当你研究具体工程问题的时候,会发现函数凹凸形很有用的.他可以为函数的求解提供定解条件的.当然还有其他的意义.
凸函数的一阶导数是减函数,因此其二阶导数小于0;凹函数的一阶导数是增函数,因此其二阶导数大于0;当遇到需要知道二阶导数的正负时,图像的凹凸性就显得很重要。比如运动函数s=f(t),当只知道它的图像而不知道它的解析式子时,要判断其加速度的变化情况时,其图像的凹凸性就显得很重要。
就是二阶导的问题,图形是(向上)凹的,或图形是(向上)凸的设函数f(x)在区间I上定义,若对I中的任意两点x1和x2,和任意λ∈(0,1),都有[1]f(λx1+(1-λ)x2)<=λf(x1)+(1-λ)f(x2),若不等号严格成立,即"<"号成立,则称f(x)在I上是严格凹函数。如果"<="换成">="就是凸函数。类似也有严格凸函数。[1]设f(x)在区间D上连续,如果对D上任意两点a、b恒有f((a+b)/2)<(f(a)+f(b))/2那么称f(x)在D上的图形是(向上)凹的(或凹弧);如果恒有f((a+b)/2)>(f(a)+f(b))/2那么称f(x)在D上的图形是(向上)凸的(或凸弧)这个定义从几何上看就是:在函数f(x)的图象上取任意两点,如果函数图象在这两点之间的部分总在连接这两点的线段的下方,那么这个函数就是凹函数。[1]直观上看,凸函数就是图象向上突出来的。比如如果函数f(x)在区间I上二阶可导,则f(x)在区间I上是凹函数的充要条件是f''(x)>=0;f(x)在区间I上是凸函数的充要条件是f''(x)<=0;[1-2]不过补充一下,中国数学界关于函数凹凸性定义和国外很多定义是反的。ConvexFunction在国内的数学书中指凹函数。ConcaveFunction指凸函数。在国内涉及经济学的很多书中,凹凸性的提法和国外的提法是一致的,也就是和单纯的数学教材是反的。很头大的问题。[1]另外,国内各不同学科教材、辅导书的关于凹凸的说法也是相反的。一般来说,可按如下方法准确说明:1、f(λx1+(1-λ)x2)<=λf(x1)+(1-λ)f(x2),即V型,为“凸向原点”,或“下凸”(也可说上凹),(有的简称凸有的简称凹)2、f(λx1+(1-λ)x2)>=λf(x1)+(1-λ)f(x2),即A型,为“凹向原点”,或“上凸”(下凹),(同样有的简称凹有的简称凸)凸/凹向原点这种说法一目了然。上下凸的说法也没有歧义[2]在二维环境下,就是通常所说的平面直角坐标系中,可以通过画图直观地看出一条二维曲线是凸还是凹,当然它也对应一个解析表示形式,就是那个不等式。但是,在多维情况下,图形是画不出来的,这就没法从直观上理解“凹”和“凸“的含义了,只能通过表达式,当然n维的表达式比二维的肯定要复杂,但是,不管是从图形上直观理解还是从表达式上理解,都是描述的同一个客观事实。而且,按照函数图形来定义的凹凸和按照函数来定义的凹凸正好相反。琴生(Jensen)不等式(也称为詹森不等式):(注意前提、等号成立条件)设f(x)为凸函数,则f[(x1+x2+……+xn)/n]≤[f(x1)+f(x2)+……+f(xn)]/n(下凸);设f(x)为凹函数,f[(x1+x2+……+xn)/n]≥[f(x1)+f(x2)+……+f(xn)]/n(上凸),称为琴生不等式。加权形式为:f[(a1*x1+a2*x2+……+an*xn)]≤a1f(x1)+a2f(x2)+……+anf(xn)(下凸);f[(a1*x1+a2*x2+……+an*xn)]≥a1f(x1)+a2f(x2)+……+anf(xn)(上凸),其中ai≥0(i=1,2,……,n),且a1+a2+……+an=1.
就是二阶导的问题,图形是(向上)凹的,或图形是(向上)凸的 设函数f(x)在区间I上定义,若对I中的任意两点x1和x2,和任意λ∈(0,1),都有[1] f(λx1+(1-λ)x2)=0;f(x)在区间I上是凸函数的充要条件是f''(x)
三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具.高考试题中近一半的试题与这三个“二次”问题有关.本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法. ●难点磁场 已知对于x的所有实数值,二次函数f(x)=x2-4ax+2a+12(a∈R)的值都是非负的,求关于x的方程 =|a-1|+2的根的取值范围. ●案例探究 〔例1〕已知二次函数f(x)=ax2+bx+c和一次函数g(x)=-bx,其中a、b、c满足a>b>c,a+b+c=0,(a,b,c∈R). (1)求证:两函数的图象交于不同的两点A、B; (2)求线段AB在x轴上的射影A1B1的长的取值范围. 命题意图:本题主要考查考生对函数中函数与方程思想的运用能力.属于★★★★★题目. 知识依托:解答本题的闪光点是熟练应用方程的知识来解决问题及数与形的完美结合. 错解分析:由于此题表面上重在“形”,因而本题难点就是一些考生可能走入误区,老是想在“形”上找解问题的突破口,而忽略了“数”. 技巧与方法:利用方程思想巧妙转化. (1)证明:由 消去y得ax2+2bx+c=0 Δ=4b2-4ac=4(-a-c)2-4ac=4(a2+ac+c2)=4〔(a+ c2〕 ∵a+b+c=0,a>b>c,∴a>0,c<0 ∴ c2>0,∴Δ>0,即两函数的图象交于不同的两点. (2)解:设方程ax2+bx+c=0的两根为x1和x2,则x1+x2=- ,x1x2= . |A1B1|2=(x1-x2)2=(x1+x2)2-4x1x2 ∵a>b>c,a+b+c=0,a>0,c<0 ∴a>-a-c>c,解得 ∈(-2,- ) ∵ 的对称轴方程是 . ∈(-2,- )时,为减函数 ∴|A1B1|2∈(3,12),故|A1B1|∈( ). 〔例2〕已知关于x的二次方程x2+2mx+2m+1=0. (1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m的范围. (2)若方程两根均在区间(0,1)内,求m的范围. 命题意图:本题重点考查方程的根的分布问题,属★★★★级题目. 知识依托:解答本题的闪光点是熟知方程的根对于二次函数性质所具有的意义. 错解分析:用二次函数的性质对方程的根进行限制时,条件不严谨是解答本题的难点. 技巧与方法:设出二次方程对应的函数,可画出相应的示意图,然后用函数性质加以限制. 解:(1)条件说明抛物线f(x)=x2+2mx+2m+1与x轴的交点分别在区间(-1,0)和(1,2)内,画出示意图,得 ∴ . (2)据抛物线与x轴交点落在区间(0,1)内,列不等式组 (这里0<-m<1是因为对称轴x=-m应在区间(0,1)内通过) ●锦囊妙计 1.二次函数的基本性质 (1)二次函数的三种表示法: y=ax2+bx+c;y=a(x-x1)(x-x2);y=a(x-x0)2+n. (2)当a>0,f(x)在区间〔p,q〕上的最大值M,最小值m,令x0= (p+q). 若-
0时,f(α)
用配方的方法来求最快,如,x2+4x+3=0,可以配方为(x+2)2-1=0,那么它的值域是.大于或等于-1…2.用点描绘出一元二次方程的图象,看它和x轴有多少个交点,有多少个交点,那么方程就有多少个解…
目的:整合函数极值的有关求解问题,有助于函数极值的更进一步研究。现实意义:为初学函数极值问题提供有关的资料,也为考研及掌握函数极值提供较全面的知识准备。
1 北方民族大学毕业论文(设计) 开 题 报 告 书 题目 姓 名 学 号 专 业 数学与应用数学 指导教师 北方民族大学教务处制 2 北方民族大学毕业论文(设计) 开 题 报 告 书 2014年 3月 12 日 姓 名 院(部) 数信学院 课题性质 学 号 专 业 数学与应用数学 课题来源 老师提供 题 目 探索“积分学”所蕴含的数学美 一、 选题的目的、意义(含国内外相同领域、同类课题的研究现状分析): (一)、选题的目的 (二)、选题的意义 3 二、本题的基本内容: 课题任务、重点研究内容、实现途径、方法及进度计划 4 三、推荐使用的主要参考文献: 四、 指导教师意见: 签章: 年 月 日 五、院(部)审查意见: 签章: 年 月 日还有毕业论文(设计)开题报告 姓名性别学号学院专业年级论文题目 函数极值的探究与应用 □教师推荐题目 □自拟题目 题目来源题目类别指导教师选题的目的、意义(理论意义、现实意义): 选题目的:为进一步研究有关函数极值在不同的情况下的求值问题,特别是当函数是一元、二元或者多元时的极值求解。为学习函数极值问题提供一个比较全面的介绍,从而给学者在函数极值的求解提供充足的知识。理论意义:整合函数极值的有关求解问题,有助于函数极值的更进一步研究。现实意义:为初学函数极值问题提供有关的资料,也为考研及掌握函数极值提供较全面的知识准备。选题的研究现状(理论渊源及演化、国外相关研究综述、国内相关研究综述):函数极值是有关函数的一个重要的研究课题,它对于掌握函数有着重要的作用。目前在有关的研究中都有关于函数极值的讨论,并在不少的学报及学术性论文中都有关于函数极值问题的有关见解,同时这些学者都研究的比较透彻、全面。论文(设计)主要内容(提纲):本文重点介绍了有关函数极值的求解问题及其运用。比较系统的介绍当函数是一元、二元及多元时函数极值的不同求解方法,及有关函数极值的定理及证明。 在介绍各元函数求解方法时给出了相应的函数极值求解的例题,有助于理解求函数极值的有关定理,并对函数极值求解的掌握。拟研究的主要问题、重点和难点: 研究的主要问题:不同元函数的极值求解的相关定理及其证明。重难点是这些定理的证明及应用问题。研究目标:给出有关不同元函数的极值的求解定理。 研究方法、技术路线、实验方案、可行性分析:研究方法:分析和综合以及理论联系实际的方法; 技术路线:理论研究; 实验方案:参照书本的相关知识,及相关文章; 可行性分析:综合各种函数极值的求解问题,从而得出自己的研究。 研究的特色与创新之处:综合不同元的函数,给出不同元的函数极值的相关定理与证明,总结出比较系统的有关函数极值的求解问题。进度安排及预期结果: 第七学期第十五周之前:开题报告; 2010年寒假期间:搜集、整理资料,构思、细化研究路线; 第八学期第一至六周:撰写论文,完成“研究路线”中的前四个阶段; 第八学期第七、八周:撰写论文,给出简化阶梯形矩阵在向量空间中的若干重要应用; 第八学期第九周:按照琼州学院教务处制定的《毕业论文撰写规范》排印论文; 第八学期第十周:做好答辩前的准备工作。参考文献: [1] 华东师范大学数学系编.数学分析(第三版)(上)[M].北京:高等教育出版社. [2] 方保镕等.矩阵论[M].北京:清华大学出版社.2004(11). [3]吉艳霞.求函数极值问题的方法探究[J].运城学院学报.2006, [4] 李关民,王娜.函数极值高阶导数判别法的简单证明[J].沈阳工程学报.2009. [5] 李文宇.求多元函数极值的一种新方法[J].鸡西大学学报.2006. 指导教师意见:指导教师签名:年 月 日 答辩小组意见:组长签名:年 月 日 备注:1、题目来源栏应填:教师科研、社会实践、实验教学、教育教学等;2、题目类别栏应填:应用研究、理论研究、艺术设计、程序软件开发等。
判断 领域内的大小或在图像上就是判断函数图像的凹凸性
函数的极值是高等数学中微分学理论的一个重要的组成部分,它在数 学教学、工农业生产、工程技术及科学实验等方面,常常会遇到这样 一类的问题:在一定条件下,怎样使“产品最多”、“用料最省”, “成本最低”、“效率最高”等,这类问题在数学上可归结为求某一 函数的最大值或最小值问题,本文介绍了一元函数、多元函数的极大 值和极小值问题,通过典型例题阐明函数极大值和极小值的求法及其 在经济中的应用。 1 一元函数的极值 定义①:设函数()在区间()内有定义,(),若在的某去心邻域 内有:()≤()(或()≥()),则称()是函数()的一个极 大值(或极小值),称为()的极大值点(或极小值点)。极大值 与极小值统称为函数的极值,极大值点与极小值点统称为函数的极值 点。一元函数极值的求法比较简单,
1、需要知道论文创新点对于一篇论文的重要性
现在网络上的论文越来越多,许多论文都是由其他的论文剪切拼接成的,对于一个搞学术的来说,这种做法不但对于学术研究没有任何帮助,而且也会浪费自己的时间。
2、要写好一篇论文,必须知道论文写作的意义
这篇论文和其他已经出现的论文有什么不同,这篇论文能够有什么贡献。相对于其他论文的不同,相对于其他论文的贡献其实就是我们论文的创新。
3、需要知道论文创新点怎么获得
论文的创新点不是凭空出现的,一篇好的论文,一个好的创新点是需要大量的知识积累的。创新点又不简单的是知识的积累。需要阅读大量过去学者的文章,积累大量的知识,站在巨人的肩膀上看问题,看得更远一点,看得更透彻一点,能够有自己的新想法,这些新的想法就是文章的创新点。
4、研究一个主题,先要有这个主题相关的知识积累
这部分知识积累可以来自于专业学习,也可以通过后期自己阅读大量的文献资料获得。积累了一部分知识后,就构成了我们研究的平台,我们下一步就是在这个平台上能够建立一个杆子。这个杆子越高,代表我们研究得越深。
5、需要不断地思考
阅读大量专家学者关于这个主题的研究,在阅读的时候,我们需要不断的思考,思考他们都做了哪些研究,哪些地方值得我们学习,哪些地方我们有不同的看法。对于有不同看法的地方,我们应该怎么去处理。当我们把这些问题想明白的时候,创新点也就出来了。
研究意义是论文写作的一个重要部分,主要是对论文研究背景的交代,简单来说就是文章为什么选择研究这个问题,对于这个问题学术界的研究现状,和已经存在的研究成果,以及这个问题的研究对今后的本学科或者本研究领域的发展有何影响,这就是研究意义的主要内容。研究意义其实就说明文章的研究内容是有价值的,但是研究意义的写作也是应当有所侧重的,意义的写作应当更加倾向于体现研究能够产生什么样的价值和推动作用,这里需要作者注意区分研究目的、研究意义、研究目标的不同之处,研究目的主要交代清楚做这项研究想要达到什么目的,想要解决什么问题,对研究成果的预期,研究目标则更为具体一些,如通过研究构建某种教学模式、教学策略、方法,获得某某规律,揭示某某机理等等。作者写作研究意义可以从两方面把握,一个是研究的理论意义,另一个就是研究的实际意义,常见的研究意义可以分别从这两个方面进行阐述,理论意义就从本学科理论发展角度来阐述,实际意义既要从工作实践的角度阐述,工作实践活动未来发展趋势、前景等等,将自己的研究融入其中。研究意义的写作也会在开题报告中用到,因此把握研究意义的写作至关重要,以上对研究意义的写作要点汇总,希望对广大作者的写作有所帮助。
开题报告主要包括以下几个方面:(一)论文名称论文名称就是课题的名字第一,名称要准确、规范。准确就是论文的名称要把论文研究的问题是什么,研究的对象是什么交待清楚,论文的名称一定要和研究的内容相一致,不能太大,也不能太小,要准确地把你研究的对象、问题概括出来。第二,名称要简洁,不能太长。不管是论文或者课题,名称都不能太长,能不要的字就尽量不要,一般不要超过20个字。(二) 论文研究的目的、意义研究的目的、意义也就是为什么要研究、研究它有什么价值。这一般可以先从现实需要方面去论述,指出现实当中存在这个问题,需要去研究,去解决,本论文的研究有什么实际作用,然后,再写论文的理论和学术价值。这些都要写得具体一点,有针对性一点,不能漫无边际地空喊口号。主要内容包括:⑴ 研究的有关背景(课题的提出): 即根据什么、受什么启发而搞这项研究。 ⑵ 通过分析本地(校) 的教育教学实际,指出为什么要研究该课题,研究的价值,要解决的问题。(三) 本论文国内外研究的历史和现状(文献综述)。规范些应该有,如果是小课题可以省略。一般包括:掌握其研究的广度、深度、已取得的成果;寻找有待进一步研究的问题,从而确定本课题研究的平台(起点)、研究的特色或突破点。(四)论文研究的指导思想指导思想就是在宏观上应坚持什么方向,符合什么要求等,这个方向或要求可以是哲学、政治理论,也可以是政府的教育发展规划,也可以是有关研究问题的指导性意见等。(五) 论文写作的目标论文写作的目标也就是课题最后要达到的具体目的,要解决哪些具体问题,也就是本论文研究要达到的预定目标:即本论文写作的目标定位,确定目标时要紧扣课题,用词要准确、精练、明了。常见存在问题是:不写研究目标;目标扣题不紧;目标用词不准确; 目标定得过高, 对预定的目标没有进行研究或无法进行研究。确定论文写作目标时,一方面要考虑课题本身的要求,另一方面要考率实际的工作条件与工作水平。(六)论文的基本内容研究内容要更具体、明确。并且一个目标可能要通过几方面的研究内容来实现,他们不一定是一一对应的关系。大家在确定研究内容的时候,往往考虑的不是很具体,写出来的研究内容特别笼统、模糊,把写作的目的、意义当作研究内容。基本内容一般包括:⑴对论文名称的界说。应尽可能明确三点:研究的对象、研究的问题、研究的方法。⑵本论文写作有关的理论、名词、术语、概念的界说。(七)论文写作的方法具体的写作方法可从下面选定: 观察法、调查法、实验法、经验总结法、 个案法、比较研究法、文献资料法等。(八)论文写作的步骤论文写作的步骤,也就是论文写作在时间和顺序上的安排。论文写作的步骤要充分考虑研究内容的相互关系和难易程度,一般情况下,都是从基础问题开始,分阶段进行,每个阶段从什么时间开始,至什么时间结束都要有规定。课题研究的主要步骤和时间安排包括:整个研究拟分为哪几个阶段;各阶段的起止时间 希望我们可以帮你。1、论文题目:要求准确、简练、醒目、新颖。2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。5、论文正文:(1)引言:引言又称前言、序言和导言,用在论文的开头。 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。〈2)论文正文:正文是论文的主体,正文应包括论点、论据、 论证过程和结论。主体部分包括以下内容:a.提出-论点;b.分析问题-论据和论证;c.解决问题-论证与步骤;d.结论。6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息所列参考文献的要求是:(1)所列参考文献应是正式出版物,以便读者考证。(2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。
一篇论文的点睛之处就是创新点,论文创新点可以从资料创新、方法创新、观点创新这三个地方去写。创新点对于一篇论文来说它的立题之本,写作之魂,因为有创新点才会体现出其学术、科研价值,科研成果才会受到大家的注目并被认可,所以创新点对于文章写作是非常重要的一点。要写好一篇论文,必须知道论文写作的真正意义,也要着重突出这篇论文和其它已经出现的论文有什么不同,这篇论文能够有哪些贡献及影响,所以相对于其他论文的不同,其实就是我们论文的创新点所在。
想想,初中都学了那些?我在上中学时都没写过论文,现在上初中都要写论文啦?真是悲剧呀!但初中的数学还是很简单的,写一篇论文,可以联系到自己已经上过的知识。下面给你一些建议: 可以写,对任意的二元一次方程组的解转换为图形的交点问题。 还有,不知道三角函数有没有上,如果上了可以论证三角公式,比如说,(sinA)^2+(cosA)^2=1,(tanX)^2=(secX)^2-1
题报告是指开题者对科研课题的一种文字说明材料。这是一种新的应用文体,这种文字体裁是随着现代科学研究活动计划性的增强和科研选题程序化管理的需要应运而生的。开题报告一般为表格式,它把要报告的每一项内容转换成相应的栏目,这样做,既便于开题报告按目填写,避免遗漏;又便于评审者一目了然,把握要点。开题报告包括综述、关键技术、可行性分析和时间安排等四个方面 。开题报告作为毕业论文答辩委员会对学生答辩资格审查的依据材料之一。由于开题报告是用文字体现的论文总构想,因而篇幅不必过大,但要把计划研究的课题、如何研究、理论适用等主要问题。 开题报告的总述部分应首先提出选题,并简明扼要地说明该选题的目的、目前相关课题研究情况、理论适用、研究方法。开题报告是由选题者把自己所选的课题的概况(即"开题报告内容"),向有关专家、学者、科技人员进行陈述。然后由他们对科研课题进行评议。亦可采用"德尔菲法"评分;再由科研管理部门综合评议的意见,确定是否批准这一选题。开题报告的内容大致如下:课题名称、承担单位、课题负责人、起止年限、报名提纲。报名提纲包括:(1)课题的目的、意义、国内外研究概况和有关文献资料的主要观点与结论;(2)研究对象、研究内容、各项有关指标、主要研究方法(包括是否已进行试验性研究);(3)大致的进度安排;(4)准备工作的情况和目前已具备的条件(包括人员、仪器、设备等);(5)尚需增添的主要设备和仪器(用途、名称、规格、型号、数量、价格等);(6)经费概算;(7)预期研究结果;(8)承担单位和主要协作单位、及人员分工等。同行评议,着重是从选题的依据、意义和技术可行性上做出判断。即从科学技术本身为决策提供必要的依据。 开题报告的格式(通用) 由于开题报告是用文字体现的论文总构想,因而篇幅不必过大,但要把计划研究的课题、如何研究、理论适用等主要问题说清楚,应包含两个部分:总述、提纲。 1 总述 开题报告的总述部分应首先提出选题,并简明扼要地说明该选题的目的、目前相关课题研究情况、理论适用、研究方法、必要的数据等等。 2 提纲 开题报告包含的论文提纲可以是粗线条的,是一个研究构想的基本框架。可采用整句式或整段式提纲形式。在开题阶段,提纲的目的是让人清楚论文的基本框架,没有必要像论文目录那样详细。 3 参考文献 开题报告中应包括相关参考文献的目录 4 要求 开题报告应有封面页,总页数应不少于4页。版面格式应符合以下规定。开 题 报 告 学 生: 一、 选题意义 1、 理论意义 2、 现实意义 二、 论文综述 1、 理论的渊源及演进过程 2、 国外有关研究的综述 3、 国内研究的综述 4、 本人对以上综述的评价 三、 论文提纲 前言、 一、1、2、3、··· ···二、1、2、3、··· ···三、1、2、3、结论 四、论文写作进度安排 毕业论文开题报告提纲一、开题报告封面:论文题目、系别、专业、年级、姓名、导师二、目的意义和国内外研究概况三、论文的理论依据、研究方法、研究内容四、研究条件和可能存在的问题五、预期的结果六、进度安排
1、数学中的研究性学习2、数字危机4、高斯分布的启示5、a2+b2≧2ab的变形推广及应用6、网络优化7、泰勒公式及其应用9、数学选择题的利和弊10、浅谈计算机辅助数学教学11、论研究性学习12、浅谈发展数学思维的学习方法13、关于整系数多项式有理根的几个定理及求解方法14、数学教学中课堂提问的误区与对策16、浅谈数学教学中的“问题情境”17、市场经济中的蛛网模型19、数学课堂差异教学20、浅谈线性变换的对角化问题21、圆锥曲线的性质及推广应用22、经济问题中的概率统计模型及应用23、通过逻辑趣题学推理24、直觉思维的训练和培养25、用高等数学知识解初等数学题26、浅谈数学中的变形技巧27、浅谈平均值不等式的应用28、浅谈高中立体几何的入门学习29、数形结合思想30、关于连通性的两个习题31、从赌博和概率到抽奖陷阱中的数学32、情感在数学教学中的作用33、因材施教 因性施教34、关于抽象函数的若干问题35、创新教育背景下的数学教学36、实数基本理论的一些探讨37、论数学教学中的心理环境38、以数学教学为例谈谈课堂提问的设计原则39、不等式证明的若干方法40、试论数学中的美41、数学教育与美育42、数学问题情境的创设43、略谈创新思维44、随机变量列的收敛性及其相互关系45、数字新闻中数学应用46、微积分学的发展史47、利用几何知识求函数最值48、数学评价应用举例49、数学思维批判性50、让阅读走进数学课堂51、开放式数学教学52、浅谈中学数列中的探索性问题53、论数学史的教育价值54、思维与智慧的共享——从建构主义到讨论法教学55、微分方程组中的若干问题56、由“唯分是举”浅谈考试改革57、随机变量与可测函数58、二阶变系数齐次微分方程的求解问题59、一种函数方程的解法60、积分中值定理的再讨论1、浅谈菲波纳契数列的内涵和应用价值2、一道排列组合题的解法探讨及延伸3、整除与竞赛4、足彩优化5、向量的几件法宝在几何中的应用6、递推关系的应用8、小议问题情境的创设9、数学概念探索启发式教学10、柯西不等式的推广与应用11、关于几个特殊不等式的几种巧妙证法及其推广应用12、一道高考题的反思13、数学中的研究性学习15、数字危机16、数学中的化归方法17、高斯分布的启示18、 的变形推广及应用19、网络优化20、泰勒公式及其应用22、数学选择题的利和弊23、浅谈计算机辅助数学教学24、数学研究性学习25、谈发展数学思维的学习方法26、关于整系数多项式有理根的几个定理及求解方法27、数学教学中课堂提问的误区与对策29、浅谈数学教学中的“问题情境”30、市场经济中的蛛网模型32、数学课堂差异教学33、浅谈线性变换的对角化问题34、圆锥曲线的性质及推广应用35、经济问题中的概率统计模型及应用36、通过逻辑趣题学推理37、直觉思维的训练和培养38、用高等数学知识解初等数学题39、浅谈数学中的变形技巧40、浅谈平均值不等式的应用41、浅谈高中立体几何的入门学习42、数形结合思想43、关于连通性的两个习题44、从赌博和概率到抽奖陷阱中的数学45、情感在数学教学中的作用46、因材施教与因性施教47、关于抽象函数的若干问题48、创新教育背景下的数学教学49、实数基本理论的一些探讨50、论数学教学中的心理环境51、以数学教学为例谈谈课堂提问的设计原则52、不等式证明的若干方法53、试论数学中的美54、数学教育与美育55、数学问题情境的创设56、略谈创新思维57、随机变量列的收敛性及其相互关系58、数字新闻中的数学应用59、微积分学的发展史60、利用几何知识求函数最值61、数学评价应用举例62、数学思维批判性63、让阅读走进数学课堂64、开放式数学教学65、浅谈中学数列中的探索性问题66、论数学史的教育价值67、思维与智慧的共享——从建构主义到讨论法教学68、 方程组中的若干问题69、由“唯分是举”浅谈考试改革70、随机变量与可测函数71、二阶变系数齐次微分方程的求解问题72、一种函数方程的解法73、微分中值定理的再讨论74、学生数学学习的障碍研究;76、数学中的美;77、数学的和谐和统一----谈论数学中的美;78、推测和猜想在数学中的应用;79、款买房问题的决策;80、线性回归在经济中的应用;81、数学规划在管理中的应用;82、初等数学解题策略;83、浅谈数学CAI中的不足与对策;84、数学创新教育的课堂设计;86、关于培养和提高中学生数学学习能力的探究;87、运用多媒体培养学生88、高等数学课件的开发89、 广告效益预测模型;90、最短路网络;91、计算机自动逻辑推理能力在数学教学中的应用;93、最优增长模型94、学生数学素养的培养初探96、 城市道路交通发展规划数学模型;97、函数逼近98、数的进制问题99、无穷维矩阵与序列Bannch空间的关系100、 多媒体课件教学设计----若干中小学数学教学案例101、一维,二维空间到欧氏空间102、初中数学新课程数与代数学习策略研究103、初中数学新课程统计与概率学习策略研105、数列运算的顺序交换及条件106、歇定理的推广和应用107、解析函数的各种等价条件及其应用108、特征函数在概率论中的应用109、数学史与中学教育110、让生活走进数学,数学方法的应用将数学应用于生活——谈xx111、数学竟赛中的数论问题112、新旧教材的对比与研究114、随机变量分布规律的求法115、简述概率论与数理统计的思想方法及其应用116、无穷大量存在的意义118、例谈培养数学思维的深刻性120、从坐标系到向量空间的基121 谈谈反证法122、一致连续性的判断定理及性质123、课堂提问和思维能力的培养125、函数及其在证明不等式中的应用126、极值的讨论及其应用127、正难则反,从反面来考虑问题128、实数的构造,完备性及它们的应用129、数学创新思维的训练 130、简述期望的性质及其作用131、简述概率论与数理统计的思想和方法132、穷乘积133、递推式求数列的通项及和134、划归思想在数学中的应用135、凸函数的定义性质及应用136、行列式的计算方法137、可行解的表式定理的证明140、充分挖掘例题的数学价值和智力开发功能141、数学思想方法的一支奇葩-----数学猜想初探142、关于实变函数中叶果罗夫定理的鲁津定理的证明143、于黎曼积分的定义144、微分方程的历史发展145、概率论发展史及其简单应用147、数学教学中使用多媒体的几点思考148、矩阵特征值的计算方法初探149、数形结合思想及其应用150、关于上、下确界,上、下极限的定义,性质及应用 151、复均方可积随机变量空间的讨论155、欧几里得第五公设产生背景及其对数学发展影响160、函数性质的应用163、中数学新课程空间与图形学习策略与研究167、函数的凸性及其在不等式中的应用171、数学归纳法教学探究174、关于全概率公式及其应用的研究176、变量代换法与常微分方程的求解188、不等式解法大观189、谈谈“ 隐函数 ”190、有限维矩阵的范数计算与估计191、数学奥赛中数论问题的解题方法研究193、微分方程积分因子的研究195、关于泰勒公式196、解析函数的孤立奇点的分类及其判断方法197、最大模原理的推广及其应用198、π的奥秘——从圆周率到统计199、对现代信息技术辅助数学及其发展的几点思考200、无理数e的发现及其应用202、闭区间套定理的推广和应用203、函数的上下极限及其应用205、关于多值函数的解析理论探讨208、比较函数法在常微分方程中的应用209、数学分析的直观与严密303、求随机函数的分布函数和分布密度的方法304、条件期望的性质及其应用308、凸函数的等价命题及其应用310、有界变差函数的定义及其性质311、初等函数的极值
论文的研究方法一般从较宽泛的领域看有定性研究与定量研究;从取材方面来看有实证研究(实际调查案例为分析基础)与文献归纳法等;如从分析手法上来看有归纳法、演绎法与比较分析法等等。不过要看你是什么专业,专业不一样运用的研究方法是不一样的。