都有明显提高。80 年代以来,酶法防毡缩在国内外重新引起重视,日、英、美等国发表了大量研究文章,取得了一定进展。研究过的蛋白酶有胰酶、木瓜酶、碱性蛋白酶、中性蛋白酶、酸性蛋白酶等,相信不久这些工艺会成熟而得到推广。2. 7 酶在造纸工业上的应用造纸工业是环境污染的重要源头。随着人们对环保意识增强,造纸工业使用生物技术受到了重视。酶法生产纸浆引起了各国浓厚兴趣,关键是降解木质素。最近国内有人利用多种微生物作用制造纸浆,已经取得可喜进展,目前正在筹备扩大试验。酶在造纸工业的应用现在主要是脂肪酶用于原木脱树脂,纤维素酶半纤维素酶和脂肪酶用于废报纸回收后脱油墨;以及木聚糖酶用于纸浆漂白。(1) 原木脱树脂:造纸用的原木因含树脂,打浆抄纸时,树脂污染设备,影响生产,降低纸品质量。为此需要在室外堆放很长时间(3 个月以上) ,使树脂分解。这样影响生产周期,还占用大片场地。日本造纸研究机构对原木成份进行研究,发现树脂的成份中96 %是油酸和亚油酸,使用脂肪酶处理就可除去。自从90 年代在生产上采用后,纸品的质量提高,原木堆积成本下降,树脂吸附剂用量减少,经济效益提高。当时所用脂肪酶由NOVO 公司供应,在pH6~10 ,40~60 ℃作用良好,近来又发现使用耐热性70 ℃的脂肪酶效果更佳。(2) 纸浆漂白:纸浆为了除去色素来源木质素,要用氯、次氯酸、二氧化氯等氯化物处理,污染严重,因此60 年代就有人考虑用木质素酶将其分解。木质素是以苯基丙烷为骨干的高分子聚合物,只有将其分解木质素才会崩解。已发现对木质素有分解力的酶有木质素过氧化酶(L IP) 、锰依赖性过氧化酶(MNP) 、柒酶(LAC) ,但至今未找到适用的木质素酶。近年芬兰提出了一种化学和酶法相结合的处理法,取得了较好的效果。先用木聚糖酶切断木质素同纤维素之间的联系物(木聚糖和半纤维素) ,使木质素游离,再用碱蒸煮后,由纸浆游离出的木聚糖可再次吸附在纤维的表面,用木聚糖酶将其分解,可增加孔隙,于是氯素的浸透性提高,并使木质素容易从纸浆内部出来,此工艺活性氯用量可减少30 %。(3) 废报纸回收利用中的脱墨废纸回收后打纸浆时,需用碱、非离子表面活性剂、硅酸钠及H2O2 进行脱墨处理。日本在脱墨时添加碱性纤维素酶、半纤维素酶0. 1 %反应2 小时,抄纸白度可提高4~5 % ,强度并未降低。由于防止油墨印刷品弄脏手,油墨中加有亚油酸、亚麻酸和油酸等的高级三甘油酯,故脱墨时再添加脂肪酶效果更好,白度可提高2. 5 %。废报纸脱墨,我国山东大学也进行过不少研究。2. 8 其它植酸酶除作为饲料添加剂用以提高饲料中有机磷的利用率,减少粪便中磷对环境的污染,节省饲料另加磷酸盐用量。近年植酸酶还用于酿造,以改善原料中磷的利用,以及用于去钾大豆蛋白食物的生产,成为肾脏病人蛋白质的来源。α- 葡萄糖基转移酶还用于甜叶菊加工,用以脱苦涩味。淀粉的液化和糖化几乎占了工业上酶反应的绝大部分,由于目前的酶液化、糖化要在不同pH 和温度下进行,为简化工艺、节省水和能源,有必要开发耐酸性高温α2淀粉酶和耐热性糖化酶,如果α2淀粉酶可在pH4. 5 时进行液化,而糖化酶能在60 ℃以上温度下进行,试想将这些带来多大的效益? 不仅如此在pH4. 5 液化,还可避免麦芽酮糖生成。耐酸性α2淀粉酶和耐热性糖化酶在国外已经进行多年研究,已有不少报道。例如日本报道已选育出一株耐酸性α2淀粉酶( KOD - 1) ,在30 %淀粉浆中,pH4. 5 ,105 ℃下反应10 分钟,残留酶活75 %。将该酶在pH4. 5 ,60 ℃时液化30 %粉浆60 分钟,得到DE14 液化液,加糖化酶0. 1 %糖化48 小时,葡萄糖含量达95. 5 % ,与对照枯草杆菌α2淀粉酶的结果于pH5. 8 液化者相同(葡萄糖含量95. 7 %) 。此外,利用蛋白质工程将地衣芽孢杆菌α2淀粉酶分子中7个蛋氨酸用其它氨基酸置换后,耐酸性增强。这类酶的产业化一旦成功,将大大改变糖化有关工业的面貌。3 结束语随着世界能源的日益减少,而人口却在不断增加,水资源和粮食日见短缺。由于人类对环保意识的加强,使得工业界用酶来改革传统工艺的需求更为迫切。因此,提高酶的产量,降低生产成本,开发酶的新品种、新用途更是当务之急。基因工程、蛋白质工程的发展,为酶制剂工业发展创造了有利条件。开发耐热、耐酸碱,对底物有特殊作用的酶,以及将动植物生产的酶改由微生物发酵方法来生产,或者将还不能使用的微生物所产的酶改由安全菌种来生产,都将成为现实。另外,虚机团上产品团购,超级便宜

核心的,社得类的就可以

--------------------- 1 →进入消化道被微生物消化成葡萄糖 ---------------- 2 →G被微生物转化为挥发性脂肪酸 ------------------- 3 →被牛吸收(淋巴循环)进入肝脏 -------------------- 4 →转氨基作用生成氨基酸 -------------------------- 5 →DNA中基因表达时蛋白质合成产生机体组织蛋白 ----- 6 →奶牛泌乳--------------------------------------- 7 就是这个思路 1.草中主要含有纤维素,还有果胶,无机灰分等 有纤维素(cellulose)是由葡萄糖组成的大分子多糖。不溶于水及一般有机溶剂。是植物细胞壁的主要成分。纤维素是世界上最丰富的天然有机物,占植物界碳含量的50%以上。棉花的纤维素含量接近100%,为天然的最纯纤维素来源。一般木材中,纤维素占40~50%,还有10~30%的半纤维素和20~30%的木质素。此外,麻、麦秆、稻草、甘蔗渣等,都是纤维素的丰富来源。 纤维素是D-葡萄糖以β-1,4糖苷键组成的大分子多糖,分子量约50000~2500000,相当于300~15000个葡萄糖基。分子式可写作(C6H10O5)n。 2.草被牛采食进入消化道被微生物消化成葡萄糖 瘤胃是反刍动物的第一胃。食草动物反刍时,食物从此处返回口中.瘤胃位于腹腔左侧,几乎占据整个左侧腹腔,在它前侧部是瘤胃前庭,经喷门与食道相通 瘤胃内容物:瘤胃水含量较高,平均可达85~90%;干物质含量较低,平均为10~15% 瘤胃PH值:比较稳定,在~之间 瘤胃温度:由微生物发酵产生,维持在~40°C 瘤胃中含有纤毛虫等微生物将草降解,瘤胃微生物(liuweiweishengwu)共生在牛、羊、鹿和骆驼等反刍动物瘤胃中的细菌和原生动物等微生物的总称。数量极多。反刍动物可为它们提供纤维素等有机养料、无机养料和水分,并创造合适的温度和厌氧环境,而瘤胃微生物则可帮助反刍动物消化纤维素和合成大量菌体蛋白,最后进入皱胃(真胃)时,它们便被全部消化,又成为反刍动物的主要养料。瘤胃内容物中,通常每毫升约含1010个细菌和4×106个原生动物。经统计,如1头体重达300公斤的肉用牛,它的瘤胃容积约为40升,可含4×1014个细菌和4×1010个原生动物。瘤胃微生物除有细菌和原生动物外,还能见到酵母样微生物和噬菌体。常见到的细菌有纤维素消化菌〔如白色瘤胃球菌(Ruminococcusalbus)〕、半纤维素消化菌〔如居瘤胃拟杆菌(Bacteriodesruminocola)〕、淀粉分解菌〔如反刍月形单胞菌(Selenomonasruminantium)〕、产甲烷菌〔如反刍甲烷杆菌(Methanobacteri-umruminantium)〕等三四十种。常见到的原生动物主要是纤毛虫,纤毛虫体的大小约为40~200微米,数量一般为20~200万/毫升。种类可分为全毛虫和寡毛虫两大类。全毛虫有原口等毛虫(Isotichaprostma)、肠等毛虫(Isotichaintestinalis)、厚毛虫(Dasytricharuminantium);寡毛虫有囊状内毛虫(Entodiniumbursa)、贪食内毛虫(E.vorax)、尖尾内毛虫(E.caudatum)、有齿双毛虫(Diplodiniumdenticulatum)、多泡双毛虫(Polyplastronmultivesticulatum)、家牛双毛虫(Eudiplodiniumtauricum)、细硬甲虫(Ostracodiniumgracile)、无尾前毛虫(Epidiniumecaudatum)和有尾头毛虫(Ophryoscolexcaudatus)等。 纤维素酶的组成与功能 纤维素酶根据其催化反应功能的不同可分为内切葡聚糖酶(1,4-β-D-glucan glucanohydrolase或endo-1,4-β-D-glucanase,),来自真菌的简称EG,来自细菌的简称Cen、外切葡聚糖酶(1,4-β-D-glucan cellobilhydrolase或exo-1,4-β-D-glucannase,),来自真菌的简称CBH,来自细菌的简称Cex) 和β-葡聚糖苷酶(β-1,4- glucosidase,)简称BG。内切葡聚糖酶随机切割纤维素多糖链内部的无定型区,产生不同长度的寡糖和新链的末端。外切葡聚糖酶作用于这些还原性和非还原性的纤维素多糖链的末端,释放葡萄糖或纤维二糖。β-葡萄糖苷酶水解纤维二糖产生两分子的葡萄糖。真菌纤维素酶产量高、活性大,在畜牧业和饲料工作中主要应用真菌来源的纤维素酶。 2.纤维素酶降解纤维素的机理研究 纤维素酶反应和一般酶反应不一样,其最主要的区别在于纤维素酶是多组分酶系,且底物结构极其复杂。由于底物的水不溶性,纤维素酶的吸附作用代替了酶与底物形成的ES复合物过程。纤维素酶先特异性地吸附在底物纤维素上,然后在几种组分的协同作用下将纤维素分解成葡萄糖。 1950年,Reese等提出了C1-Cx假说,该假说认为必须以不同的酶协同作用,才能将纤维素彻底的水解为葡萄糖。协同作用一般认为是内切葡聚糖酶(C1酶)首先进攻纤维素的非结晶区,形成Cx所需的新的游离末端,然后由CX酶从多糖链的还原端或非还原端切下纤维二糖单位,最后由β-葡聚糖苷酶将纤维二糖水解成二个葡萄糖。不过,纤维素酶的协同作用顺序不是绝对的,随后的研究中发现,C1-Cx和β-葡聚糖苷酶必须同时存在才能水解天然纤维素。若先用C1酶作用结晶纤维素,然后除掉C1酶,再加入Cx酶,如此顺序作用却不能将结晶纤维素水解。 被微生物转化为挥发性脂肪酸 秸秆类粗饲料主要在瘤胃内消化,代谢产物为挥发性脂肪酸(VFA).有认为水牛瘤胃内VFA水平较高是由于纤维素消化力较强 稻草纤维素消化率与TvFA浓度的关系:反自动物维持生命活动及生产的能量主要来自VFA“’。瘤胃是饲料消化和产生VFA的主要器官,瘤胃中产生的VFA可满足动物机体的大部分能量需要。本试验第一,二期水牛日粮中稻草占90一100肠,而稻草主要由细胞壁构成(肠),含有较多的纤维素(肠),因而瘤胃对纤维素的消化较大程度上决定着稻草的利用和产生VFA的数量。因此,纤维素在瘤胃中被消化的程度可作为稻草利用率的一项主要指标。但纤维素消化率的测定繁琐、费时,而瘤胃TVFA浓度可快速测定,若TVFA浓度与纤维素消化率之间存在相关性,便可依TVFA浓度估测纤维素的消化率,从而间接地估计 4.被牛吸收(淋巴循环)进入肝脏 VFA的肝脏代谢 进入门静脉的大多数VFA被肝脏吸收。除乙酸外,VFA在肝脏的吸收量占60~84%。因此门静脉VFA的净吸收量为80%~100%。通常穿过肝脏的乙酸有个净释放量(Reynolds,1995),但在绵羊和肉牛乙酸也有一个小的单向的吸收(Kristensenand Harmon,2004b)。在净基础上,肝脏丁酸的吸收不能解释乙酸的释放;因为当考虑乙酰乙酸的吸收时3-羟基丁酸的释放比丁酸的吸收高得多。因此肝脏释放的大部分3-羟基丁酸一定是从血液吸收的脂肪酸如NEFA或酯化的脂肪酸(Bell,1980)。奶牛肝脏吸收丙酸门静脉净流量的。然而,内脏中丙酸的净流量随门静脉的吸收增加而增加(Berthelot等,2002;Majdoub等,2003)。短期的试验表明,瘤胃丁酸吸收量的增加可减少丙酸的肝脏排出。用阉牛试验发现,瘤胃丁酸吸收量增加使丙酸内脏释放量从增加到(Kristensen and Harmon,2004a)。丙酸是反刍动物生成葡萄糖的底物(Danfar等,1995)且丁酸吸收的突然增加可能不仅为生酮作用提供底物,而且通过从肝脏到外周组织转变丙酸的代谢也影响葡萄糖的动态平衡。肝脏葡萄糖的产量与饲料采食量(Reynold,1995)和产奶量(Danfar,1994)有关。然而,丙酸肝脏吸收量并不直接反映出肝脏葡萄糖的产量。给阉牛饲喂丙酸钠发现所增加的葡萄糖有不能挽回的损失率,虽然丙酸是生糖的,且可大量变成琥珀酸,但不是都生成葡萄糖(Steinhour and Bauman,1988),其转变效率只有。无数研究报道,甚至当丙酸可利用性在处理间的差异与肝脏葡萄糖释放量是相当时,绵羊、阉牛或奶牛灌注或饲喂丙酸并不影响肝脏葡萄糖释放或葡萄糖不可挽回的损失(Kriste-nsen and Harmon,2004b Lemosquet等,2004)。肝脏中丙酸吸收量增加并不影响生糖氨基酸的吸收(Savary-Auzwloux等,2003)。肝脏糖库的变化也不能对此做出解释(Lemosquet等,2003)。Lemosquet等(2004)研究指出,在灌注14d期间,肝脏积累肝糖应该是多于14kg。因此,目前如果只估计生糖底物和葡萄糖的平衡,不可能说明肝脏中丙酸的吸收增加。如果所有丙酸被代谢成琥珀酸,通过丙酮酸脱氢酶催化丙酮酸脱羧形成乙酰CoA,由于肝脏中不可能有高水平的乙酰-CoA,从而激活丁酰酶并抑制丁酸脱氢酶,因此推测在肝脏中存在丙酸的另一条代谢途径,否则已存大量氨基酸并不能被现有奶牛肝脏营养平衡理论解释。在丁酸代谢中,肝脏的作用与丙酸的代谢有很大的区别。与丙酸相比,不仅丁酸的排出低,而且吸收的丁酸只有25%释放到门静脉。有人假设,丁酸在瘤胃上皮细胞代谢的主要原因是丁酸逃离肝脏,因此避免丙酰CoA和丁酰CoA的混合。把丙酸和丁酸的代谢分入 不同的组织,它可能保证在两种组织中更多的同质底物库。在某种程度上这种解释可说明在瘤胃上皮细胞中VFA的不同代谢,肝脏中代谢情况还不知道,但惊奇的是,肝脏对丙酸的亲合力高,对丁酸相对低,对比戊酸长的脂肪酸也高。甚至对非酮体奶牛,肝脏释放出的3-羟基丁酸也比丁酸多。尽管瘤胃上皮细胞代谢丁酸的3/4,但它只释放在内脏产生3-羟基丁酸的一半(Reynolds等,2003)。通过肝脏释放3-羟基丁酸的碳源是可能的,除丁酸外,从门静脉血吸收的还有乙酰乙酸(Lomax等,1983)和中长链脂肪酸(Bell等,1980)。综上所述,肝脏是丙酸、支链VFA和比丁酸长的脂肪酸代谢的最重要场所。乙酸由肝脏产生,丁酸主要由肠道上皮细胞代谢。以饲料评价体系为基础的营养成分中所有VFA的代谢尽管VFA占ME的大部分,但目前的饲料评价体系还不能清晰地说明VFA可利用性和代谢过程。然而,凭借多瘘管奶牛及已有VFA知识,要获得胃肠道VFA的组成和数量是可能的。对瘤胃发酵和复杂的中间代谢的认识还有待今后深入研究。在实际应用中,为了满意地描述VFA对反刍动物的利用性和营养成分供应及中间代谢的相互作用,采 用NBFE体系或者能测量或者能预测大量至关重要的瘤胃变量。由于反刍动物瘤胃发酵的复杂和这个体系的动态变化,一个有吸引力的策略可能是把NBFE体系建立在通过瘤胃感应器配备无线电传送在合适的时间预测和调控瘤胃参数模型的基础上(Sievers等,2004)。只要模型准确预测或调控VFA产量没有满意的答案,NBFE体系就不能描述以营养成分为基础ME的最大成分。还有在中间体系内,需要模拟营养供应变化所产生的代谢结果。只要我们不能确立肝脏的碳源,我们就会 忽视内部器官重要营养成分的交换,因此我们很难从血液到牛奶和肉途经中模拟主要营养成分的相互作用。 5.转氨基作用生成氨基酸 转氨基作用 指的是一种氨基酸alpha-氨基转移到一种alpha-酮酸上的过程。转氨基作用是氨基酸脱氨基作用的一种途径。其实可以看成是氨基酸的氨基与alpha-酮酸的酮基进行了交换。 结果是生成了一种非必需氨基酸和一种新的alpha-酮酸。反应由转氨酶和其辅酶磷酸吡哆醛催化。磷酸吡哆醛是维生素B6的衍生物。人体内最重要的转氨酶为谷丙转氨酶和谷草转氨酶。它们是肝炎诊断和预后的指标之一。 体内大部分氨基酸都可以参与转氨基作用,例外:赖氨酸,脯氨酸和羟脯氨酸。鸟氨酸(Ornithine)的δ-氨基也可通过转氨基作用被脱掉。 举例: alpha-酮戊二酸 + 丙氨酸 = 谷氨酸 + 丙酮酸 (反应可逆) 这样生物体内就可以自我合成某些氨基酸了。 转氨基作用 transamination 不经过氨,而把氨基从一个化合物转移到其他化合物上的反应过程。是布朗斯坦和克里茨曼(A.E.Braunstein与M.G.Kritzmann,1937)提出的。在生物体内通常为以磷酸吡哆醛为辅酶的转氨酶(氨基转移酶)所催化,此反应一般是可逆的,反应中间产物是磷酸吡哆胺。(1)通常在α-氨基酸和α-酮酸之间发生α位的氨基转移。此反应是生物体内以谷氨酸、天冬氨酸为中心进行多种氨基酸的生物合成及氨基酸与糖或脂肪的中间代产物的相互转化的重要反应。在缺乏氨基酸氧化酶的高等动物中,首先进行转氨酶所催化的反应(Ⅰ),再以谷氨酸为媒介,在谷氨酸脱氢酶催化的反应(Ⅱ)中生成氨,在进行氨基酸氧化脱氨的同时,通过逆反应参与氨基酸的生物合成。也有以丙氨酸为氨基供体的转氨酶。(2)谷氨酸、天冬氨酸等的氨基酸的酰胺基也能直接作为氨基供体,但这时被转移的是α-氨基,而酰胺基则作为氨波游离出来。(3)在动物的肝脏、微生物中发现鸟氨酸、r-氨基丁酸、β-丙氨酸等的。ω-氨基转移到α-酮酸的反应,在这种情况下,除α-酮酸外,醛类也能成为氨基受体。鸟氨酸特别在脯氨酸—鸟氨酸—谷氨酸的相互转化中起着重要的作用。已证明这些 中基因表达时蛋白质合成产生机体组织蛋白或者乳清蛋白 一、mRNA与遗传密码 [编辑本段] 1. mRNA是蛋白质合成的直接模板 原核生物一个mRNA带有功能相关的几种蛋白质的编码信息,称多顺反子(几个基因的复本);真核生物一个mRNA一般只带一种蛋白质的编码信息,称单顺反子。mRNA的生成要经加工,尤其是真核生物细胞,这就造成mRNA的序列和DNA序列间没有完整的一对一的关系。遗传密码(genetic code)是规定mRNA的核苷酸序列翻译成多肽链氨基酸序列的一套法则,也就是mRNA的核苷酸序列和多肽链氨基酸序列的共线性关系。 2. 遗传密码是三联体密码 20世纪中叶,数学推算编码20种氨基酸所需的碱基最低数是3(43=64),密码子(codon)应是三联体(triplet),即mRNA的序列以三个核苷酸为一组。 1961年Crick及其同事通过研究噬菌体基因的移码突变推测三联体密码子是非重叠、无标点的。Nirenberg等用人工合成的mRNA在无细胞蛋白质合成系统中寻找氨基酸与三联体密码子的对应关系。Khorana和他的同事用化学合成结合酶促反应,合成含有2、3、4核苷酸重复序列的多聚核苷酸,以此为模板找出各氨基酸的密码子。技术上的突破来自人工合成的三核苷酸能与对应的氨酰-tRNA一起结合在核糖体上,由此确定绝大多数密码子。1966年全部64个密码子破译,其中AUG编码甲硫氨酸,又是起始密码;UAA、UAG、UGA3个是终止密码,不编码氨基酸;还有 61个编码一特定的氨基酸。 3. 遗传密码特点:①连续性,指密码子必须按5′→3′方向三个一组读码框往下阅读,无标点、不重叠、不跳格。正确的读码框的确立是由核糖体识别在编码序列开头处的起始密码AUG;②简并性,是指同一种氨基酸有两个或更多密码子的现象。编码同一氨基酸的密码子称为同义密码子,通常只在第3位碱基上不同,这样可减少有害突变。密码子第3位碱基与tRNA反密码子不严格遵从碱基配对规律(摆动碱基配对),如tRNA反密码子第一位的I(由A转变而来)可与mRNA密码子第3位碱基U、C、A形成配对,U可对应A、G,因而密码子第3个位置又称摆动位置;③通用性,即所有生物基本共用同一套遗传密码。线粒体以及少数生物基因组的密码子有变异(如在酵母、哺乳动物、果蝇中,AUA = Met而非Ile,UGA=Trp而非终止码。) 二、tRNA与氨基酸的转运 [编辑本段] 1. tRNA是转运氨基酸的工具 具备倒L型三级结构的tRNA由氨酰合成酶催化氨基酸共价连结到3′端,形成氨酰-tRNA,需要 ATP。tRNA与蛋白质合成有关的位点至少有4个,即①3′端CCA上的氨基酸接受位点;②反密码子位点;③识别氨酰-tRNA合成酶位点;④核糖体识别位点。 2. tRNA第二套密码系统 氨酰-tRNA合成酶具有绝对专一性,对L-氨基酸、tRNA两种底物能高度特异识别。大肠杆菌丙氨酸tRNA的氨基酸接受臂上的G3?U70碱基对决定负载Ala的专一性。精氨酸-tRNA(A20),异亮氨酸-tRNA(G5?G69),酵母苯丙氨酸-tRNA(G20,G34,A35,A36)。由于氨基酸和tRNA正确结合,而tRNA又和mRNA、核糖体准确配对,这就确保遗传信息传递的稳定。氨酰-tRNA合成酶与tRNA之间的相互作用和tRNA分子中某些碱基或碱基对决定着携带专一氨基酸的作用组成tRNA分子第二套密码系统。 三、核糖体与肽链装配 [编辑本段] 1. 核糖体是合成蛋白质的部位(或称蛋白质合成的分子工厂) 1950年将放射性同位素标记的氨基酸注射到小鼠体内,经短时间后,取出肝脏,制成匀浆,离心,分成核、线粒体、微粒体及上清液组分,发现微粒体中的放射性强度最高,再处理微粒体,将核糖体从内质网中分离出,发现核糖体的放射强度比微粒体高7倍。 2. 核糖体的组成和结构 有70S和80S两种,均由大小不同的两个亚基组成。70S核糖体存在于原核细胞和真核细胞的线粒体和叶绿体中,其30S小亚基含有一个16S rRNA和21种不同的蛋白质(称S蛋白),50S大亚基含有一个23S rRNA、5S rRNA和34种蛋白质(L蛋白)。80S核糖体存在于真核细胞,其40S小亚基含有一个18S rRNA和34种S蛋白,60S大亚基含有28S rRNA、5S rRNA、 rRNA各一分子和49种L蛋白。在通常情况下,核糖体的大小亚基游离于细胞质基质中,只有当小亚基与mRNA结合后,大亚基才与小亚基结合形成完整的核糖体。 核糖体上有两个tRNA结合的位点:A位点是氨酰tRNA结合位,P位点是肽酰tRNA结合位。50S亚基上有一个GTP水解位点,为氨酰-tRNA移位提供能量;两亚基接触面空隙有结合mRNA的位点,还有与起始因子、延伸因子、释放因子及各种酶相结合的位点,mRNA和合成的新生多肽链通过外出孔进入膜腔。 四、有关的酶和蛋白因子 除了以上提到的氨酰-tRNA合成酶和L蛋白、S蛋白外,重要的酶还有转肽酶、转位酶等;在肽链合成的起始、延伸和终止过程有许多蛋白因子参与。起始因子(initiation factors,IF),包括IF1、IF2、IF3;延伸因子(elongation factors,EF),有EF-T,EF-G;释放因子(release factors,RF),包括RF1、RF2。 7.奶牛泌乳 乳腺分泌乳汁称为泌乳。授乳给幼儿称为哺乳。泌乳是各种激素作用于巳发育的乳腺而引起的。乳腺的发育除营养条件外还需要雌性激素(动情素和孕激素)的作用,春期以后由于这些激素分泌增多,所以可加速乳腺发育。妊娠时,血中雌激素浓度增高,加上脑垂体激素的协同作用,乳腺的发育更加显著。分娩后,脑垂体前叶分泌的生乳素、促肾上腺皮质素、生长素等作用于已发育的乳腺,从而引起乳汁分泌。泌乳的维持需要吮乳刺激。通过神经经路,经丘脑下部作用于脑垂体前叶,促进上述激素分泌,同时使后叶释放催产素。催产素到达乳腺,使包围产生乳汁的乳腺胞细胞的肌上皮细胞收缩,以促进排乳。如果乳腺不将乳汁排出,则乳房内压升高,乳腺细胞的分泌机能将出现障碍。 牛奶营养成份 每100克牛奶含水分87克,蛋白质克,脂肪4克,碳水化合物5克,钙120毫克,磷93毫克,铁毫克,维生素A140国际单位,维生素毫克,维生素毫克,尼克酸毫克,维生素C1毫克。可供热量69千卡 牛奶的化学成分很复杂,至少有100多种,主要成分由水、脂肪、磷脂、蛋白质、乳糖、无机盐等组成。一般牛奶的主要化学成分含量为: 水分: 脂肪: 蛋白质: 乳糖: 无机盐: 组成人体蛋白质的氨基酸有20种,其中有8种是人体本身不能合成的,这些氨基酸称为必需氨基酸。我们进食的蛋白质中如果包含了所有的必需氨基酸,这种蛋白质便叫作全蛋白。牛奶中的蛋白质便是全蛋白。 牛奶中的无机盐也称矿物质。牛奶中含有Ca2+、Mg2+、K+ 、Fe3+ 等阳离子和PO43-、SO42-、Cl-等阴离子;此外还有微量元素I、Cu、Zn、Mn等。这些元素绝大部分都对人体发育生长和代谢调节起着重要作用。钙是人体中含量最高的无机盐,是构成骨骼和牙齿的主要成分。人体中90%的钙集中在牙齿和骨骼上。儿童、青少年生长发育需要充足的钙,同样孕妇及成人、中老年人,也需要补充钙质,缺乏钙会影响牙齿和骨骼的正常发育,导致佝偻病。大自然中的钙是以化合态存在的,只有被动、植物吸收后形成具有生物活性的钙,才能更好地被人体所吸收利用。牛奶中含有丰富的活性钙,是人类最好的钙源之一,1升新鲜牛奶所含活性钙约1250毫克,居众多食物之首,约是大米的101倍、瘦牛肉的75倍、瘦猪肉的110倍,它不但含量高,而且牛奶中的乳糖能促进人体肠壁对钙的吸收,吸收率高达98%,从而调节体内钙的代谢,维持血清钙浓度,增进骨骼的钙化。吸收好对于补钙是尤其关键的。故"牛奶能补钙"这一说法是有其科学道理的。 对于中老年人来说,牛奶还有一大好处,就是,与许多动物性蛋白胆固醇较高相比,牛奶中胆固醇的含量较低,(牛奶:13毫克/100克;瘦肉:77毫克/100克)。值得一提的是,牛奶中某些成分还能抑制肝脏制造胆固醇的数量,使得牛奶还有降低胆固醇的作用。 这个回答原本是 Baidù知道 那个号回答的 但是我那个号被 无缘无故 封了,很郁闷 百dù知道 也被封了

凝胶的物理解释:溶胶或溶液中的胶体粒子或高分子在一定条件下互相连接,形成空间网状结构,结构空隙中充满了作为分散介质的液体(在干凝胶中也可以是气体),这样一种特殊的分散体系称作凝胶。没有流动性,内部常含有大量液体。

凝胶的性质介于固体和液体之间,从外表看,它成固体状或半固体状,有弹性;但又和真正的固体不完全一样,其内部结构的强度往往有限,易于破坏。 可分为弹性凝胶和脆性凝胶。弹性凝胶失去分散介质后,体积显著缩小,而当重新吸收分散介质时,体积又重新膨胀,例如明胶等。脆性凝胶失去或重新吸收分散介质时,形状和体积都不改变,例如硅胶等。

作用:

参考资料:凝胶百度百科

水凝胶与医学论文

作为一种高吸水高保水材料,水凝胶被广泛用于多种领域,如:干旱地区的抗旱,在化妆品中的面膜、退热贴、镇痛贴、农用薄膜、建筑中的结露防止剂、调湿剂、石油化工中的堵水调剂,原油或成品油的脱水,在矿业中的抑尘剂,食品中的保鲜剂、增稠剂,医疗中的药物载体等等。值得注意的是,不同的应用领域应该选用不同的高分子原料,以满足不同的需求。保水凝胶的制法一种保水凝胶的制法,即先将氢氧化钠溶于水中,并加入丙烯酸进行预处理;再依次加入玉米淀粉、丙烯酰胺和碳酸钙,搅拌加温反应后,加入引发剂进行接枝聚合反应;然后将反应后的液体倒入模具中,恒温干燥即可。其产品组分(重量百分比)包括:玉米淀粉,丙烯酸,丙烯酰胺,过硫酸铵,碳酸钙,氢氧化钠,水余量。有工艺简单,产品无毒、可生物降解和应用广阔等优点。我,门帮助你。

水凝胶属于生物研究方向。

水凝胶(Hydrogel)是一类极为亲水的三维网络结构凝胶,它在水中迅速溶胀并在此溶胀状态可以保持大量体积的水而不溶解。

由于存在交联网络,水凝胶可以溶胀和保有大量的水,水的吸收量与交联度密切相关。交联度越高,吸水量越低。这一特性很像一种软组织。

水凝胶中的水含量可以低到百分之几,也可以高达99%。凝胶的聚集态既非完全的固体也非完全的液体。固体的行为是一定条件下可维持一定的形状与体积,液体行为是溶质可以从水凝胶中扩散或渗透。

美国约翰·霍普金斯大学医学院报告称,他们开发出一种新型水凝胶生物材料,在软骨修复手术中将其注入骨骼小洞,能帮助刺激病人骨髓产生干细胞,长出新的软骨。

在临床试验中,新生软骨覆盖率达到86%,术后疼痛也大大减轻。论文发表在2013年1月9日出版的《科学·转化医学》上。

埃里希还说,研究小组正在开发下一代移植材料,水凝胶和黏合剂就是其中之一,二者将被整合为一种材料。此外,她们还在研究关节润滑和减少发炎的技术。

加拿大最新的研究显示,水凝胶(Hydrogel)不仅有利于干细胞(Stem cell)移植,也可加速眼睛与神经损伤的修复。研究团队指出,像果冻般的水凝胶是干细胞移植的理想介质,可以帮助干细胞在体内存活,修复损伤组织。

需要话 帮写的

透明细胞癌论文

1997年,WHO根据肿瘤细胞起源以及基因改变等特点制定了肾实质上皮性肿瘤分类标准,此分类将肾癌分为透明细胞癌(60%~85%)、乳头状肾细胞癌或称为嗜色细胞癌(7%~14%)、嫌色细胞癌(4%~10%)、集合管癌(1%~2%)和未分类肾细胞癌。

肺癌()是常见的恶性肿瘤之一,近数十年肺癌的发病率和死亡率都有明显增高的趋势。肺癌的早期诊断是提高治疗效果的有效途径,影像学和痰液脱落细胞学的进展,对肺癌的早期诊断提供了有利条件。肺癌的治疗效果在近十年中没有显著的提高,总的治愈率为10%左右。其中主要原因是肺癌生物学特性十分复杂,恶性程度高,80%的肺癌患者在确诊时已属晚期。肺癌的治疗应是手术、放疗、化疗、免疫及中药等多学科综合治疗。病因学 肺癌的病因复杂,迄今尚不能确定某一致癌因子,一般认为可能与下列因素有关: 1. 吸烟:肺癌与吸烟、特别与吸纸烟的关系比较密切。约有3/4的肺癌是吸烟引起的。吸纸烟者肺癌死亡率比不吸烟者高10倍-13倍。 2. 物理化学致癌因子:目前比较公认为可致癌的因子有无机砷、石棉、铬、镍、煤体育体焦油、烟炱和煤的其他燃烧物以及二氯甲醚和氯甲甲醚等。 3. 大气污染。 4. 肺癌的发生、演变以及恶性程度与某些癌基因的活化及抗癌的基因的丢失有密切关系。 5. 慢性肺疾患:肺结核、慢性支气管炎。 组织类型 1. 鳞状细胞癌占肺癌的40%,在男性则占80%。其变形包括梭形细胞癌、淋巴上皮癌、基底细胞癌。 2. 腺癌占肺癌的20%,在女性则占50%。腺癌包括有:①支气管源性腺泡癌、支气管源性乳头状癌;②细支气管肺泡癌;③有粘液形成的实性癌。 3. 腺鳞癌占肺癌比例<10%。 4. 大细胞癌占手术肺癌中的15%-20%。其变形有①巨细胞癌,②透明细胞癌。 5. 小细胞癌占肺癌的10%-20%。又称小细胞神经内分泌癌。 6. 类癌占1%-2%。此癌为分化好的神经内分泌癌,恶性程度低。 7. 细支气管肺癌欧美占2%-3%,国内占20%。(责任编辑:抗癌在线) 肺癌综述:

没什么为什么,这是疾病本身的性质决定的。你不要把不同组织器官来源的透明细胞癌混为一谈。透明细胞癌只是一个形态学名词,是因为肿瘤细胞在显微镜下看起来透亮而得名。实际上肾透明细胞癌即是肾实质细胞癌,卵巢透明细胞癌的来源有点复杂,卵巢表面上皮和卵巢间质来源都有(就是说有一部分透明细胞癌实际上是肉瘤,但普通光学显微镜不能分辨)。其实卵巢透明细胞癌也不是卵巢恶性肿瘤中最重的,恶性畸胎瘤就比它严重。通常来说间叶组织来源的肿瘤,也就是肉瘤,都比较“恶”,比癌难对付。

化疗后加用综合治疗,以提高患者的抵抗力。

肝透明细胞癌论文

肝癌分类为:①单纯型:临床和化验检查无明显肝硬化表现者。②硬化型:有明显的肝硬化临床和化验表现者。③炎症型:病情发展迅速并伴有持续癌性高热或血清谷丙转氨酶升高1倍以上者。 肝癌晚期常见症状有肝区疼痛、肝肿大、黄疸、肝硬化、进行性消瘦、发热、食欲不振和恶病质等。可以看看这个。《王潍患癌过程的记事路》。。。

“小柯”是一个科学新闻写作机器人,由中国科学报社联合北京大学高水平科研团队研发而成,旨在帮助科学家以中文方式快速获取全球高水平英文论文发布的最新科研进展。《自然》● 科学家揭示肝硬化细胞水平发病机制英国爱丁堡大学炎症研究中心N. C. Henderson和P. Ramachandran研究组合作发现在单细胞水平上肝硬化的纤维化生态位。相关论文2019年10月9日在线发表于《自然》。为了获得细胞水平的直接相关的发病机制,并为治疗设计提供依据,他们分析了超过100,000个人类单细胞的转录组,从而得出了健康和肝硬化人类肝脏中存在的非实质细胞类型的分子定义。他们发现了一种新型的与疤痕相关的TREM2+CD9+巨噬细胞亚群,该亚群在肝纤维化中扩展,从循环单核细胞分化,并且具有促纤维化作用。他们还定义了新型ACKR1+和PLVAP+内皮细胞,它们在肝硬化中扩展,在形态构造上受疤痕限制并增强白细胞的转运。新型疤痕相关巨噬细胞,内皮细胞与PDGFRα+胶原生成间充质细胞之间相互作用的多谱系配体-受体模型揭示了包括TNFRSF12A,PDGFR和NOTCH信号传导在内的几种促纤维化途径的疤痕内活性。他们的工作在单细胞水平上剖析了未曾被预料的人体器官纤维化的细胞和分子基础,并提供了发现肝硬化合理治疗目标所需的概念框架。据悉,目前尚无有效的抗肝纤维化疗法治疗肝硬化,肝硬化是全世界的主要杀手。相关论文信息:● 研究解码胎儿肝脏造血功能剑桥大学Sam Behjati、Elisa Laurenti、Sarah A. Teichmann 和英国纽卡斯尔大学Muzlifah Haniffa研究组合作解码了人类胎儿肝脏造血功能。 这一研究成果在线发表在2019年10月9号的《自然》上。研究人员对约140,000个肝脏和74,000个皮肤以及肾脏和卵黄囊细胞进行单细胞转录组测序,确定了人类血液和免疫细胞在发育过程中的组成。研究者从造血干细胞和多能祖细胞推断分化轨迹,并评估组织微环境对血液和免疫细胞发育的影响。研究揭示了胎儿皮肤中的生理性红细胞生成以及卵黄囊中肥大细胞,自然杀伤细胞和先天性淋巴样细胞前体的存在。研究还证明了在妊娠过程中胎儿肝脏的造血成分发生了变化,其远离了主要的类红细胞,同时伴随着HSC / MPPs分化潜能的平行变化,研究人员并对此进行了功能验证。该研究揭示的胎儿肝脏造血综合图谱为研究儿科血液和免疫疾病提供了蓝图,并为HSC / MPP的治疗潜力提供了参考。研究人员表示,胎儿肝脏中的决定性造血作用支持造血干细胞和多能祖细胞的自我更新和分化,但其在人类中的作用仍然不清楚。相关论文信息:● 新发现可作为黑色素瘤潜在疗法美国西雅图福瑞德·哈金森癌症中心Robert K. Bradley小组和纽约纪念斯隆-凯特琳癌症中心Omar Abdel-Wahab小组合作,发现了癌症中剪接体内非典型BAF复合物的破坏,并基于这一机制提出了对待一类肿瘤恶化的治疗方法。 这一研究成果在线发表在2019年10月9日的《自然》上。研究人员结合泛癌剪接分析与阳性富集CRISPR筛选来优化促进肿瘤发生的拼接改变。研究团队报告说,多样的SF3B1突变集中在对BRD9的抑制上,BRD9是最近描述的非典型BAF染色质重塑复合体的核心组成部分,该复合体也包含GLTSCR1和GLTSCR1L57。突变体SF3B1识别BRD9内的异常的、深内含子分支点,从而诱导内源性逆转录病毒元件衍生的毒性外显子的包被和随后BRD9 mRNA的降解。BRD9的清除引起了CTCF相关基因座上非经典BAF的减少,并促进了黑色素瘤的发生。BRD9是葡萄膜黑色素瘤中一种强有力的抑制剂,利用反义寡核苷酸或CRISPR介导诱变在SF3B1变异细胞中纠正BRD9 的错剪接可以抑制肿瘤增长。据悉,SF3B1是癌症中最常见的突变RNA剪接因子,但对SF3B1突变促进恶性肿瘤的机制了解甚少。相关论文信息:● 癌症中U1剪接体RNA发生高频突变加拿大多伦多大学Lincoln D. Stein研究组研究显示,U1剪接体RNA在多种癌症中发生突变。该项研究成果在线发表于2019年10月9日的《自然》。他们报告了在几种肿瘤类型中,U1 snRNA的第三个碱基处高频出现的Agt;C体细胞突变。 U1的主要功能是通过碱基配对识别5C突变与肝细胞癌的酗酒和慢性淋巴细胞性白血病的侵袭性IGHV基因未突变亚型相关。U1突变还可以使CLL患者独立接受不良预后。他们的研究证明了剪接体RNA中最早的非编码驱动程序之一,揭示了癌症中异常剪接的新机制,可能代表了新的治疗靶标。他们的发现还表明,驱动程序的发现应扩展到更广泛的基因组区域。据悉,癌症是由称为驱动因子的基因组改变引起的。已知有数百种编码基因的驱动程序,但尽管进行了深入的搜索,但迄今为止仅发现了少数非编码驱动程序。最近注意力已经转移到改变的RNA剪接在癌症中的作用。尽管仅在蛋白质编码剪接因子)中发现了导致多种转录类型的异常剪接的驱动子突变,但仍在多种癌症类型中得到了证实。相比之下,由于表征非编码癌症驱动程序的综合挑战和snRNA基因的重复性,对剪接体非编码成分,一系列小核RNA的癌症相关改变的研究很少。相关论文信息:● 非编码RNA突变可引起Shh型髓母细胞瘤近日,加拿大病童医院Michael D. Taylor研究组发现复发性非编码的U1-snRNA突变驱动Shh型母细胞瘤的隐性剪接。2019年10月9日,国际知名学术期刊《自然》在线发表了这一成果。研究人员报道了约50%的Sonic hedgehog型髓母细胞瘤中U1剪接体小核RNA的高度复发性热点突变,该突变在其他髓母细胞瘤亚型中均不存在。在其他36种其他肿瘤类型的2442例癌症中,发现此U1-snRNA热点突变小于%。婴儿Shh-MB基本上不存在这种突变,这种突变发生在97%的成年人和25%的青少年中。U1-snRNA突变发生在5剪接位点结合区域,并且snRNA突变型肿瘤显著破坏RNA剪接,并带有过量的5隐性剪接事件。突变的U1-snRNA介导的可变剪接使肿瘤抑制基因失活,并激活癌基因,这是治疗的新靶点,并造成了癌症中非蛋白质编码基因的高度复发性和组织特异性突变。据介绍,癌症中的复发性体细胞单核苷酸变异很大程度上局限于蛋白质编码基因,在大多数儿童癌症中很少见。相关论文信息:《英国医学杂志》● 非酒精性脂肪肝与急性心肌梗死和卒中发病风险的相关性荷兰鹿特丹伊拉斯谟大学医学中心Naveed Sattar研究小组的一项最新研究分析了非酒精性脂肪性肝病与急性心肌梗死和卒中的发病风险的相关性。相关论文2019年10月8日在线发表于《英国医学杂志》。研究组搜集了2015年12月31日前四个欧洲国家基于人口的电子基础卫生数据库,其中意大利1542672人,荷兰2225925人,西班牙5488397人,英国12695046人。对120795名确诊为NAFLD或非酒精性脂肪性肝炎的患者平均随访了年。在校正年龄和吸烟因素后,与匹配的对照组相比,NAFLD或NASH患者的AMI风险比为,卒中的综合风险比为。而在风险因素数据更为完整的组别中,在校正收缩压、2型糖尿病、总胆固醇水平、他汀类药物使用和高血压等因素后,NAFLD或NASH患者的AMI的风险比为,卒中的风险比为。总之,对1770万例患者进行常规护理,在排除心血管危险因素后,NAFLD的诊断与AMI或卒中风险无关。NAFLD患者的成人心血管风险评估很重要,但无需以特殊方式进行。相关论文信息:● 中国科学家系统评价非小细胞肺癌一线治疗的疗效广州医科大学附属第一医院何建行教授研究组对晚期表皮生长因子受体突变的非小细胞肺癌一线治疗的疗效和安全性进行了系统评价和网络荟萃分析。这一研究成果于2019年10月7日在线发表于《英国医学杂志》。研究组在PubMed、Embase、Cochrane中央对照试验注册中心和等知名数据库中检索2019年5月20日之前符合标准的文献。入选研究均比较了晚期EGFR突变NSCLC患者一线治疗中两种以上的疗法,且至少报告以下临床结果指标之一:无进展生存、总生存、客观缓解率和3级及以上不良反应。18项符合条件的试验包括4628例患者和12种治疗方法:EGFR酪氨酸激酶抑制剂,基于培美曲塞的化疗,培美曲塞游离化疗以及联合治疗。与吉非替尼+培美曲塞化疗的疗效相当,奥希替尼显示出最有利的无进展生存期,显著优于达克替尼、阿法替尼、厄洛替尼、吉非替尼、埃克替尼、培美曲塞为基础的化疗、培美曲塞游离化疗、阿法替尼+西妥昔单抗和吉非替尼+培美曲塞。奥希替尼和吉非替尼联合以培美曲塞为基础的化疗在提供最佳总体生存效益方面也大致相当。但联合治疗引起的毒性更大,尤其是厄洛替尼+贝伐单抗,易导致3级以上的严重不良事件。不同的EGFR-TKIs显示出不同毒性谱。两种最常见的EGFR突变类型的亚组分析表明,在外显子19缺失的患者中,奥希替尼与最佳无进展生存相关,而在Leu858Arg突变患者中,吉非替尼+培美曲塞化疗与最佳无进展生存相关。总之,与其他一线治疗相比,奥希替尼和吉非替尼+培美曲塞化疗可显著提高晚期EGFR突变的NSCLC患者的无进展生存期和总生存期。对于外显子19缺失和Leu858Arg突变的患者,奥希替尼和吉非替尼+培美曲塞化疗的无进展生存最优。相关论文信息:● 慢性阻塞性肺病患者预后预测模型的系统评价希腊约阿尼纳大学医学院Evangelos Evangelou研究团队系统分析和批判评价了慢性阻塞性肺病患者预后的预测模型。这一研究成果于2019年10月4日在线发表于《英国医学杂志》。研究组系统搜索了228篇符合条件的文献,描述了408个预后模型的开发,38个模型的外部验证,以及20个针对COPD以外疾病预后模型的验证。408个预后模型建立于三个临床环境:239个针对门诊患者,155个针对住院患者,14个针对急诊患者。这408个预后模型中,最普遍的终点是死亡率、COPD急性加重和再次住院的风险。总体来说,最常用的预测因素是年龄、一秒用力呼气量、性别、体重指数和吸烟。在408个预后模型中,100个得到了内部验证,91个检测了校准开发模型。286个模型无法展示,只有56个模型可通过完整方程式展示。C统计模型可对311个模型进行判别。38个模型进行了外部验证,但其中只有12个由一个完全独立的团队进行验证。只有7个预后模型的总体偏倚风险较低。总之,该研究对COPD患者预后预测模型进行了详细的描绘和评估,发现它们的开发过程存在一些方法上的缺陷,且外部验证率较低。未来的研究应着眼于通过更新和外部验证来对现有的这些模型进行改进,并在临床实践中对它们的安全性、临床有效性和成本效益进行评估。相关论文信息:合作事宜:投稿事宜:王者之心2点击试玩

属于IV期了,我父亲就是肾癌骨转移,也是透明细胞癌,我们做了手术,骨头上破坏太大没有办法实施手术,算是带瘤生存吧,现在已经2年多了,都很稳定。 身体如果允许的话尽量还是手术,肾癌有它自己的特殊性,原发灶去除后转移灶有减小甚至消失的情况。即便骨转移并不能代表是生命的终止的,我身边的晚期癌症病友生存率超过10年以上的挺多的,希望楼主不要丧失信心!

肝癌病理学分型之肝细胞癌 组织学类型 1.梁索型又分细梁型和粗梁型。细梁型由1_2层细胞构成,粗梁型细胞可达20_30层,间质少,血窦丰富。细梁型者分化好。 2.腺样型癌细胞呈不规则弥漫腺管样或腺泡状排列,腔内有嗜伊红分泌物,有时可见红染的玻璃样小体。有的毛细血管扩张成小囊腔,甚至形成腺样结构,腔内可见胆汁、巨噬细胞、纤维蛋白渗出物、细胞碎屑、均质胶样物质等,PAS染色可阳性。 3.实体型又称致密型,癌细胞呈弥漫实性片块状排列,部分癌细胞呈镶嵌鹅卵石样排列,血窦受压,几乎不见间质。 4.硬化型较小的癌细胞被多量纤维间质分隔成不规则的细梁或腺泡状,腺管周围无基膜。可能与放疗、化疗引起瘤组织坏死有关。 5.透明细胞型一半以上瘤细胞呈透明细胞,即"透明细胞型肝细胞癌"o瘤细胞核相对较小,核分裂相少,胞质内含糖原或中性,需与转移性肾透明细胞癌鉴别。此型分化较好。 6.巨细胞型癌组织50%上由癌巨细胞组成,多核或单核癌巨细胞呈弥漫分布,体积大,形状怪异,核大小不一,染色深。 7.梭形细胞型癌细胞主要由梭形细胞组成,排列紧密,呈肉瘤样,核异型明显,核分裂相多见,有丰富血窦。 8.小细胞型细胞小,胞质少,表示分化差。 肝癌病理学分型之肝细胞癌 组织学类型 1.梁索型又分细梁型和粗梁型。细梁型由1_2层细胞构成,粗梁型细胞可达20_30层,间质少,血窦丰富。细梁型者分化好。 2.腺样型癌细胞呈不规则弥漫腺管样或腺泡状排列,腔内有嗜伊红分泌物,有时可见红染的玻璃样小体。有的毛细血管扩张成小囊腔,甚至形成腺样结构,腔内可见胆汁、巨噬细胞、纤维蛋白渗出物、细胞碎屑、均质胶样物质等,PAS染色可阳性。 3.实体型又称致密型,癌细胞呈弥漫实性片块状排列,部分癌细胞呈镶嵌鹅卵石样排列,血窦受压,几乎不见间质。 4.硬化型较小的癌细胞被多量纤维间质分隔成不规则的细梁或腺泡状,腺管周围无基膜。可能与放疗、化疗引起瘤组织坏死有关。 5.透明细胞型一半以上瘤细胞呈透明细胞,即"透明细胞型肝细胞癌"o瘤细胞核相对较小,核分裂相少,胞质内含糖原或中性,需与转移性肾透明细胞癌鉴别。此型分化较好。 6.巨细胞型癌组织50%上由癌巨细胞组成,多核或单核癌巨细胞呈弥漫分布,体积大,形状怪异,核大小不一,染色深。 7.梭形细胞型癌细胞主要由梭形细胞组成,排列紧密,呈肉瘤样,核异型明显,核分裂相多见,有丰富血窦。 8.小细胞型细胞小,胞质少,表示分化差。 组织学类型 1.梁索型又分细梁型和粗梁型。细梁型由1_2层细胞构成,粗梁型细胞可达20_30层,间质少,血窦丰富。细梁型者分化好。 2.腺样型癌细胞呈不规则弥漫腺管样或腺泡状排列,腔内有嗜伊红分泌物,有时可见红染的玻璃样小体。有的毛细血管扩张成小囊腔,甚至形成腺样结构,腔内可见胆汁、巨噬细胞、纤维蛋白渗出物、细胞碎屑、均质胶样物质等,PAS染色可阳性。 3.实体型又称致密型,癌细胞呈弥漫实性片块状排列,部分癌细胞呈镶嵌鹅卵石样排列,血窦受压,几乎不见间质。 4.硬化型较小的癌细胞被多量纤维间质分隔成不规则的细梁或腺泡状,腺管周围无基膜。可能与放疗、化疗引起瘤组织坏死有关。 5.透明细胞型一半以上瘤细胞呈透明细胞,即"透明细胞型肝细胞癌"o瘤细胞核相对较小,核分裂相少,胞质内含糖原或中性,需与转移性肾透明细胞癌鉴别。此型分化较好。 6.巨细胞型癌组织50%上由癌巨细胞组成,多核或单核癌巨细胞呈弥漫分布,体积大,形状怪异,核大小不一,染色深。 7.梭形细胞型癌细胞主要由梭形细胞组成,排列紧密,呈肉瘤样,核异型明显,核分裂相多见,有丰富血窦。 8.小细胞型细胞小,胞质少,表示分化差。 肝癌病理学分型之肝细胞癌 组织学类型 1.梁索型又分细梁型和粗梁型。细梁型由1_2层细胞构成,粗梁型细胞可达20_30层,间质少,血窦丰富。细梁型者分化好。 2.腺样型癌细胞呈不规则弥漫腺管样或腺泡状排列,腔内有嗜伊红分泌物,有时可见红染的玻璃样小体。有的毛细血管扩张成小囊腔,甚至形成腺样结构,腔内可见胆汁、巨噬细胞、纤维蛋白渗出物、细胞碎屑、均质胶样物质等,PAS染色可阳性。 3.实体型又称致密型,癌细胞呈弥漫实性片块状排列,部分癌细胞呈镶嵌鹅卵石样排列,血窦受压,几乎不见间质。 4.硬化型较小的癌细胞被多量纤维间质分隔成不规则的细梁或腺泡状,腺管周围无基膜。可能与放疗、化疗引起瘤组织坏死有关。 5.透明细胞型一半以上瘤细胞呈透明细胞,即"透明细胞型肝细胞癌"o瘤细胞核相对较小,核分裂相少,胞质内含糖原或中性,需与转移性肾透明细胞癌鉴别。此型分化较好。 6.巨细胞型癌组织50%上由癌巨细胞组成,多核或单核癌巨细胞呈弥漫分布,体积大,形状怪异,核大小不一,染色深。 7.梭形细胞型癌细胞主要由梭形细胞组成,排列紧密,呈肉瘤样,核异型明显,核分裂相多见,有丰富血窦。 8.小细胞型细胞小,胞质少,表示分化差。 肝癌病理学分型之肝细胞癌 组织学类型 1.梁索型又分细梁型和粗梁型。细梁型由1_2层细胞构成,粗梁型细胞可达20_30层,间质少,血窦丰富。细梁型者分化好。 2.腺样型癌细胞呈不规则弥漫腺管样或腺泡状排列,腔内有嗜伊红分泌物,有时可见红染的玻璃样小体。有的毛细血管扩张成小囊腔,甚至形成腺样结构,腔内可见胆汁、巨噬细胞、纤维蛋白渗出物、细胞碎屑、均质胶样物质等,PAS染色可阳性。 3.实体型又称致密型,癌细胞呈弥漫实性片块状排列,部分癌细胞呈镶嵌鹅卵石样排列,血窦受压,几乎不见间质。 4.硬化型较小的癌细胞被多量纤维间质分隔成不规则的细梁或腺泡状,腺管周围无基膜。可能与放疗、化疗引起瘤组织坏死有关。 5.透明细胞型一半以上瘤细胞呈透明细胞,即"透明细胞型肝细胞癌"o瘤细胞核相对较小,核分裂相少,胞质内含糖原或中性,需与转移性肾透明细胞癌鉴别。此型分化较好。 6.巨细胞型癌组织50%上由癌巨细胞组成,多核或单核癌巨细胞呈弥漫分布,体积大,形状怪异,核大小不一,染色深。 7.梭形细胞型癌细胞主要由梭形细胞组成,排列紧密,呈肉瘤样,核异型明显,核分裂相多见,有丰富血窦。 8.小细胞型细胞小,胞质少,表示分化差。

相关百科

热门百科

首页
发表服务