首页

> 期刊论文知识库

首页 期刊论文知识库 问题

初二数学几何论文范文

发布时间:

初二数学几何论文范文

初二数学论文篇二 初二数学两极分化的成因和对策 【摘要】初中数学出现两极分化是一种危险信号,预示着部分初二数学学困生面对初三难度更大的数学学习会有放弃的可能,而数学在整个初中学科中地位显著,所以初二学生一旦有放弃数学学习的心理将会产生十分严重的后果。避免初中数学两极分化是初中数学教学的重要课题。本文分析了产生初二数学两极分化的原因,提出了避免两极分化的对策。 【关键词】初中数学 两极分化 原因 对策 从每年各地统计的数据来看,进入初二的学生,数学学习两级分化呈现出较严重的趋势,数学学困生所占比例大,这种状况直接影响着大面积提高数学教学的质量,也影响着中考的成绩。初中数学出现两级分化是一个危险信号,说明部分学生数学能力已跟不上数学教学进度,而接下来的初三数学教学难度会进一步加大,部分学困生有可能面对越来越艰巨的学习任务而放弃数学学习。而数学在整个初中学科中地位显著,放弃数学学习的后果可想而知。所以,避免或减少数学两极分化显得尤为重要。那么,形成初中阶段数学两极分化有一些什么原因,如何有效避免初中数学的两极分化,有哪些可行性措施和策略可以避免初中数学的两极分化呢?笔者根据自己多年的初中数学实践,现谈谈在此方面的点滴感悟,希望能对抑制初中数学的两极分化带来一些启示。 一、初中数学出现两极分化的原因 初中数学出现分化的原因是多方面的,限于篇幅,这里无法一一罗列,但有三方面的原因是不能不被提及的,这三方面的原因分别为:一方面是因为初二学生对数学学习的热情有的随着成绩的稳中向好而加强,而部分数学学习困难者面对越来越多的困难和压力而数学学习的步伐无法跟上队伍,成绩也呈现大幅度的下降趋势,且兴趣也越来越谈,学习数学的激情正在消退,产生了数学厌学心理;一方面是因为学困生掌握数学知识、技能不够全面、系统,没有形成较好的数学认知结构,也没有形成一定的数学学习能力,不能为连续学习提供必要的认知基础。所以就打退堂鼓,产生放弃的心理认同;一方面是因为学生个体思维方式和学习方法无法适应数学学习的要求。这些都是制约初中数学两极分化的重要原因。 二、避免初二数学两极分化的办法 1.在初中数学学习中要形成提前完成预习,课内重视听讲,课后及时复习的习惯 良好的预习习惯是学习新知识,巩固旧知识的不二法门,初二学生应在数学新知识接受之前提前预习,除了提前对数学课程进行学习外,每天晚上都应预习第二天的数学知识,课堂上才能更好的听讲,有更多的收获。数学能力的培养主要在课堂上进行,所以要重视课内的学习,要在课堂内寻求正确的数学学习方法。上课时要紧跟教师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲的有哪些出入。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将教师所讲的数学知识点回忆一遍,正确掌握各类公式的推理过程。要独立完成每一道数学作业,勤于思考,不懂即问,形成良好的解题习惯。在每个阶段的数学学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成数学知识网络,纳入自己的数学知识体系。 2.熟悉各种数学题型,勤于练兵,提炼数学解题技巧 千锤百炼才成钢,数学学习也一样,只有在数学知识的海洋中劈波斩浪,迎头搏击,才能立于潮头。所以要想学好数学,多做题目是难免的,要熟悉掌握各种题型的解题思路,要从简单的题型开始,以数学教材上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决问题能力,掌握一般的解题规律。对于一些易错题,可在自己的错题集写出解题思路和正确的解题过程,加深对错误题的认识,提高免错能力。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意,往往在考试中会暴露充分,故在平时养成良好的解题习惯是非常重要的。 3.以良好的心态对待各种数学考试。 数学考试是检验数学学习效果的重要方式之一,进入初二阶段,数学考试也会有一些适当的增加,但每次考试成绩也只是代表一个阶段的成绩,无法代表整个初二学年的成绩,每个阶段学生的努力会刷新每一次成绩,只要努力成绩是可以提高的。学生对待考试要有良好的心态,不以一次成绩论英难,自己在任何时候都要情绪稳定,思路正常,要克服浮躁情绪,对自己要有信心。在考试前要做好考前准备,练练常规题,把自己的思路展开,切忌考试时去提高解题的速度。对于一些容易的基础题要争取拿全分,对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平发挥正常甚至发挥超常。 三、对待初中数学两极分化中的学生应采取的措施 虽然我们避免两极分化,但初中数学的两极分化不会因我们的努力而完全阻止。那么在两极分化后初中数学教师必须采取一些措施防止两极分化的拉大。如在布置数学作业时,要注意难易程度,要注意加强对学困生的辅导、转化,督促他们认真完成布置的作业。对作业做得较好或作业有所进步的学困生要及时表扬鼓励。数学教师要注意克服急躁冒进的情绪,如对学困生加大、加重作业量的做法是不可取的。对待数学学困生,要放低要求,采取循序渐进的原则、谆谆诱导的方法,从起点开始,耐心地辅导他们一点一滴地补习功课,让他们逐步提高。数学学困生学习被动,依赖性强。往往对数学概念、公式、定理、法则死记硬背,不愿动脑筋,一遇到问题就问老师,甚至扔在一边不管,教师在解答问题时,要注意启发式教学方法的应用,逐步让他们自己动脑,引导他们分析问题,解答问题。不要给他们现成答案,要随时纠正他们在分析解答中出现的错误,逐步培养他们独立完成作业的习惯。对数学学困生不仅要关心爱护和耐心细致地辅导,还要与严格要求相结合,不少数学学困生就是因为学习意志不强,生活懒惰,思想不集中,作业不及时完成或抄袭,根本没有预习、复习的习惯等。因此教师要特别注意检查学困生的作业完成情况,在教学过程中,要对他们提出严格的要求,督促他们认真学习。要有意识地出一些比较容易的数学题目,培养学困生的信心,对他们知识薄弱的地方要进行个别辅导,这样还可使有些学困生经过努力也有得较高分的机会,让他们有成就感,逐步改变他们头脑中在数学学习上总比别人低一等的印象。从而培养他们的自信心和自尊心,激励他们积极争取,努力向上,进而达到转化的目的。 初二数学学习中出现两极分化是必然结果,我们不必大惊小怪,要理性面对,并想方设法缩小差距,认真做好培优转困工作,只要我们注意方式方法,采取行之有效的措施,就一定会收到缩小两极分化的良好效果。初二数学教师任重道远,期待着都能勇挑重担,一往直前地把缩小数学两极分化工作落实在自己的教学行动中。 【参考文献】 1.石燕宁:农村初中数学两极分化的原因及对策分析[J],《中学教学参考》,. 2.张占武:初中数学差生的学习障碍成因分析及转化[J],《吉林教育》,. (作者单位:546100广西来宾市第三中学) 看了“初二数学论文怎么写”的人还看: 1. 2000字的初中数学论文怎么写 2. 初中数学小论文范文 3. 初中数学论文范文 4. 有关初中数学小论文范文 5. 数学小论文的范文

实数可以直观地看作小数(有限或无限的),它们能把数轴“填满”。实数包括所有的有理数和无理数,比如0、 、、π 等。但仅仅以枚举的方式不能描述实数的全体。根据日常经验,有理数集在数轴上似乎是“稠密”的,于是古人一直认为用有理数即能满足测量上的实际需要。以边长为1cm的正方形为例,其对角线有多长?在规定的精度下(比如误差小于厘米),总可以用有理数来表示足够精确的测量结果(比如厘米)。但是,古希腊毕达哥拉斯学派的数学家发现,只使用有理数无法完全精确地表示这条对角线的长度,这彻底地打击了他们的数学理念;他们原以为:任何两条线段(的长度)的比,可以用自然数的比来表示。正因如此,毕达哥拉斯本人甚至有“万物皆数”的信念,这里的数是指自然数(1 , 2 , 3 ...),而由自然数的比就得到所有正有理数,而有理数集存在“缝隙”这一事实,对当时很多数学家来说可谓极大的打击;见第一次数学危机。从古希腊一直到十七世纪,数学家们才慢慢接受无理数的存在,并把它和有理数平等地看作数;后来有虚数概念的引入,为加以区别而称作“实数”,意即“实在的数”。在当时,尽管虚数已经出现并广为使用,实数的严格定义却仍然是个难题,以至函数、极限和收敛性的概念都被定义清楚之后,才由十九世纪末的戴德金、康托等人对实数进行了严格处理。在目前的初等数学中,没有对实数进行严格的定义,而一般把实数看作小数(有限或无限的)。实数的完整定义在几何上,直线上的点与实数一一对应;见数轴。实数可以分为有理数(如42、)和无理数(如π、√2)两类,也可以分为代数数和超越数(有理数都是代数数),或正数,负数和零三类。实数集合通常用字母R或表示。而Rn表示n 维实数空间。实数是不可数的。实数是实分析的核心研究对象。实数可以用来测量连续变化的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后n位,n为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。[编辑]历史在公元前500年左右,以毕达哥拉斯为首的希腊数学家们认识到有理数在几何上不能满足需要,但毕达哥拉斯本身并不承认无理数的存在。 直到17世纪,实数才在欧洲被广泛接受。18世纪,微积分学在实数的基础上发展起来。直到1871年,德国数学家康托尔第一次提出了实数的严格定义。[编辑]定义[编辑]从有理数构造实数实数可以用通过收敛于一个唯一实数的十进制或二进制展开如{3, , , , ,…}所定义的序列的方式而构造为有理数的补全。实数可以不同方式从有理数构造出来。这里给出其中一种,其他方法请详见实数的构造。[编辑]公理化方法设R是所有实数的集合,则:集合R是一个域: 可以作加、减、乘、除运算,且有如交换律,结合律等常见性质。域R是个有序域,即存在全序关系≥,对所有实数x, y和z:若x ≥ y则x + z ≥ y + z;若x ≥ 0且y ≥ 0则x'y ≥ 0。集合R满足戴德金完备性,即任意R的非空子集S (S ⊆ R, S ≠ ∅),若S在R内有上界,那么S在R内有上确界。最后一条是区分实数和有理数的关键。例如所有平方小于2的有理数的集合存在有理数上界,如;但是不存在有理数上确界(因为不是有理数)。实数通过上述性质唯一确定。更准确的说,给定任意两个戴德金完备的有序域R1和R2,存在从R1到R2的唯一的域同构,即代数学上两者可看作是相同的。[编辑]例子15 (整数) (有限小数)... (无限循环小数)π = ... (无限不循环小数) (无理数) (分数)[编辑]性质[编辑]基本运算在实数域内,可实现的基本运算有加、减、乘、除、平方等,对非负数还可以进行开方运算。实数加、减、乘、除(除数不为零)、平方后结果还是实数。任何实数都可以开奇次方,结果仍是实数;只有非负实数才能开偶次方,其结果还是实数。[编辑]完备性作为度量空间或一致空间,实数集合是一个完备空间,它有以下性质:所有实数的柯西序列都有一个实数极限。有理数集合就不是完备空间。例如,(1, , , , , , ...)是有理数的柯西序列,但没有有理数极限。实际上,它有个实数极限。实数是有理数的完备化:这亦是构造实数集合的一种方法。极限的存在是微积分的基础。实数的完备性等价于欧几里得几何的直线没有“空隙”。[编辑]完备的有序域实数集合通常被描述为“完备的有序域”,这可以几种解释。首先,有序域可以是完备格。然而,很容易发现没有有序域会是完备格。这是由于有序域没有最大元素(对任意元素z,z + 1将更大)。所以,这里的“完备”不是完备格的意思。另外,有序域满足戴德金完备性,这在上述公理中已经定义。上述的唯一性也说明了这里的“完备”是指戴德金完备性的意思。这个完备性的意思非常接近采用戴德金分割来构造实数的方法,即从(有理数)有序域出发,通过标准的方法建立戴德金完备性。这两个完备性的概念都忽略了域的结构。然而,有序群(域是种特殊的群)可以定义一致空间,而一致空间又有完备空间的概念。上述完备性中所述的只是一个特例。(这里采用一致空间中的完备性概念,而不是相关的人们熟知的度量空间的完备性,这是由于度量空间的定义依赖于实数的性质。)当然,R并不是唯一的一致完备的有序域,但它是唯一的一致完备的阿基米德域。实际上,“完备的阿基米德域”比“完备的有序域”更常见。可以证明,任意一致完备的阿基米德域必然是戴德金完备的(当然反之亦然)。这个完备性的意思非常接近采用柯西序列来构造实数的方法,即从(有理数)阿基米德域出发,通过标准的方法建立一致完备性。“完备的阿基米德域”最早是由希尔伯特提出来的,他还想表达一些不同于上述的意思。他认为,实数构成了最大的阿基米德域,即所有其他的阿基米德域都是R的子域。这样R是“完备的”是指,在其中加入任何元素都将使它不再是阿基米德域。这个完备性的意思非常接近用超实数来构造实数的方法,即从某个包含所有(超实数)有序域的纯类出发,从其子域中找出最大的阿基米德域。[编辑]高级性质实数集是不可数的,也就是说,实数的个数严格多于自然数的个数(尽管两者都是无穷大)。这一点,可以通过康托尔对角线方法证明。实际上,实数集的势为2ω(请参见连续统的势),即自然数集的幂集的势。由于实数集中只有可数集个数的元素可能是代数数,绝大多数实数是超越数。实数集的子集中,不存在其势严格大于自然数集的势且严格小于实数集的势的集合,这就是连续统假设。该假设不能被证明是否正确,这是因为它和集合论的ZFS公理系统相互独立。所有非负实数的平方根属于R,但这对负数不成立。这表明R上的序是由其代数结构确定的。而且,所有奇数次多项式至少有一个根属于R。这两个性质使R成为实封闭域的最主要的实例。证明这一点就是对代数基本定理的证明的前半部分。实数集拥有一个规范的测度,即勒贝格测度。实数集的上确界公理用到了实数集的子集,这是一种二阶逻辑的陈述。不可能只采用一阶逻辑来刻画实数集:1. Löwenheim-Skolem定理说明,存在一个实数集的可数稠密子集,它在一阶逻辑中正好满足和实数集自身完全相同的命题;2. 超实数的集合远远大于R,但也同样满足和R一样的一阶逻辑命题。满足和R一样的一阶逻辑命题的有序域称为R的非标准模型。这就是非标准分析的研究内容,在非标准模型中证明一阶逻辑命题(可能比在R中证明要简单一些),从而确定这些命题在R中也成立。[编辑]拓扑性质实数集构成一个度量空间:x和y间的距离定为绝对值 |x - y|。作为一个全序集,它也具有序拓扑。这里,从度量和序关系得到的拓扑相同。实数集又是1 维的可缩空间(所以也是连通空间)、局部紧致空间、可分空间、贝利空间。但实数集不是紧致空间。这些可以通过特定的性质来确定,例如,无限连续可分的序拓扑必须和实数集同胚。以下是实数的拓扑性质总览:令为一实数。的邻域是实数集中一个包括一段含有的线段的子集。是可分空间。在中处处稠密。的开集是开区间的联集。的紧子集是有界闭集。特别是:所有含端点的有限线段都是紧子集。每个中的有界序列都有收敛子序列。是连通且单连通的。中的连通子集是线段、射线与本身。由此性质可迅速导出中间值定理。区间套定理:设为一个有界闭集的序列,且,则其交集非空。严格表法如下:.[编辑]扩展与一般化实数集可以在几种不同的方面进行扩展和一般化:最自然的扩展可能就是复数了。复数集包含了所有多项式的根。但是,复数集不是一个有序域。实数集扩展的有序域是超实数的集合,包含无穷小和无穷大。它不是一个阿基米德域。有时候,形式元素 +∞和 -∞加入实数集,构成扩展的实数轴。它是一个紧致空间,而不是一个域,但它保留了许多实数的性质。希尔伯特空间的自伴随算子在许多方面一般化实数集:它们可以是有序的(尽管不一定全序)、完备的;它们所有的特征值都是实数;它们构成一个实结合代数。

数,数表,方程组:试论用数表形式简化运算假设有如下方程组2x+3y=7 ①3x+5y=10 ②将①*3 我们得到 6x+9y=21 ③将②*2 我们得到 6x+10y=20 ④用③-④ 我们还可以得到-y=1所以 y=-1将y=-1 带入①式子我们可以得到2x-3=7因此 2x=10所以x=5上面的例子我们可以看出解决一个二元一次方程组常用的方法——消元法那么当我们解决一个10元1次方程组的时候,可能就不能这么简单了。因为光是抄写这些方程就需要耗费巨大的精力,且不好找出其中的关系。又如上面的一个方程组。我们将所有的系数构和结果成一个数表,形如2 3 73 5 10那么解决的过程就变得明了了基于消元法的思维,一下运算是可以发生在这个数表中的第一,某行所有数同时乘以一个任意的实数第二,某两行互换第三,某行乘以一个不为0的数加到另外一行那么上述过程的解法被精简了2 3 73 5 10将第一行和第二行分别乘以3和2得到新数表6 9 216 10 20用第二行减第一行6 9 21 0 1 -1我们来看,如果某一行的系数出现了0,就思考是不是能还原成某个未知数=常数的形式上面的数表的第二行可以还原成 0x+1y=-1所以有y=-1此时,再将第一行还原6x+9y=21将y=-1带入上式有 6x-9=21所以6x=30所以x=5在二元一次方程中此方法只能简便抄写和部分运算,但是如果在三元一次、四元一次方程组中,乃至更高元的一次方程组中,这种数表法会帮助我们使得运算简便得多。* 本段话在交作业时请删去上面的小论文其实是线性代数学中关于矩阵运算在二元一次方程中的解释,用来解决所有一次方程组均可。在二元情况下,他的推倒是易于理解的,而且文中用于尽量通俗化看起来更像是一个初中生的创造。这样糊弄个作业还是没什么问题的,请采纳

初二数学几何论文2000字

初二数学论文篇二 初二数学两极分化的成因和对策 【摘要】初中数学出现两极分化是一种危险信号,预示着部分初二数学学困生面对初三难度更大的数学学习会有放弃的可能,而数学在整个初中学科中地位显著,所以初二学生一旦有放弃数学学习的心理将会产生十分严重的后果。避免初中数学两极分化是初中数学教学的重要课题。本文分析了产生初二数学两极分化的原因,提出了避免两极分化的对策。 【关键词】初中数学 两极分化 原因 对策 从每年各地统计的数据来看,进入初二的学生,数学学习两级分化呈现出较严重的趋势,数学学困生所占比例大,这种状况直接影响着大面积提高数学教学的质量,也影响着中考的成绩。初中数学出现两级分化是一个危险信号,说明部分学生数学能力已跟不上数学教学进度,而接下来的初三数学教学难度会进一步加大,部分学困生有可能面对越来越艰巨的学习任务而放弃数学学习。而数学在整个初中学科中地位显著,放弃数学学习的后果可想而知。所以,避免或减少数学两极分化显得尤为重要。那么,形成初中阶段数学两极分化有一些什么原因,如何有效避免初中数学的两极分化,有哪些可行性措施和策略可以避免初中数学的两极分化呢?笔者根据自己多年的初中数学实践,现谈谈在此方面的点滴感悟,希望能对抑制初中数学的两极分化带来一些启示。 一、初中数学出现两极分化的原因 初中数学出现分化的原因是多方面的,限于篇幅,这里无法一一罗列,但有三方面的原因是不能不被提及的,这三方面的原因分别为:一方面是因为初二学生对数学学习的热情有的随着成绩的稳中向好而加强,而部分数学学习困难者面对越来越多的困难和压力而数学学习的步伐无法跟上队伍,成绩也呈现大幅度的下降趋势,且兴趣也越来越谈,学习数学的激情正在消退,产生了数学厌学心理;一方面是因为学困生掌握数学知识、技能不够全面、系统,没有形成较好的数学认知结构,也没有形成一定的数学学习能力,不能为连续学习提供必要的认知基础。所以就打退堂鼓,产生放弃的心理认同;一方面是因为学生个体思维方式和学习方法无法适应数学学习的要求。这些都是制约初中数学两极分化的重要原因。 二、避免初二数学两极分化的办法 1.在初中数学学习中要形成提前完成预习,课内重视听讲,课后及时复习的习惯 良好的预习习惯是学习新知识,巩固旧知识的不二法门,初二学生应在数学新知识接受之前提前预习,除了提前对数学课程进行学习外,每天晚上都应预习第二天的数学知识,课堂上才能更好的听讲,有更多的收获。数学能力的培养主要在课堂上进行,所以要重视课内的学习,要在课堂内寻求正确的数学学习方法。上课时要紧跟教师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲的有哪些出入。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将教师所讲的数学知识点回忆一遍,正确掌握各类公式的推理过程。要独立完成每一道数学作业,勤于思考,不懂即问,形成良好的解题习惯。在每个阶段的数学学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成数学知识网络,纳入自己的数学知识体系。 2.熟悉各种数学题型,勤于练兵,提炼数学解题技巧 千锤百炼才成钢,数学学习也一样,只有在数学知识的海洋中劈波斩浪,迎头搏击,才能立于潮头。所以要想学好数学,多做题目是难免的,要熟悉掌握各种题型的解题思路,要从简单的题型开始,以数学教材上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决问题能力,掌握一般的解题规律。对于一些易错题,可在自己的错题集写出解题思路和正确的解题过程,加深对错误题的认识,提高免错能力。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意,往往在考试中会暴露充分,故在平时养成良好的解题习惯是非常重要的。 3.以良好的心态对待各种数学考试。 数学考试是检验数学学习效果的重要方式之一,进入初二阶段,数学考试也会有一些适当的增加,但每次考试成绩也只是代表一个阶段的成绩,无法代表整个初二学年的成绩,每个阶段学生的努力会刷新每一次成绩,只要努力成绩是可以提高的。学生对待考试要有良好的心态,不以一次成绩论英难,自己在任何时候都要情绪稳定,思路正常,要克服浮躁情绪,对自己要有信心。在考试前要做好考前准备,练练常规题,把自己的思路展开,切忌考试时去提高解题的速度。对于一些容易的基础题要争取拿全分,对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平发挥正常甚至发挥超常。 三、对待初中数学两极分化中的学生应采取的措施 虽然我们避免两极分化,但初中数学的两极分化不会因我们的努力而完全阻止。那么在两极分化后初中数学教师必须采取一些措施防止两极分化的拉大。如在布置数学作业时,要注意难易程度,要注意加强对学困生的辅导、转化,督促他们认真完成布置的作业。对作业做得较好或作业有所进步的学困生要及时表扬鼓励。数学教师要注意克服急躁冒进的情绪,如对学困生加大、加重作业量的做法是不可取的。对待数学学困生,要放低要求,采取循序渐进的原则、谆谆诱导的方法,从起点开始,耐心地辅导他们一点一滴地补习功课,让他们逐步提高。数学学困生学习被动,依赖性强。往往对数学概念、公式、定理、法则死记硬背,不愿动脑筋,一遇到问题就问老师,甚至扔在一边不管,教师在解答问题时,要注意启发式教学方法的应用,逐步让他们自己动脑,引导他们分析问题,解答问题。不要给他们现成答案,要随时纠正他们在分析解答中出现的错误,逐步培养他们独立完成作业的习惯。对数学学困生不仅要关心爱护和耐心细致地辅导,还要与严格要求相结合,不少数学学困生就是因为学习意志不强,生活懒惰,思想不集中,作业不及时完成或抄袭,根本没有预习、复习的习惯等。因此教师要特别注意检查学困生的作业完成情况,在教学过程中,要对他们提出严格的要求,督促他们认真学习。要有意识地出一些比较容易的数学题目,培养学困生的信心,对他们知识薄弱的地方要进行个别辅导,这样还可使有些学困生经过努力也有得较高分的机会,让他们有成就感,逐步改变他们头脑中在数学学习上总比别人低一等的印象。从而培养他们的自信心和自尊心,激励他们积极争取,努力向上,进而达到转化的目的。 初二数学学习中出现两极分化是必然结果,我们不必大惊小怪,要理性面对,并想方设法缩小差距,认真做好培优转困工作,只要我们注意方式方法,采取行之有效的措施,就一定会收到缩小两极分化的良好效果。初二数学教师任重道远,期待着都能勇挑重担,一往直前地把缩小数学两极分化工作落实在自己的教学行动中。 【参考文献】 1.石燕宁:农村初中数学两极分化的原因及对策分析[J],《中学教学参考》,. 2.张占武:初中数学差生的学习障碍成因分析及转化[J],《吉林教育》,. (作者单位:546100广西来宾市第三中学) 看了“初二数学论文怎么写”的人还看: 1. 2000字的初中数学论文怎么写 2. 初中数学小论文范文 3. 初中数学论文范文 4. 有关初中数学小论文范文 5. 数学小论文的范文

在数学教学中,只有把数学理论知识和现实问题相结合,才能激发学生的数学思维,调动他们的积极探究欲望,使学生在探究数学知识时能够不断获得发展。本文是我为大家整理的初二的数学教学论文内容,欢迎查看!

一、注重概念教学理念的创新

(一)以适学情境的构建激发学生学习兴趣

在教学理念方面,教师应改变以往完全将概念教学集中在抽象的教学材料方面,可适时引入一定的情境素材以激发学生学习的动机。具体实践中可引入相关的数学 故事 或数学趣闻等。如关于数学概念的形成,可引入“杨辉三角形”概念的提出或祖冲之对圆周率的计算过程等,也可将国外许多如哥德巴赫猜想或象棋发明者塞萨的 事迹 等内容融入课堂中,集中学生注意力的同时也能加深学生对数学知识的理解。以初中数学“平面直角坐标系”教学内容为例,教学中教师可首先为学生讲述笛卡尔的故事,笛卡尔通过对蜘蛛结网的观察而推出由点的运动可以形成直线或曲线,进而得出直角坐标系的概念。此时学生便会对平面直角坐标系的概念产生一定的求知欲望,既增强了与教师之间的互动交流,也能够满足以学生为主体的教学目的。

(二)注重对概念教学“形式”与“实质”关系的处理

教学中的“形式”可理解为初中数学教学中的相关概念与定理,而“实质”为数学知识的具体应用。概念教学中教师可充分发挥自身的引导作用,如关于代数式教学过程中,不必对代数式给予更多繁琐的定义,其会为学生带来更多抽象性问题,可首先在概念引入前列举相关的代数式使学生从中体会代数式的内涵。再如,初中数学中的乘法公式教学内容,只需使学生理解字母a与b即可,不必要求学生完全进行文字叙述,如(a+b)(a-b)=a2-b2,对括号内项特征掌握后便能理解该公式,当面对其他如(a+b-c)(a-b+c)类型题时,学生能够直接通过平方差公式的概念对其进行解答。另外,在其他内容教学中如平行线判定或方程教学中也需注意“形式”与“实质”关系的处理,确保学生能够得到实质性的训练。

二、对概念教学内容的创新

现阶段,大多初中数学课堂教学在教学内容体系上仍存在以本为本、以纲为纲的现象,使学生的学习过程中以及教师的教学受到一定程度的制约,所以需改变这种照本宣科的教学方式,注重对教学内容进行创新,具体创新策略主要表现在以下两方面。

(一)把握教材整体内容与概念层次特征

初中数学教材中的概念内容本身具有螺旋式上升特点,无法一次为学生所理解,需要教师对教材的相关概念进行整体把握,并注重各部分概念能够层层推进。以初中数学教学中的绝对值概念为例,教材中对其定义为正数绝对值为其本身,负数绝对值为其相反数,而零的绝对值仍为零。若单纯依靠此定义,学生很难理解,所以在教材内容中又对绝对值概念提出其主要为原点与此时数的点的距离,学生能够初步认识绝对值概念。而在二次根式教学内容时,教学内容又涉及到绝对值概念,学生可将开平方运算联系到绝对值,领会概念的实质。因此,实际概念教学过程中教师需在掌握教学内容整体的基础上按照概念层次性特点进行教学。

(二)概念知识与实际应用的结合

数学学习的目的在于使学生将习得的概念与规律运用在实际生活中,促进实践动手能力的提高。然而大多数学教师为防止信息丢失,对所有的概念内容在讲授中面面俱到,如在学生未练习应用因式分解概念的情况下,便将因式分解可在哪种数系范围中进行或具体分解为哪种形式等进行系统讲解,但是学生尚未掌握前一部分概念的应用便涉及更多内容,很难形成良好的知识体系。因此,要求教师在概念知识教学中应在保证不脱离教材的前提下,对教材内容适当取舍,使学生能够边学边用。

三、注重 教学 方法 的创新

素质 教育 的推行更强调对学生创新意识的培养。以往教学中过于陈旧的教学模式很难构建良好的课堂氛围,促进学生思维能力的提高,因此需要在概念教学中改变以往“满堂灌”或“填鸭式”的教学方法,引入一定的问题情境以调动学生参与课堂积极性。

(一)对数学概念本质的揭示

概念教学过程中,问题情境的引入需考虑到素材的选择问题,避免造成数学概念内容失去自身的层次性特征与连续性特征。以函数的概念为例,若从字面概念定义,可引入x,y两个变量,在一定范围中y都存在与x值相对应的确定值,此时y为x的函数,而x为自变量。此时,教师可将生活中的摩天轮运动引入其中,提出假设学生坐在摩天轮上,运动过程中与地面高度会存在那种变化,不同时间内高度能否确定等,学生便会寻找相关的函数数学语言去分析摩天轮运动时间与高度存在的关系,以此使抽象化的函数概念具体化,通过对事物本质的揭示促进数学思维能力的增强。

(二)对数学教学信息的概括

数学概念本身是对事物本质的反映,具有极为明显的抽象特点,要求教学过程中教师能够采用正确的教学方法使概念中的内容特征与表现规律展示出来,引导学生对信息内容进行概括,这样数学概念将更为清晰。例如,数学教学中引入摩天轮旋转实例,其旋转的时间与高度本身存在一定函数关系,且保持相互对应。通过学生对摩天轮旋转特征的描述,找出与时间相对应的高度,这样在教师的适时引导下将会完整的概括出函数的概念,习得函数知识的同时也提高学生对数学概念的概括能力。因此,概念教学中教师应采取切合实际的教学方法,避免脱离学生生活,使学生能够自然掌握数学概念。

四、注重教学手段的创新

信息化时代的到来使传统数学教学手段受到一定的冲击,要求初中数学教学过程中应引入更具形、色、声等特征的多媒体教学手段,使原本较为枯燥的课堂教学更为生动,并将抽象的数学概念形象化,有效地提高数学教学效果。

(一)充分发挥多媒体教学设备的作用

在教育心理学内容中,提出学生 抽象思维 能力的培养要求采用直观教学的方式,无论在数学概念掌握或数学知识结构形成方面都需充分发挥教学中形象直观教学的应用。而传统初中数学教学中并未注重引入更加生动的教具,不具备可感性,所以可通过多媒体设备的引入,将较为抽象的概念以及图形参数等融入其中。例如,平面几何教学过程中,教师可利用计算机进行图形的绘制,将整个过程向学生展示,这样关于平面几何的相关概念与图形都可为学生所理解。

(二)课堂演示与实践过程的结合

多媒体手段应用过程中,在课堂演示方面需由教师操作完成,可使关于数学概念的电子课件利用教学网络向终端屏幕传送,讲解的同时应向学生提问确保学生能够参与到课堂活动中,并对学生学习情况给出适时的评价。例如,关于平面几何中“圆”的概念,讲解过程中可将圆心为O、半径为R的圆在屏幕中画出,然后引导学生利用数学概念对圆的画法进行描述,并实际操作验证。教师可组织学生利用数学概念自行画圆,对于完成情况较好的可在屏幕中体现出来,以此增强学生的自信心,激发学生学习兴趣并促进实践动手能力的提高。

作者:陈建芳 单位:昆山市周庄中学

一、问题探究教学模式的基本涵义与基本原则

要想让问题探究教学模式在初中数学教学中获得良好的教学效果,教师就要准确把握问题探究教学模式的基本涵义和基本原则.问题探究教学模式的主要内容是教师通过各种方式,让学生在教学过程中,能够自主地发现问题、提出问题和解决问题,并且在探索问题的过程中获取知识和培养能力.在初中数学教学中有效运用问题探究教学模式的基本原则:(1)以学生为主体的原则.在问题探究教学模式中,要注重教师的主导作用,更要充分发挥学生的主体作用,让学生能够积极主动地参与到教学过程中.(2)以问题为核心的原则.以问题为核心就是指在教学过程中培养学生的问题意识,学生具有良好的问题意识是实施问题探索教学模式的源头,教师要让学生知道如何去发现问题、提出问题和解决问题,这也是决定问题探究教学模式能否成功的关键原则.(3)以情感为依托的原则.在教学过程中,教师要注重知识的传授,还要注重与学生之间的情感交流.构建和谐的课堂师生情感关系,对实施问题探究教学模式具有十分重要的促进作用,也是问题探究教学模式获得良好效果的保证.

二、在初中数学教学中有效运用问题探究教学模式的策略

初中数学课堂实施问题探究教学模式的目的主要是:为了促进学生综合能力的发展和提高课堂教学效率和质量.

1.准确把握学生实际的认知水平

任何教学方式要想获得良好的教学效果,都必须要遵循课堂教学中学生实际的认识结构才行.不然的话,就算再好的教学模式,也是不可能获得良好教学质量和效果的.学生实际的数学认知结构是整个问题探究模式的出发点.因此,在初中数学教学中运用问题探究教学模式时,教师一定要对学生现有的认知结构有准确的把握和认识,这样才能有针对性地对学生开展问题探究教学模式.

2.注重培养学生课堂教学中的问题意识

培养学生课堂教学中的问题意识是整个问题探索教学模式的核心内容,也是该教学模式能否成功的关键因素.因此,在初中数学教学中运用问题探究教学模式时,教师一定要认真研究,并运用多种方式,将要教授的学习内容转化为数学问题思维情境,让学生在问题思维模式下自主学习,真正遵循初中数学教学中“提出问题—建构数学—解决问题”的探究过程.例如,在讲“相似形”时,教师可以设计这样一个问题情境:用多媒体播放埃及的金字塔,让学生观察大小金字塔的外形之间有什么相似之处,之间有什么联系.根据这个问题情境,教师可以设置如下两个问题:(1)根据相似形能否测出大金字塔的高度?(2)相似形各边比例是否相等?各个对应的角是否相等?为什么?让学生自己去寻求解答.通过教师创设的这种问题情境,再由学生自主去探索,这种让学生亲身去经历提出问题、解决问题、应用 反思 的过程,就能使学生切实感受到在探索中学习的快乐,而且这种模式也能使教师课堂教学的知识目标、能力目标都得到较好的落实.

3.探索课堂师生之间的情感体验模式

初中数学教学中运用问题探究教学模式,不仅要关注学生数学学习的效果和质量,也要关注学生在数学课堂活动中所表现出来的情感与态度.因为问题探究式教学模式就是让学生在课堂中根据教师创设的问题进行探索、讨论和交流,这就使学生只有在态度上真正接受、喜欢和参与,才能使相关的讨论或探索获得良好的效果.因此,学生的情感态度对开展问题探究式教学是有重要影响的,也是教师需要认真去关注的一个问题.教师在运用问题探究式教学向学生传授知识的同时,也要采取各种方式在课堂上构建一个和谐、民主的师生情感关系,这对培养学生的学习兴趣是非常重要的.总之,本文对初中数学教学中有效运用问题探究式教学进行了一些理论和实践的探讨,其中最主要的就是对初中数学问题探究式教学如何开展的问题,无论采用探究什么形式和方法,最重要的是要适合学生的发展,扬长避短,最终使数学教学优点发挥到最大化,让这种探究模式成为教学的主流,让数学教学发展得更好,这对今后初中数学教学改革有非常重要的意义.

作者:李权 单位:江苏沭阳县马厂中学

《勾股定理的证明方法探究》 勾股定理又叫毕氏定理:在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和。 据考证,人类对这条定理的认识,少说也超过 4000 年!又据记载,现时世上一共有超过 300 个对这定理的证明! 勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若鹜,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。 勾股定理的证明:在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。 首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。 1.中国方法:画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。 左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是 a^2+b^2=c^2。 这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。 2.希腊方法:直接在直角三角形三边上画正方形,如图。 容易看出, △ABA’ ≌△AA'C 。 过C向A’’B’’引垂线,交AB于C’,交A’’B’’于C’’。 △ABA’与正方形ACDA’同底等高,前者面积为后者面积的一半,△AA’’C与矩形AA’’C’’C’同底等高,前者的面积也是后者的一半。由△ABA’≌△AA’’C,知正方形ACDA’的面积等于矩形AA’’C’’C’的面积。同理可得正方形BB’EC的面积等于矩形B’’BC’C’’的面积。 于是, S正方形AA’’B’’B=S正方形ACDA’+S正方形BB’EC, 即 a2+b2=c2。 至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。 这就是希腊古代数学家欧几里得在其《几何原本》中的证法。 以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念: ⑴ 全等形的面积相等; ⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。 这是完全可以接受的朴素观念,任何人都能理解。 我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法: 如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。 赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。 西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。 下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。 如图, S梯形ABCD= (a+b)2 = (a2+2ab+b2), ① 又S梯形ABCD=S△AED+S△EBC+S△CED = ab+ ba+ c2 = (2ab+c2)。 ② 比较以上二式,便得 a2+b2=c2。 这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。 1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。 在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。 如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则 △BCD∽△BAC,△CAD∽△BAC。 由△BCD∽△BAC可得BC2=BD ? BA, ① 由△CAD∽△BAC可得AC2=AD ? AB。 ② 我们发现,把①、②两式相加可得 BC2+AC2=AB(AD+BD), 而AD+BD=AB, 因此有 BC2+AC2=AB2,这就是 a2+b2=c2。 这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。 在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法: 设△ABC中,∠C=90°,由余弦定理 c2=a2+b2-2abcosC, 因为∠C=90°,所以cosC=0。所以 a2+b2=c2。 这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。 人们对勾股定理感兴趣的原因还在于它可以作推广。 欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。 从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。 勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。 若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。 总之,在勾股定理探索的道路上,我们走向了数学殿堂天啊,那么多的字啊。

初中数学几何论文范文

初中数学是为之后的数学学习打下基础的,学好初中的知识点很重要,下面我为你整理了几篇初中数学教学论文范文,希望对你有帮助。

数学教学论文篇一

一、引进有效的教学方法

科学有效的教学方法对提高整体教学的有效性有很大的帮助。以初中函数的教学为例,初中三年级就开始引入了函数的相关概念。一般而言,学生会根据教科书中给出的函数方程进行简单的计算,教师也只是把一些公式教给学生,让学生进行一味的数据计算。在这种情况中,学生只能认识到函数是一个抽象的概念,根本不知道函数到底是怎么来的,也不知道对称轴、截距到底是什么。所以,教师要改进方法,进行有效的初中数学教学。

而数形结合则是一种很好的、能实现有效教学的方法之一。数形结合也就是教师要根据函数题画出相应的函数图形,以便于学生能更加清晰、明了地理解数学函数的相关概念和性质,能快速理解那些抽象难懂的问题。当然,这也就能有效地为接下来的高中函数的学习打下坚实的基础,把抽象知识变为了具体的知识。综上所述,教师应在初中函数的教学过程中改进、并利用科学有效的教学方法,以不断提高初中数学的教学质量。

二、进行激励性教育

在学习的过程中,每个学生都会希望得到教师的表扬和称赞,因为在学生眼里,教师的嘉奖是教师对自己的肯定。在这种动力的驱使下,学生的学习热情得到了激发,就会将学习当做是一件幸福的事。这也就从侧面激发了学生学习的热情,是快乐学习的具体表现形式之一。“鼓励别人一句强于指责别人百句”,这是一句英国的谚语。

每个人都希望自己无时无刻不得到别人的肯定与认可,谁都不希望自己总是被别人指责。在初中数学教学过程中,每位教师也应该多鼓励自己的学生,提升学生的学习热情,增进师生之间的交流,使学生能够毫无顾虑地向教师提问,这样就不会出现因为畏惧而不敢提问的情况。反之,学生学习的热情降低,学生消极对抗教师,师生之间的距离也拉远了。这样的做法既不利于学生初中数学的学习,也对教师的工作产生了极大的威胁。

三、寓教于乐的教学

在平时的学习中,教师要采取寓教于乐的教学方式,在教学中适当地加入相对应的数学游戏,让学生劳逸结合,实现既在娱乐中学习,又在学习中娱乐的教学和学习效果。通过这种方式,学生认识到学习是一件有趣快乐的事,并不是一件枯燥无味的事情。例如,针对初中数学书中的几何问题,教师就可以举办一个叫做“辅助线”的游戏。

游戏大致内容是教师将学生分组,并且给出一个几何的图形,让小组思考该如何做辅助线,并且思考一下假若加入这条辅助线,会对解题有什么样的帮助,随后再继续深化,讨论一下加入一条辅助线后,会不会产生另一个新的问题,从而使所有学生都参与到这个活动中来。这种教学模式可以采取举手抢答的方式,抢答成功就会得到相应的分数,在游戏活动最后,累计分数,得分最高的小组会获得奖励。这种游戏的方式,能让学生在愉快的学习中加深对函数知识的理解,有利于调动学生学习的积极性。这也是提高初中教学有效性的方式方法之一。

四、总结

总体来说,初中数学的学习是学生逻辑思维开发的最初阶段,是高中数学教育的基础。所以,教师有必要加强初中数学教育的有效性研究。以上笔者针对如何提高初中数学教学有效性的方式方法做了初步探讨,希望能够给今后初中数学的有效性教学的发展做出一定的贡献。

数学教学论文篇二

一、差别性教学的作用

(一)通过差别性教学,学生更好地成长

由于学生处于不同的知识水平,他们对知识的运用并非相同,特别在数学领域,人们在应用推理、判断方面程度是不一样的,有较强推理、判断能力的学生常常不用花费太多的时间就掌握了,但是那些应用推理、判断能力较差的学生就要花费很久。因此,教师要是根据课本上的知识来教,那么好的学生没办法得到更长远的发展,而差的学生也没办法得到提高,显而易见,这样的教学办法是不可取的。所以差别性教学教学有利于改善这一点,从每个学生的突出点出发,根据他们的突出点来制定符合他们成长的教学手段与内容,学生才可以得到更好的发展。

(二)使学生更加自信

推理、判断能力比较强的学生常常热衷于深入地研究难以解决的方面,这些学生在深入研究时能得到自信,要是直接采取同一种教育方式去教育所有的学生,那样就很难使学生获得自信,会使学生不愿意深入探究难以解决的方面。另一方面,那些应用推理、判断的程度比较浅的学生就因为太多的失败而不再相信自己了,产生放弃的念头,从而使他们渐渐地落后于其他人。因此,通过依据学生水平不同进行教学的方式,能使好的学生深入研究难以解决的方面,使落后的学生从自身实际出发,一步一个脚印,踏踏实实地进步,这样所有的学生就可以更好地完成自己的学业,更加相信自己。

二、初中数学教学中差别性教学的实施办法

(一)从学生的水平出发,有序地分组

通常,学生可以分为三种层次:第一层次的学生是起点高,有好的方法和技巧,应用推理、判断程度高的;第二层次的学生是起点一般,但有较好的方法和技巧,应用推理、判断程度较高的;第三层次的学生是起点低的。我们应进行有序分组。有序分组的过程中应关注下面三个方面:首先,必须清楚地知道学生的突出点是什么,教师与学生,教师与家长,学生与家长应好好交流。其次,有序分组应理解学生的内在想法,不可只依据卷面测试结果来区分学生,分组应该是具有伸缩性的而不是硬性的。卷面测试结果属于有序分组的一部分,学生了解自身的状况,有自己的目标,所以我们应理解他们,不能忽略他们的内在想法,这样他们才会相信自己。待分组结束后,我们要进行差别性教学。最后,教师在看待不同组的学生时,应一视同仁,付出自己的最大努力。

(二)依据分组后学生的情况,采取不同的教学方式

我们要考虑到所有的学生,将差别性教学深入应用在课堂上。1.引入新的内容。数学的内在关系是紧密相连的,教师可以回忆学过的内容来引入新的内容,此时则通过第三水平学生去回忆学过的内容,使其加深印象。第二层次的学生则解决新的内容的引出,第一层次的学生则完善第二层次的学生的内容。2.解说新的内容。解说新的内容时要考虑到第三层次的学生,循序渐进。3.课上操练。结束新的内容时,教师要对学生进行操练,第一层次的学生比较得心应手,教师则让学生操练转变形式的习题,可以给第二层次的学生比较有难度的习题进行操练。另外教师要认真对待第三层次的学生,提供难度小的习题有助于他们加深记忆。

(三)依据分组后学生的情况,安排的任务有所不同

安排的任务要使学生可以在其力所能及的范围内,从而有助于他们的成长。第一层次的学生可以多安排统合性较高的习题,加强他们的处理数学问题的规则和程序,使他们挖掘习题中那些数学处理的规则和程序。第二层次的学生,主要学会普通的题目和一部分难题的思考方向。第三层次的学生则重复做题,做很多的习题来巩固基础。

(四)依据分组后学生的情况,评估的方面有所不同

因为学生的核心目的有所不同,所以要使用不同的评估方法。举个例子,教师依据水平不同的学生,应把考试题目进行区分,让不同水平的学生做不同的题目。第一层次的学生重点做难题;第二层次的学生重点则是中等题目,外加小部分难题;第三层次的学生重点放在基本的题目上,外加一小部分中等题目。那么,所有的学生都可以在自己的范围内得到进步。

三、总结

差别性教学是根据从实际出发来解决问题的哲学思路来进行的,该方式可以一对一地处理学生遇到的困境,让所有学生都可以发挥自己的优点,弥补自己的不足,鼓励学生学习,使学生对自己有信心,有助于学生的各个方面的协调与进步。

数学教学论文篇三

一、课堂上进行有针对性的有效提问

1.问题必须要有思维容量。

不能够激发学生思考的提问是失败的,只有促进了学生的思维发展,拓宽了他们的思路,才能够提升其探究能力,引起他们对数学的热情。即使学生回答问题偏颇,即便是并非尽善尽美,教师也要表扬其优点,给予赞美,加以挖掘。面积求出来之后,斜边AB上的高如何得出?此时教师利用多媒体,展示求直线y=2x+3、y=-2x-1及y轴围成的三角形的面积。这样就把问题由一条直线转化为两条直线与坐标轴围成的面积。

2.锻炼提问的技巧。

问题的提出也有优劣,掌握提问方式,提高问题的质量,抓住学生的兴趣,创造良好的学习氛围,学生的积极性能够充分地被调动起来,学生就会顺利地成为课堂的主体、学习的主人。

二、让学生“想学”,教学语言风趣

美国心理学家调查发现,学生都喜欢幽默的教师,这样学习氛围轻松愉快,这一点是促使学生“想学”的主要因素,什么学科概莫能外。这就要求教师具有很高的综合修养。其中一点,要语言幽默:幽默是伟大的智慧,是教学的润滑剂。比如,我向学生提出分析这个“数”字,由“米女攵”构成,什么意思呢?也就是说,你只有学好了数学,你毕业以后才可能找到好的工作,才可能有钱买米吃,才可能找到女朋友,那么这个“攵”是什么意思呢?这个更凸显数学的重要了,就是以手持杖或执鞭责打学不好数学的人……这些生动形象的解说,不胜枚举,当然还需要教师表情、语调等的配合。

三、对学生进行正确的思维训练

对学生进行正确的思维训练要充分唤起学生的主动性。讲例题,让学生自主审题,题目给了学生就可以,然后读题、审题、解题一系列的思维活动让学生自己完成;学生有了问题,反复推敲“个体参悟”,不行则“同伴互导”,再不行,“教师解难”,即使是“教师解难”,一样不要急于递给答案,教师应对学生逐步启发:问题里涉及什么概念?用什么公式才能表达这一规律?问题解决了,还有没有别的解题方法?学生养成思维训练的习惯,随着综合能力的提高,课堂上随时就会有智慧熠熠生辉了。

四、总结

总之,数学是培养人的创造性素质的最佳途径,成功非一日之功,我们教师要为教育竭尽微忱,为学生终生的数学学习奠定良好的发展基础。

初中学生的七年级数学学习随着我国新课程标准的实施以及素质教育的不断深入,初中七年级数学处于数学学习的过渡阶段,培养学生的自主学习能力对其未来的学习与发展具有重要意义。下面是我为大家整理的,供大家参考。

摘要:对刚进入七年级的学生来说,这个时段是适应中学数学教学、缩短小学学习与中学学习距离的过渡期。如果一开始学生就对数学不感兴趣,甚至害怕数学,那么会直接影响到今后的学习。要让七年级新生爱上数学课,就要求教师做学生喜欢的教师,要教给学生正确的学习方法,课堂教学要有更高的艺术性,在课堂上能吸引学生,让学生产生浓厚的兴趣,才能达到预期的教学效果。

关键词:生活教育;喜欢;第一节数学课;学习乐园

中图分类号: 文献标识码:A 文章编号:1992-7711***2014***01-0007

著名的人民教育家陶行知说:“治学以兴趣为主,兴趣愈多,则从事弥力,从事弥力则成效愈著。”《数学课程标准》也明确指出,数学教学要重视激发和培养学生学习数学的兴趣,学生一旦对数学产生浓厚的兴趣,就乐于接触它,变“苦学”为“乐学”。下面,结合工作实践,笔者就如何让七年级新生喜欢上数学课问题谈点浅见。

一、做一名学生喜欢的数学教师

陶行知先生说:“真教育是心心相印的活动,唯独从心里发出来,才能打动心灵的深处。”只有师生情感融洽,学生才会敢想、敢问、敢说,才会愿学,才会学有所成。在课堂教学中,笔者总是微笑地面对学生,从不板著脸上课,更不对学生大声训斥,把他们当成自己的朋友或孩子来看待,力求做到尊重每一位学生。

在数学教学中,笔者十分强调理论联络实际。例如,学习有理数加减混合运算,笔者举这样的例子:现在老师存摺上有100元,下午存入300元,明天取出50元,后天取出100元后,存摺上还有多少元?通过这道题的计算,你知道存摺上的余额是如何计算吗?若余额为负数说明什么?让学生去计算、去思考,培养他们的数学学习兴趣,激发他们的数学学习热情,让他们感受到生活中处处有数学知识,学习数学知识充满著无穷的乐趣。

陶行知先生说:“待学生如亲子弟”。教师要得到学生的爱,她必须爱她所教的每一位学生,将其当作自己的孩子;教师要有宽广的胸怀、积极的情绪、平易近人的态度、笑容可掬的表情,要善于营造一种和谐、愉快、亲切、友好的气氛;要爱学生成长过程中的每一微小“闪光点”,要爱他们具有极大的可塑性,要爱他们在教育过程中的主体能动性,要爱他们成长过程中孕育出来的一串串教育劳动成果。教师的爱要一视同仁,持之以恒;爱要以爱动其心,以严导其行;爱要以理解、尊重、信任为基础。只有这样的爱,才能爱出师生间的“师生谊”,才真正得到学生的喜爱。

二、上好开学的第一节数学课

俗话说:“良好的开端是成功的一半。”小学生进入中学后,数学不再是单纯的计算,而是数学进一步内容拓宽、知识更一步深化,加上部分学生还未脱离教师的“哺乳”时期,没有自觉“摄取”的能力,致使有些学生因不会学习或学不得法而成绩逐渐下降,久而久之失去学习信心和兴趣,开始陷入厌学的困境,因此设计好开学第一节数学课非常重要。

第一,课前,教师最好是修饰一下自己,着装大方得体,有亲和力。第一节课最好不要多讲正课,可以讲一些和正课相关联的知识及其生活实用性,让学生产生一种急切求知的欲望。若教师进入课堂就讲课,因为学生还不熟悉教师,对教师还有很多的神秘感,上来就讲课,学生也会因为对教师感兴趣的程度大于对教学内容的程度,导致教学效果不佳。上第一节课要做自我介绍,要有一个漂亮的出彩的亮相,可以介绍自己的过人之处和自认为是闪光点和值得骄傲的地方。这个开场白是最吸引学生的,有助于学生了解教师的过去、教师的长处,促进师生友谊的建立。让学生在你的自我介绍里,感受智慧之美,拼搏之美,进取之美。要让学生感觉教师是一个博学的教师,聪慧的教师,从心里敬佩的教师。

第二,要让学生掌握初中数学学习方法,首先,七年级学生往往不善于预习,也不知道预习起什么作用,预习仅是流于形式,粗略地看一遍,看不出问题和疑点。笔者要求学生预习时应做到:一粗读,先粗略浏览教材的有关内容,知道本节所要讲的内容。二细读,对重要概念、公式、法则、定理反复阅读、体会、思考,注意知识的形成过程,对难以理解的概念作标记,以便带着问题去听课。三做练习,通过练习检验预习效果。

其次,在小学,教师一般采用直观形象到抽象概括的教学方法,通过讲解、演示、操作等过程建构新知,节奏慢、坡度小。很多学生认为学数学就是做作业,多做练习,课本成了“习题集”。到初中后,由于学科的增加和学习内容的抽象,课堂知识容量增大,教学进度较快,演示、操作减少,抽象的思维活动增加,很多学生深感不适应。因此,要教会学生处理好课堂“听”、“思”、“记”的关系。“听”每节重点、难点剖析***尤其是预习中的问题***,“听”例题解法的思路和数学思想方法的体现。“思”是指多思、勤思,随听随思,并善于大胆提出问题。“记”就是记要点、记疑问、记解题思路和方法;记小结、记课后思考题。可以说“听”是“思”的基础,“思”是“听”的深层次掌握,是学习方法的核心和本质的内容,会思考才会学习,“记”是为“听”和“思”服务的。掌握好这三者的关系,就能使课堂这一数学学习主要环节达到较完美的境界。

三、让数学课堂变成学生学习的乐园

陶行知曾以《假如我重新做一个小孩》为题,阐明儿童教育应该包括的内容,其中有句发人深思的话,“我要多玩玩”。七年级学生活泼好动,不喜欢单调的重复和机械的练习。我们要传承陶行知先生的教育思想,尊重学生的年龄特点、心理特点,灵活地运用教法,把枯燥的数学学习变成了学生学习的乐园。

1. 在“做数学”中体验数学学习的乐趣。练习是使学生掌握知识,形成技能、发展智力的重要手段。课堂练习设计得好,不仅巩固新知识而且可以增添学生学习数学的兴趣。因此,在设计练习时,笔者力求设计各种情节有趣、形式新颖的练习形式。例如:引入负数后,七年级新生的计算出错,很多是符号出错,笔者就设计了如下快速抢答题,1×***-5***= ;1÷***-5***= ;1+***-5***= ;1-***-5*** = ;-1+***-5*** = ;-1-***-5*** = ;-1×***-5*** = ;-1÷***-5*** = ;***-3***= ;***-2***= -2= -2= 。要求回答对的,就通过。回答错的,教师点拨后,出题再做,对了,就编题给同学做,大受学生喜欢,学习的热情非常高涨。平时笔者还根据不同的教学内容设计不同型别、不同层次的练习题,满足学生不同层次的需求,照顾不同层次的学生,使学生始终保持高昂的学习热情。 2. 在合作交流中体验数学学习的乐趣。充满活力的数学课堂,应该是对学生具有吸引力、亲和力的“磁性”课堂。合作学习的情景来源于教师有目的地创造,在数学课堂教学中教师若能自然地创设合作学习的情境,不仅能让学生产生合作的冲动和交流的愿望,还能激发学生的学习兴趣。例如:在教学“数轴”时,让学生以小组为单位,讨论学校要在校门公路旁植树,每隔3米植一棵树,问在21米长的公路旁植树最多可植几棵树?有学生可能会得出:21÷3=7,可植树7棵;有学生结合数轴就很直观了,可植树8棵。经过大家讨论得到结论为:这类题要结合数轴,要注意考虑线段的端点,否则容易出错。再如,为让学生能找到正方体展开图的相对面,笔者让同桌合作将展开图折起来。在这个过程中,学生始终处于积极的探究性活动中,让同学们感到合作的力量,得到成功体验的机会。感受到学习过程的快乐,同时获得了数学思想和方法,产生学习数学的兴趣,树立学好数学的自信心。

3. 合理评价,让学生体验成功的乐趣。苏霍姆林斯基说过“你在任何时候也不要给学生打不及格的分数,请记住:成功的欢乐是一种巨大的情绪力量。”这启示我们教师在教学中应改变以往的评价方式,以鼓励性评价为主,让每一个学生都能抬起头来学习。例如,有一次笔者出示口算“3+***-6***”,一个学生,回答说:3+***-6***=3。笔者没有直接“宣判”对或错,而是说:“非常接近标准答案,你能再想一想吗?”这位学生放松地想了想,答:“3+***-6***=-3。”“你再编一编类似的题目,考考其他同学。”该生自己改正了自己的错误,体面地坐下了,自尊心得到了保护。每个孩子都有被人赏识的渴望,都希望得到别人的赞扬,宽容和鼓励。在教学中,要多鼓励表扬,让学生尝到成功的喜悦。教师的眼神、笑容、一个手势等对学生都是一种鼓励,让学生感受到自己被尊重,被信任。所以,每次学生回答后,笔者常用“你很聪明,你的回答对了!”“你真了不起,发现了同学出错的地方!”等这些充满 *** 、充满鼓励的语言来评价学生,保护了学生学习的积极性,使他们觉得学数学是快乐的,从而喜爱上数学课。

此外,教师还可以运用故事、比赛、表演等活动形式,保持学生学习数学的兴趣,陶冶学生情操,使学生愉快学习,从而形成稳定而持久的学习乐趣。

七年级数学是中学数学的基础,如果七年级新生能爱上数学课,就可以提高中学数学教学质量。为了使七年级学生尽快适应中学数学教学、顺利完成学习任务,必须从七年级学生的特点出发,让七年级学生对数学感兴趣,为以后学习奠定基础。

参考文献:

[1] 普天明,黄永明.数学教学方法的更新探索[J].课程教材教学研究***中教研究***,2005***Z1***.

[2] 陈芝红.初中数学教学方法新探[J].浙江教育科学,2007***6***.

【摘 要】常听家长说我的小孩小学数学都要考八十几分九十几分,现在上了初中孩子连及格都成问题。究其原因,学生没能适应初中阶段的学习.有些知识在成人看来很简单,在学生眼里却很难理解,所以我们做教师的,走进孩子的内心,从学生的角度思考问题,帮助孩子们搞好六七年级的衔接,以适应初中阶段的学习

【关键词】适应;衔接;策略

有关策略的含义,目前在学界有着多种不同的表述,其中“策略是旨在达到某种目的而对步骤与方法、技巧等所作的优化组合、精巧安排”。它点出了策略的本质属性,为帮助孩子们顺利度过六七年级的过渡期,根据个人经验,以生为本从孩子的角度出发展开教学,有利于帮助孩子们尽快适应初中阶段的学习.

一、上课适当放慢速度,帮助孩子们适应“课堂容量小到课堂容量大”的过渡

小学阶段教学内容较少,初中阶段教学内容较多,课堂容量显然加大.一般来说,小学老师教态较亲切,课内提问次数较多,有时一堂课内每位学生都可能有被问一次的机会,问题多半讲得较细,有时还可反复讲,反复练.,所以大部分的小学生在老师的帮助下是基本可以掌握好小学的有关知识的.,而初中阶段学习科目和每节课的授课内容都比小学多,课内外的时间都比较紧,课内提问,练习,辅导,讲解都不可能像小学那样频繁,那么细,初一新生基本上还具有小学生的学习心理,跟不上老师的步伐,导致学习掉队,所以我们初一教师开始一段时间不能操之过急,应顺应小学教师的教法,教学的内容少一些,进度慢一些,在具体讲授每节课知识时,做到形象、直观、对比、有趣等,课堂上尽可能多提问,但要提到要害处,,多启发、多表扬、多练习,引导学生逐步进入初中学习轨道。

二、做好翻译工作,帮助孩子们“学会对符号语言的理解认识”

由小学具体的数到初中用字母表示数这一飞跃,也是学生感到困难的地方。学生对表示数的字母作用产生片面认识,老师在教学中必须设法使学生真正理解用字母表示数的意义及目的,让学生知道字母表示数最本质的东西。由于负数的引入引出了绝对值等概念,数的运算出现了符号法则。成为学生学习的又一难点,如何让学生很自然地把有理数的运算与非负有理数的运算统一起来,是老师在教学中必须着力解决的。比如a>0,对七年级的学生不明白是什么意思,老师要具体翻译为字母a表示的是正数,a=a这个式子在七年级学生眼里有些茫然,老师要具体翻译为一个数的绝对值等于它的相反数,这样学生才明确原来这个数可以是0也可以是负数,诸如这样的符号语言式子较多,老师要不厌其烦的将他们翻译成中文语言让学生逐步学会认识理解,从而学会数学符号语言的认识与表述。

三、用数形结合思想帮助孩子适应“形象思维到抽象思维的过渡”

小学几何中对图形的性质和位置关系没有深入的研究,而初中几何就是通过研究几何图形的性质来研究物体的形状、大小和位置的,几何图形是研究几何命题的必需的直观工具,对于初中生来说,图形的形象思维比抽象思维更容易接受。因此,在几何教学中,要充分利用图形帮助学生克服抽象思维的困难。例如:已知a>0,b<0,a>b,比较a,-a,b. -b的大小。学生认为没告诉具体数值无法比较,聪明一点的孩子可以用特值法,但对结论的正确与否自己没把握,这是一个代数问题,数形结合仍然适用。教师指导学生画出数轴,在数轴上根据a、b的位置标出-a、-b的位置,再根据“数轴上的数从左往右越来越大”进行比较,在直观图形下,学生一目了然,进一步加深了对相反数和有理数比较大小的理解,同时通过具体的例子感受数形结合思想可以转化问题的难度。

刚进入七年级学习的学生,对知识的理解更多地停留在感性认识的层面上,因此,更要重视学生由感性认识向理性认识的过渡。在数学知识的形成与应用上,不要对学生的理解持较高的要求,要尽可能地让学生经历整个知识的发生过程,理解知识的形成过程。有时要动手画图,有时还要让孩子们动手操作拼图,苏霍姆林斯基说“儿童的智慧在他们的手指尖上。”通过动手操作把抽象的东西转化为具体的,学生就理解了,这样就能使学生学习变得自然、轻松、高效。

四、教师规范书写的展示帮助孩子们适应“单纯的数字运算到规范书写”要求的过渡.

小学数学多是单纯的数字运算,对学生的书写格式要求不高,而重庆市近些年的数学中考150分的题目,有80分需要过程表述,可见随着年级的增高对书写格式的要求也在不断增加。初一学生很多时候做解答题只写答案,要么就是几个数字摆在那儿,没有必要的叙述和步骤,只满足于写对答案,而不苛求于解题过程的合理性与逻辑性。所以教师要一步一步把过程详细的展示给学生看,让学生在观摩中逐步学会规范的过程书写。从学生的实际出发,加强对学习困难生的个别辅导,作业的检查和批改做到及时评价,及时矫正。讲课时要有意放慢进度,概念应从学生的生活实际引入,深入浅出地讲,同时,针对七年级学生的注意力不能长时间集中,不适应单一的教学法的特点,方法上要讲练结合,严格统一书写格式。让学生通过感知―---概括―---应用的思维过程加强对知识的理解,从而引导学生发现真理,掌握规律,学会运用,学会书写。

五、进行学法指导,引导学生逐步学会自主学习,帮助孩子们适应“知识难度加大”的过渡

初中生活对七年级新生具有新鲜感,在心理上普遍存在着一种上进的愿望,教师应抓住这个契机,激发学生的学习热情。在学习能力方面,他们的记忆力较强,但理解力较差,习惯于具体思维而不习惯于抽象思维,不善于独立思考,对老师有依赖心理。教师要根据学生的实际认识水平,尽量做到按基本知识、基本技能和基本思想方法三个方面考察学生,使大多数学生学习数学能变被动为主动。首先要指导学生如何听课做笔记,如何搞知识小结,习题归类,以及作业的书写格式,做题规范等等。其次要引导学生学会读数学书,课前读书能使学生找出疑点,抓注重点;课后读书能弥补课堂上探索知识时的不足,还能深化所学知识。再次要教会学生如何订正错题,逐步在较高的层次上学会知识概括等等。通过实际例子的思维过程引导,让学生感悟转化思想。让学生感悟在研究数学问题时,将未解决的问题转化成已解决的问题,将复杂的问题转化成简单的问题,将数量问题转化成图形问题或将图形问题转化成数量问题等等。

作为教师从学生实际出发,了解每个学生的基础知识、学习方法、性格特点和心理活动等多方面的情况,在中、小学数学知识间架起衔接的桥梁,以生为本从学生的角度展开教学,帮助学生顺利过渡。

由于 七年级数学 是重要的教学工作,教师要注重激发学生学习数学的兴趣。下面是我为大家整理的七年级数学教学论文,供大家参考。

【关键词】七年级新生 数学教学解决 方法

学生刚从小学升入中学时,心理和生理都发生着巨大的变化,而数学教学也发生着重大的转变,初中数学在小学数学的基础上增加了复杂的平面几何、代数、有理数、实数、一次函数与二次函数等,内容多,难度大,学生感到吃不消,因此对数学产生畏惧感。以下针对七年级学生学习初中数学时出现的问题,谈谈具体的解决方法。

一、提升学生的数学学习能力

初中数学较之小学数学更为复杂、抽象,特别是数字到字母的转变、具象到抽象的转变等,一些逻辑推理能力稍差的学生学习起来感到十分吃力,学生在七年级阶段学不好,会影响到今后对数学的深入学习。因此,提升学生的数学学习能力尤为重要。逻辑推理能力是学生学习初中数学的首要必备能力,在具体教学中,教师要注重对学生逻辑推理能力的培养。

例如,在几何教学中,培养学生将文字语言转化为数学语言的 逻辑思维 。

师:已知:HC是∠ACB的角平分线,同学们从已知条件可以知道什么?

生:因为HC是角平分线,所以∠HCA和∠HCB两个角相等。

师:没错,不仅∠HCA=∠HCB,而且别忘记∠HCA=∠HCB=∠ACB。

师:已知AB//CD,直线EF分别与直线AB和CD交于点G和H,请同学把图画出来。

学生根据对条件的理解画出图形,如图1。

师:∠AGH和∠GHD是内错角,所以∠AGH=∠GHD,同学们根据老师的思路,还能推理出什么?

生:因为AB//CD,所以∠FHD=∠FGB,并且∠AGH+∠CHG=180°。

教师先举例说明,再让学生自己进行观察推理,使学生不至于因为知识点理解有困难而走偏路。通过步步引导,逐渐提高学生的理解能力和逻辑推理能力。

二、把握教学内容的衔接

与小学数学相比,初中数学的内容更加系统丰富,如果教师处理不好中小学数学教学内容衔接的问题,会直接导致学生在初中数学的学习中脱轨。因此,在教学过程中,教师必须注意初中数学和小学数学的衔接,在接触一个新的知识点时,先分析小学数学与初中数学的差异,让学生意识到数学在初中阶段的系统化,同时,又要给予学生充分的信心,使学生不会因为初中数学与小学数学的巨大差异而产生恐惧心理。

例如,在“有理数”的教学中,我的教学过程如下:

师:小学数学是在算术数中研究问题的,我们现在开始学习一个新的知识――有理数。

学生从书上找到有理数的概念,师引入负数,并举例说明其用法。

师:同学们,我们怎样区别山峰的海拔高度与盆地的海拔高度这两个具有相反意义的量呢?

生:用负数,就像零上几度和零下几度一样。

师:没错。事实上,有理数与算术数的根本区别在于有理数由两部分组成:符号部分和数字部分,数字部分也就是算术数。

生:也就是说,有理数相比小学的算术数只是多了符号的变化。

师:对,例如:(-5)+(-3),同学们可以先确定符号是“-”,再把数字的部分相加。

生:答案是(-5)+(-3)=-(5+3)=-8。

在算术数到有理数这一重大转变中,教师明确了切入的方向和步骤,使教学内容与小学数学的内容很好地衔接,同时,又能帮助学生在小学的基础上理解有理数,使学生感受到初中数学与小学数学内容上的一脉相承,从而适应初中数学的学习。教师在教学中要注意由小学数学内容或生活中的实例引入教学,拉近学生与新知识的距离,加深对知识的理解,再实战练习,让学生不再对初中数学望而生畏。

三、培养学生良好的学习习惯

良好的学习习惯对于初中阶段的数学学习极其重要,在小学阶段,学生大多没有形成特定的学习习惯,往往以完成教师布置的作业为主要目标,临近考试才看书“临时抱佛脚”。大多数学生在进入初中后,面对快节奏的学习显得十分不适应。因此,教师要致力于培养学生良好的学习习惯,让学生面对高强度的学习任务也能游刃有余。在初中数学的学习习惯中,预习和复习尤显重要。

1.重视预习

进入初中阶段,数学教学进度陡然加快,学习难度也逐步加深,学生一时难以适应,在听课过程中,学生由于没有预览新知识,对教师所讲内容十分茫然,从而产生焦虑急躁的情绪,影响继续听讲。久而久之,不仅听课效率下降,更打击了学生学习初中数学的信心和兴趣。因此,教师应在布置当天学习内容的作业时,将预习次日学习内容作为一项作业布置给学生,并提出预习的具体要求,指导学生预习的方法,让学生逐渐养成预习的习惯。

2.正确把握复习的节奏和掌握复习的方法

复习也是一个极其重要的学习习惯。根据艾宾浩斯遗忘规律曲线,在识记的最初阶段遗忘速度很快,以后逐步减缓。因此,在学习新知后若不及时加以巩固复习,学习效果将大打折扣。教师应向学生强调复习的重要性,明确要求学生在做作业之前先复习当天所学内容,并阶段性回顾单元章节知识,以强化学习效果。

复习主要包括两部分,一部分是新授课后对已学知识点的回顾和巩固,另一部分是考试前对知识的回忆和温习。首先是新授课后对已学知识点的回顾和巩固,在这一环节,学生总感觉学习时间不够,光是完成教师布置的作业就已经很吃力了,更别说复习,这就要求学生学会把握复习的节奏。教师应该适时在课堂上复习已学知识或点评新旧知识点的联系,用课堂讲习题的方式间接提醒学生复习的重要性,使学生在潜移默化中适应教师的复习节奏和方法,最终化为自己的习惯和方法。其次是考试前对知识的回忆和温习。教师应提醒学生,复习要以教材为本,深入理解知识点,把握重点内容。另外,考过的测试卷也是复习的好资料,考试中暴露的问题正是学生应该重视的复习内容,尤其是七年级新生,不知复习从哪儿下手时,更应该珍惜每一份试卷,认真分析,找出自身知识点的薄弱环节, 总结 失败的教训,从中得到成长与进步。

以上观点均是结合自身的教学 经验 所谈,教师应根据所教班级学生的特点因材施教,切勿生搬硬套。

摘要:学习数学对七年级的学生来说,首先是获得适应初中数学学习的能力,以缩短小学学习向初中学习的过渡期。要使数学教学更有效地帮助学生获取数学知识和适应能力,有些问题应在我们的数学教学中应予以重视。

关键词:七年级;数学;重视

1.重视“小练习”,以体现数学思想 教育

进行数学思想方法教学应遵循的几个原则:一是化隐为现原则。就是有意识地让学生将数学思想方法作为明确的学习对象,教学应当以知识为载体,把隐藏在知识中的思想方法揭露出来。二是循序渐进原则。必须结合教学内容和学生认知水平,反复孕育结论发展形成的过程,采用“小步走”、“多层次”的方式,以体现数学思想方法的教学。三是学生参与原则。应当认识到学生参与教学,是数学活动过程的教学,具有动态性、重思辨的特点,要求有学生积极参与其中,使学生逐步领悟、形成和掌握数学思想方法。

我们应当按照这些原则教学。例如,应用题对七年级学生来说是一个数学学习的难点。这个阶段的应用题,尽管在很大程度上还没有真正涉及到实际的应用题,即使这样,也有一些学生对此感到头痛。为了处理好这个问题,我们应按上述原则,在教学中重视设置一些与讲授问题相关、简单且有层次的小练习,让学生通过这些小练习,逐渐体会如何分析问题以及解决问题的方法或思路。例如:

甲、乙两站相距450km,一列慢车从甲站开出,每小时行驶65km ,一列快车从乙站开出,每小时行驶85km。(1)两车同时开出,相向而行,多少小时相遇?(2)快车先开出30分钟后慢车开出,两车相向而行,慢车行驶了多少小时与快车相遇?

讲解该问题前,我们可按解题思路先让学生想想两种车在具体时间内各走了多少路程,并推出x小时内所走路程的表达式;再让学生想想两车“相遇”在时间上有何特点,各自所走路程与两站间距离有何关系;然后让学生想想“快车先开出30分钟”对各自所走路程以及与两站间距离的关系会产生的影响等问题。通过这类小练习让学生沿着正确的解题方法做一遍,以理解解题的思想。

这类小练习应具有由浅入深、由简单到复杂、每步过渡都有铺垫等特点,若再加上适当的图示,学生做起来就不会感觉有太大困难。显然,小练习是在教师引导下由学生自己完成,符合“学生参与原则”;围绕原问题,小练习按“小步走”的方式依次提问题,难度由浅入深,符合“循序渐进原则”;小练习将原问题的基本面目逐步展现出来,让学生看到解决原问题的方法与自己熟悉的方法之间的关系,符合“化隐为显原则”。

2.要关注学生的个体差别

在曾经的教学中,学生常常是被动地学习,没有机会主动地学习和自主地选择决策,这样学生就失去了作为学习主人的创造力创新精神。新一轮基础教育课程改革十分重视尊重学生的个体差别,尊重学生的各式性,激发勉励学生各个方面进行发展,采用不一样的教育方法和评估标准,为每个学生的发展创造条件。作为初中数学老师需要在教育思想、教育观念上创新,要树立适应时代发展必要的新的教育观、人才观和质量观,在全面落实素质教育的基础上,不停改革 教学方法 ,提升教育教学质量,创建符合学生身心发展规律的班级课程授教体系,刺激引发学生学习的主动性和创造性,应对学生有充实的信心和支持带领学生在各个方面进行发展的基础上寻找本性突破(意为打开缺口突破难关)。值得注意的是,个性化(就是非一般大众化的东西。在大众化的基础上增加独特、另类、拥有自己特质的需要,独具一格,别开生面的一种说法。打造一种与众不同的效果。)的课程和教学条件正在逐步形成。信息技术的发展,多媒体计算机和网络(网络就是用物理链路将各个孤立的工作站或主机相连在一起,组成数据链路,从而达到资源共享和通信的目的)技术在学校教学整个过程中应用范围日益扩大,给个性化(就是非一般大众化的东西。在大众化的基础上增加独特、另类、拥有自己特质的需要,独具一格,别开生面的一种说法。打造一种与众不同的效果。)教学和对学习的人的志趣、能力等具体情况进行不同教育带来新的机遇,也给初中数学老师带来了新的挑战。

3.数学教师应正确认识数学教学的本质

树立正确的数学教学观教学曾被简述为“教师教、学生学的活动”。但这样说过于简单,不利于对数学教学的全面理解。苏联教育学家斯卡特金认为:教学是一种传授社会经验的手段,通过教学传授的是社会活动中各种关系的模式、图式、总的原则和标准。这是一种侧重于传授内容的总体叙述。美国心理学家布鲁纳认为:教学是通过引导学生对问题或知识体系循序渐进的学习来提高学生正在学习中的理解、转换和迁移能力。这是侧重于学生获得发展的叙述。不论是从认识心理学的角度构筑的数学教学理论,还是着眼于未来,注重 学习方法 的掌握与创造精神发挥的数学教学理论,都必须研究数学教学过程的本质、数学教学的原则和教学方式及方法的开拓,探讨数学教学的科学性与艺术性及其统一。特别地,要与信息社会发展的总体趋势相适应,着眼于促进学生全面、持续、和谐地发展。“义务教育阶段国家数学课程标准(实验稿)”第四部分“课程实施建议”中指出:“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程”。这里,强调了数学教学是一种活动,是教师和学生的共同活动,这对广大教师树立正确的数学教学观具有重大的意义。在新课程中,教师将由传统的知识传授者转变为课堂教学的组织者、引导者和合作者。教学工作越来越找不到一套放之四海而皆准的模式。因此,教师必须在教学工作中随时进行 反思 和研究,在实践中学习和创造,这样才能得到发展。另外,数学教学过程不再是机械地执行教材的过程,而是师生从实际出发,利用更广泛的课程资源,共同开发课程和丰富课程的过程,教学真正成为师生富有个性化的创造过程。新的课程呼唤着创造型的教师,新的时代也将造就优秀的教师。

摘 要: 新世纪需要的是高素质人才,兴趣是各种素质培养的前提条件,培养学生的兴趣是数学教学的关键。数学兴趣的培养要从入门抓起,要从课堂教学抓起,要从学习习惯抓起。教师要以数学的趣味性、教学的艺术性感染学生,引起学生学数学的兴趣,同时培养学生各方面能力,真正实现素质教育。

关键词: 学习兴趣 课堂导入 实践操作 学习习惯

学生升入七年级伊始,对数学有着浓厚的兴趣,可是没多久,兴趣就慢慢消失了,这几乎成了七年级数学教学的普遍性问题。长期以来,教师为保持学生的学习兴趣一直进行着不懈努力。那么,如何提高七年级学生的学习兴趣呢?经过不断探索和实践,我认为应该从以下几个方面入手。

一、要充分把握入门阶段的教学

“良好的开端是成功的一半”,这是义务教育课程标准试验教科书编写者的指导思想。七年级学生翻开刚拿到的数学课本后,一般都感觉新奇、有趣,想学好数学的求知欲较为迫切。因此,教师要不惜花费时间,深下功夫,让学生在学习的入门阶段留下深刻的印象,产生浓厚的兴趣。为此教师在教学七年级数学上册第一章“几何图形的初步认识”时,可多运用几何体教具进行教学,还有多让学生观察日常生活中的几何体,课上多动手操作,来引发学生的学习兴趣。如在教学第三节“几何体表面展开图”时,让学生以组为单位,剪、展纸盒,通过动手实际操作激起学生的学习兴趣。这样通过第一章的学习,一点点诱发学生的学习兴趣,消除学生害怕学数学的心理,以数学的趣味性、教学的艺术性给学生以感染,使其像磁铁上的铁屑离不开磁铁一样。

二、要保持课堂教学的生动性、趣味性

学生对数学学习有了初步兴趣后,要保持七年级学生学数学的永久兴趣,教师还应抓住七年级学生情绪易变、起伏较大的心理、生理特点,要求以“活的东西去教活的学生”,来培养学生持久的学习兴趣。对此,我的具体做法:

(一)注重课堂教学中的导入环节

一个好的导入设计,能使这堂课先声夺人,引人入胜,更为重要的是,好的导入能激发学生的学习兴趣和旺盛的求知欲,并创造良好的学习氛围,为授课的成功奠定良好的基础。以下是我教学实践过程中总结的几种课堂导入的方法。

1.设置情境,激发兴趣。

创设良好的导入情境,激发探索动机是引导学生探索学习的前提。因而,在导入阶段教师应注重情境的创设,创设好奇、疑惑、生动、有趣的情境,让学生对学习产生兴趣,进而产生主动探索的强烈欲望。如在教学“用平面截几何体”时教师可用实际切豆腐演示的方法导入,从而激发学生的学习兴趣。

2.设置疑点,引起兴趣。

“学贵有疑”,这是常理。学生在学习数学的过程中不断发现问题,学习数学才有兴趣,才会主动。亚里士多德曾说过:“思维是从疑问和惊奇开始的。”因此教师在导入教学过程中,还可以设置障碍,故意制造疑团和悬念,提出一些必须学习了新知识才能解答的问题,点燃学生的好奇之火,激发学生的求知欲,从而形成一种学习的动力。

3.联系生活,灵活应用。

生活中处处有数学的存在。要培养学生数学的应用意识,教会学生去观察生活,领悟生活的数学因素,教师就应注意课堂中实际生活的渗透,巧妙设置情境;启发学生从生活实际中发现某些规律,从而导入新课,这种方法可使学生在发现的喜悦中提高学习的兴趣,同时有利于学生对新知识的理解和记忆。

(二)课堂教学中充分让学生参与实践操作

教材针对七年级学生喜欢观看、喜欢动手的性格特征,安排了大量的实践性内容,以激发学生的学习兴趣。教师要抓住教材这一编排特点在教学中让学生参与实践操作,如在教学“有理数的混合运算”一节时,教师可把学生分成几个小组,每组一副扑克牌(去掉大、小王牌),让学生任意抽取四张牌,然后根据牌面上的数字进行加、减、乘、除、乘方混合运算,使运算结果为24或-24,来激发学生的学习兴趣和求知欲。

此外,教师可讲与数学知识有关的小 故事 ,做小游戏等,适当增加趣味成分,使看似枯燥的数学变得形象具体,这样也可以使课堂教学变得生动有趣。

三、教学中要注重培养学生学习习惯

七年级数学在每章节内容的编排上安排了“观察与思考”、“一起探究”、“做一做”、“大家谈谈”等栏目,独具匠心、面目一新。其宗旨是设法使学生学有趣、学有法、学有得。为此我在教学实践中从培养学生学习兴趣入手,逐渐使学生养成良好的学习习惯,使数学兴趣真正变成永久兴趣。具体做法:

(一)培养观察习惯

学生对图形、对实验的观察特别感兴趣,教师就可以引导他们有的放矢、积极主动去观察,边观察、边提问、边引导学生进行讨论。根据他们观察、分析的情况逐步引导出知识点。这样能使学生体会观察的收获与兴奋,自觉养成观察的习惯。

(二)培养思考习惯

具体方法是课前或课中出示思考题,如教学“用一元一次方程解决实际问题”时,可出示思考题:你还能想出另外的方法解这道应用题吗?鼓励学生思考多种方法,表扬回答正确的学生,使学生有获得成功之喜悦,从而产生兴趣,养成爱思考的习惯。

(三)培养探究的习惯

教师通过提问,引发学生积极探讨数学知识,逐步培养学生合作探究的习惯。特别是一题多解的题目或需要分类讨论的问题,如在教学“平行线的特征”时,可以让学生进行分组探究。通过探讨,归纳出平行线的性质。

以上只是我个人在七年级数学教学过程中对如何培养学生学习兴趣方面一点粗浅的看法,还望各位同仁给予指教。教师在实际教学中,其方法、 措施 是多种多样的,体会也各不相同,对于数学教学还有待于我们共同的研究和探讨。

参考文献:

[1]尹安群编著.有效教学――初中数学教学中的问题与对策.东北师范大学出版社.

1. 浅谈七年级数学相关论文

2. 初中数学的教学论文

3. 关于初中数学教学论文

4. 初中数学教学论文范文

5. 初中数学教育教学论文

数学论文范文初中几何

数学思维能力的好坏直接关系到分析其他问题的能力,而课堂教学效果的好坏也直接影响到学生数学思维能力的培养,关于初中数学教学你有什么独到的看法呢?本文是我为大家整理的初中数学教学论文 范文 ,欢迎阅读! 初中数学教学论文范文篇一:初中数学智能教学研究 一、初中生智能 智能简单地说,就是智慧和能力。主要体现于大脑的功能,表现为大脑对外界信息加工处理的本领,它包括感知能力、记忆能力、想象能力和思维判断的能力,感知能力和记忆能力是智慧的基础,想象能力和思维判断的能力是智慧的核心。反映在数学上,就是区分形状不同的几何图形,不同变量变化的规律,从具体的形象思维——抽象概括思维—— 逻辑思维 ,对前人 总结 的定理、公示、法则的在现,洞察二维、三维空间物体相互位置关系,以及以记忆为基础的各种思维判断能力。中学生经过六年小学阶段 教育 ,已具备一定的“数学与逻辑推理能力”,从生理学角度来看,其大脑的四个功能区,即感受区、判断区、想象区已基本成熟,接近成年人这一阶段,人的认识呈“飞跃”式发展。初中生从十一、二岁进入学校,到十四、五岁初中 毕业 ,这一段时间有人把它称为人生中“黄金时段”我们就要抓住人生中的“黄金时段”,适时开发中学生智能,培养学生的创新精神,才能获得智能资源的大丰收。 二、发展智能是初中数学教学的重要任务 数学作为一门研究现实世界空间形成和数量关系的科学,是学习和研究现代科学技术必不可少的基础知识和基本工具。作为教师不能奢望每个学生都能成为一代娇子,但也完全可能让每个学生在他现有智能基础上得到充分的发展。为提高整个一代人的智能水平做出最大努力,这一出发点也可列为中学教师应尽的责任之一。中学数学的教学任务不仅要传授知识,尤其重要的是开发智力和培养能力。所以在数学教学中,传授知识和发展智能是相互影响、相互制约、不可分割的有机统一体。那种把发展智能和传授知识相对立起来,或者严重脱节的倾向,把发展智能神秘化,甚至认为高不可攀的观点都是错误的。作为一名学生教师应该清楚自己不仅是知识的传授者,而且是智能的开发者,应该把主要力量放在开发学生的智能上,在人生的最重要的“黄金时段”发掘人的最宝贵的东西——智能。 三、初中生的智能开发 开发学生的智能,要遵循客观规律。使每个学生的创造力和创造精神得到发展,凡有利于这一工作的工作,都属于开发智能的范畴。作为中学数学教师,在开发学生智能方面应该认识并做到以下几点:从人性角度看,人既是主体性与客观性的统一,又是能动性和受动性的统一,也是独立性与依赖性的统一。学生在学习活动中表现为:我要学和要我学。我要学是基于学生对学习的一种内在需要,表现为学习兴趣。学生有了学习兴趣,学习活动对他来讲就不是一种负担,而是一种享受,一种愉快的体验,学生会越学越想学,越学越爱学,有兴趣的学习事半功倍。兴趣是学生学好知识的、内在的、直接的动力,不断激发学生的学习兴趣,使学生始终处于积极的思维状态,是发展学生智能的基础。有人说:“生趣才能爱学,爱学才能增加,增加才能长智。”可见,生趣是爱学、增加、长智的起点。在实际的教学工作中,每节课都必须精心设计,以激发学生的求知欲。例如在讲“函数”时授课前让学生先计算:2的4次方是多少?2/3的三分之二次方是多少?学生在解决了第一题后,所学知识不能解出第二题,于是就有了找到解法的欲望。这时教师就顺势导出将要学习的新知识——函数。从而达到了激发学生学习兴趣的目的。 初中数学教学论文范文篇二:初中数学教学中数学思维培养 一、数学思维的特点 任何一门学科都具有其自身的特点,数学作为一门基础学科,更是具备了严谨性和抽象性的显著特点,只有牢牢把握数学的特点,在严谨性和抽象性特点的指导下开展教学工作,才能更好的培养学生严谨的数学 思维方式 。 1.数学思维具有严谨性 数学是一门对逻辑性思维要求十分严格的学科,它要求教学人员对概念和定义有精准的把握和透彻的理解,对于问题的结论,也应做到反复论证,以便在教学中能够完整的表达数学名词的实质意义。在实际教学过程中,不同学生对知识的理解能力也各不相同,因此在传授知识的过程中不能够向数学科学一样做到绝对精准,这就要求老师因材施教,差别化的对待不同学生,进行数学思维的培养,进而逐步走向严谨。 2.数学思维具有抽象性 所谓抽象性,就是指用数学来表示客观存在的事物的本质特征和物与物之间的关联性。所有的数学定义都是从客观事物中总结归纳而来的,并不断提升,不断探索新的规律和法则,最终形成的完整的数学体系。而在这个过程中,抽象性不断加深,概况性不断提升,人们对事物的认识程度也就不断加深。因此,与其他学科思维相比,数学学习所需的 抽象思维 更有层次性。 二、培养初中生良好思维方式的 方法 具备良好的思维方式是学好一门学科的关键,而思维的发展也需要一定的知识基础作铺垫。在初中教学中,也应掌握恰当的方式方法,综合运用不同技巧加强对学生数学思维的培养和引导。 1.不断拓展学生的思维 在教学过程中,老师的教授讲解固然重要,但也应适当给予学生独立思考的时间,并在习题练习的过程中对知识进行把握和充分理解。教师在对一些特殊概念和知识的讲解过程中应与学生深入探讨,而非停留在只教授不讨论、只讲概念不深入探究的阶段。要加强对学生自主学习能力的培养,带动学生学习的主动性,从而逐步拓宽学生的思维,增强学生数学学习的逻辑思维能力。另外,也要充分利用学生的错误,在学生错误解答题目或错误理解概念时,应当深入分析出错的原因,从根本上纠正错误的思维方式。 2.运用正确的引导方式和教学方式 教师在教学过程中,要有清晰的头脑和明确的思维逻辑方式,在讲解过程中应有步骤、有层次的进行讲解。例如,在初中数学中引入绝对值的概念,这就区别于低年级的数学教学,介绍负数的概念给学生,从而拓宽了学生对于数字的理解范围。对于|x|,x的值不是单一的+x,而是分成不同的情况。它的值可能是-x,也可能是+x,也可能是0。而教师在讲解绝对值概念时,也应结合数轴上的点来介绍绝对值的大小,即到原点零的距离。另外,对于不同版本的课本和教材,也应有不同的 教学方法 和顺序,适时调整教学活动,不拘泥于课本,才能更好的培养学生的思维能力,提升学生数学学习的整体能力。 3.培养学生的学习兴趣 学习兴趣是促进学生进步和发展的最大动力,因此,老师在教学的同时要善于培养学生的学习兴趣,有利于学生更快速的理解知识,使学生能够积极主动的学习而非被动听课。同时,应关心稍稍落后的学生,适时的给予鼓励和并加以引导,促使他们积极思考,不断发掘新问题,提出疑惑,并和学生一同思考解答。例如,在讲解“如何求解一元二次方程的根”的问题时,应带领学生尝试不同方法进行求解。详细介绍因式分解法、图象求解法、配方法等多种方法,并对应习题进行练习讲解,而不是固定的只讲解一种方法,应让学生自主选择合适的方法。 4.运用现代教学方式和技术进行课堂教学 随着科技的不断进步与发展,计算机电子技术的进步,应将其综合运用到数学教学中,对于几何学的教学,可采用动态图的演示方式,更加具体的使学生感受到图形的变化以及变化过程中的规律,及时进行归纳总结。对于没有条件的地区,教师在教授过程中,应有过硬的绘图功底,通过绘制主要的图形变化过程帮助学生理解课堂知识,拓宽思维。 三、结束语 数学思维能力的好坏直接关系到分析其他问题的能力,而课堂教学效果的好坏也直接影响到学生数学思维能力的培养,因此应当引起教学工作者足够的重视。在适当时应摒弃传统落后的教学观念,结合新的思维方式进行教学,留给学生充分的独立思考空间,激发学生学习数学的兴趣,使学生在学习过程中做到举一反三,让学生在自主学习的过程中发现数学的乐趣,并养成良好的思维方式,从而为今后的数学学习以及其他学科的学习打下扎实的基础。 初中数学教学论文范文篇三:初中数学教学课堂小结研究 一、进行课堂小结的方式 1.梳理课堂知识.一种常见的课堂小结方式,就是把整堂课的知识用简短的话从头到尾梳理一遍,这种梳理不是通篇的叙述,而是有重点的、分层次的总结.例如,在讲“点和圆,直线和圆的位置关系”时,课堂小结就主要是把点与圆的三种位置关系、直线与圆的三种位置关系,结合黑板上的图例再次梳理一遍.这种总结方式,可以让学生全面地复习一遍所讲内容,对新知识有整体了解,同时可以让学生形成对知识的网络式记忆,把知识延伸到整个学习系统中. 2.概括课堂知识.教师还可以对课堂内容进行几句话的概括总结,这种概括要涉及新课内容的关键点,通常用于新课内容有多个重要知识的情况下. 3.联系以前知识.有些新课的内容是在以前所学知识的基础上进一步扩展而来,或者是新课与所学知识有着一定的相似度.在课堂小结的时候,教师可以将两者进行联系,进行对照解读.这样的课堂小结,可以让学生具体形象地理解所学内容.当然,当遇到新课与旧知识有着明显反差的时候,教师也可以拿来对比解读,以避免学生对新知识和旧知识产生混淆.这样一来,学生心中的知识脉络就会更加清晰. 4.和学生共同回想课堂知识.数学教师在讲课时往往是单方面讲授课堂内容给学生,而很少有和学生进行互动的,这都是因为学科的特性和课堂时间的紧迫,而缺乏互动可能导致学生和课堂的融入度不够,容易造成开小差的现象.教师在进行课堂总结时可以有意地和学生进行互动,共同复习整堂课的知识.可以是对学生进行课堂关键内容的提问,也可以是向学生询问他们所认为的难点内容来再一次讲解以答疑和强化记忆.这样,不仅活跃了课堂气氛,拉近了教师与学生的距离,让学生更亲近课堂,让教师更了解学生的学习现状,同时让学生对难点内容有了进一步的学习和消化. 二、进行课堂小结的注意点 课堂小结不是教师一味地总结讲课知识,这里的本体应该是学生自己,是学生来回味和消化课堂所学内容,不懂的地方提出疑问,教师起到串联和辅导作用.教师可以从学生的角度考虑如何总结,才能提高复习效果. 1.课堂小结的概括性.课堂小结要简单明了,用几句概括性的话语进行总结,不宜多次重复复杂内容,这样不仅起不到总结的效果,还会让学生更加混淆,对所学知识产生过多疑问.另外,课堂小结应该用最直接的语言讲述出课堂内容,不应该加以多少修饰,以避免所述内容的冗长,导致上课时间的不够. 2.课堂小结要有重点.有的人说,一堂课里有一半的时间讲重点内容就很难得,而学生只要把这些重点听明白,他们这堂课的收益就很大.课堂小结相对于课堂上的详细讲解而言,是为大部分学生整理的要点总结,不需要对整堂课的内容都重述一遍,而要对讲课内容的要点进行有针对性的重点回顾,这样可以帮助学生理清课堂的重点内容,进行重点练习和记忆. 3.课堂小结要能引导课外学习.课堂小结是一堂课的结尾总结,也是学生课外学习的一个开始.课堂小结要注重引导学生对所学知识进行深入探究.例如,在讲解例题后,可以让学生寻找课外相似的题目进行训练,充分利用学生的课外时间进行学习拓展.同时,能使课堂与课外连接起来,促进学生的课外学习.总之,课堂小结是初中数学教学中必不可少的环节之一.做好课堂的总结是每个教师的分内之事,它不是一个可有可无的环节.做好课堂小结,不仅能让学生的学习更加轻松有效率,而且能够帮助教师进行授课总结,从而提高教学效果.

黄金分割 对于“黄金分割”大家应该都不陌生吧!由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。 公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。 公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。 中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。 到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。也许,在科学艺术上的表现我们已了解了很多,但是,你有没有听说过,还与炮火连天、硝烟弥漫、血肉横飞的惨烈、残酷的战场也有着不解之缘,在军事上也显示出它巨大而神秘的力量?一代枭雄的的拿破仑大帝可能怎么也不会想到,他的命运会与紧紧地联系在一起。1812年6月,正是莫斯科一年中气候最为凉爽宜人的夏季,在未能消灭俄军有生力量的博罗金诺战役后,拿破仑于此时率领着他的大军进入了莫斯科。这时的他可是踌躇满志、不可一世。他并未意识到,天才和运气此时也正从他身上一点点地消失,他一生事业的顶峰和转折点正在同时到来。后来,法军便在大雪纷扬、寒风呼啸中灰溜溜地撤离了莫斯科。三个月的胜利进军加上两个月的盛极而衰,从时间轴上看,法兰西皇帝透过熊熊烈焰俯瞰莫斯科城时,脚下正好就踩着黄金分割线。古希腊帕提侬神庙是举世闻名的完美建筑,它的高和宽的比是。建筑师们发现,按这样的比例来设计殿堂,殿堂更加雄伟、美丽;去设计别墅,别墅将更加舒适、漂亮.连一扇门窗若设计为黄金矩形都会显得更加协调和令人赏心悦目.有趣的是,这个数字在自然界和人们生活中到处可见:人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。大多数门窗的宽长之比也是…;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:……的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。黄金分割与人的关系相当密切。地球表面的纬度范围是0——90°,对其进行黄金分割,则°——°正是地球的黄金地带。无论从平均气温、年日照时数、年降水量、相对湿度等方面都是具备适于人类生活的最佳地区。说来也巧,这一地区几乎囊括了世界上所有的发达国家。多去观察生活,你就会发现生活中奇妙的数学!数字中国有一个成语——“顾名思义”。很多事物都能顾名思义,但是也有例外。比如,阿拉伯数字。很多人一听到阿拉伯数字,就会认为是阿拉伯人发明的。但事实证明,不是。 阿拉伯数字1、2、3、4、5、6、7、8、9。0是国际上通用的数码。这种数字的创制并非阿拉伯人,但也不能抹掉阿拉伯人的功劳。其实,阿拉伯数字最初出自印度人之手,是他们的祖先在生产实践中逐步创造出来的。 公元前3000年,印度河流域居民的数字就已经比较进步,并采用了十进位制的计算法。到吠陀时代(公元前1400-公元前543年),雅利安人已意识到数码在生产活动和日常生活中的作用,创造了一些简单的、不完全的数字。公元前3世纪,印度出现了整套的数字,但各地的写法不一,其中典型的是婆罗门式,它的独到之处就是从1~9每个数都有专用符号,现代数字就是从它们中脱胎而来的。当时,“0”还没有出现。到了笈多时代(300-500年)才有了“0”,叫“舜若”(shunya),表示方式是一个黑点“●”,后来衍变成“0”。这样,一套完整的数字便产生了。这就是古代印度人民对世界文化的巨大贡献。 印度数字首先传到斯里兰卡、缅甸、柬埔寨等国。7-8世纪,随着地跨亚、非、欧三洲的阿拉伯帝国的崛起,阿拉伯人如饥似渴地吸取古希腊、罗马、印度等国的先进文化,大量翻译其科学著作。771年,印度天文学家、旅行家毛卡访问阿拉伯帝国阿拨斯王朝(750-1258年)的首都巴格达,将随身携带的一部印度天文学著作《西德罕塔》献给了当时的哈里发曼苏尔(757-775),曼苏尔令翻译成阿拉伯文,取名为《信德欣德》。此书中有大量的数字,因此称“印度数字”,原意即为“从印度来的”。 阿拉伯数学家花拉子密(约780-850)和海伯什等首先接受了印度数字,并在天文表中运用。他们放弃了自己的28个字母,在实践中加以修改完善,并毫无保留地把它介绍给西方。9世纪初,花拉子密发表《印度计数算法》,阐述了印度数字及应用方法。 印度数字取代了冗长笨拙的罗马数字,在欧洲传播,遭到一些基督教徒的反对,但实践证明优于罗马数字。1202年意大利雷俄那多所发行的《计算之书》,标志着欧洲使用印度数字的开始。该书共15章,开章说:“印度九个数字是:‘9、8、7、6、5、4、3、2、1’,用这九个数字及阿拉伯人称作sifr(零)的记号‘0’,任何数都可以表示出来。” 14世纪时中国的印刷术传到欧洲,更加速了印度数字在欧洲的推广应用,逐渐为欧洲人所采用。 西方人接受了经阿拉伯人传来的印度数字,但忘却了其创始祖,称之为阿拉伯数字。数学很有用学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。 我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。 从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。 我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。 数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域.关于“0”0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。几篇论文,随你选.加点分!

我自己写的,你可以借鉴一下 黄金分割 对于“黄金分割”大家应该都不陌生吧! 由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。 公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。 公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。 中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。 到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。 也许,在科学艺术上的表现我们已了解了很多,但是,你有没有听说过,还与炮火连天、硝烟弥漫、血肉横飞的惨烈、残酷的战场也有着不解之缘,在军事上也显示出它巨大而神秘的力量?一代枭雄的的拿破仑大帝可能怎么也不会想到,他的命运会与紧紧地联系在一起。1812年6月,正是莫斯科一年中气候最为凉爽宜人的夏季,在未能消灭俄军有生力量的博罗金诺战役后,拿破仑于此时率领着他的大军进入了莫斯科。这时的他可是踌躇满志、不可一世。他并未意识到,天才和运气此时也正从他身上一点点地消失,他一生事业的顶峰和转折点正在同时到来。后来,法军便在大雪纷扬、寒风呼啸中灰溜溜地撤离了莫斯科。三个月的胜利进军加上两个月的盛极而衰,从时间轴上看,法兰西皇帝透过熊熊烈焰俯瞰莫斯科城时,脚下正好就踩着黄金分割线。 古希腊帕提侬神庙是举世闻名的完美建筑,它的高和宽的比是。建筑师们发现,按这样的比例来设计殿堂,殿堂更加雄伟、美丽;去设计别墅,别墅将更加舒适、漂亮.连一扇门窗若设计为黄金矩形都会显得更加协调和令人赏心悦目. 有趣的是,这个数字在自然界和人们生活中到处可见:人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。大多数门窗的宽长之比也是…;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:……的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。黄金分割与人的关系相当密切。地球表面的纬度范围是0——90°,对其进行黄金分割,则°——°正是地球的黄金地带。无论从平均气温、年日照时数、年降水量、相对湿度等方面都是具备适于人类生活的最佳地区。说来也巧,这一地区几乎囊括了世界上所有的发达国家。 多去观察生活,你就会发现生活中奇妙的数学! 数字 中国有一个成语——“顾名思义”。很多事物都能顾名思义,但是也有例外。比如,阿拉伯数字。很多人一听到阿拉伯数字,就会认为是阿拉伯人发明的。但事实证明,不是。 阿拉伯数字1、2、3、4、5、6、7、8、9。0是国际上通用的数码。这种数字的创制并非阿拉伯人,但也不能抹掉阿拉伯人的功劳。其实,阿拉伯数字最初出自印度人之手,是他们的祖先在生产实践中逐步创造出来的。 公元前3000年,印度河流域居民的数字就已经比较进步,并采用了十进位制的计算法。到吠陀时代(公元前1400-公元前543年),雅利安人已意识到数码在生产活动和日常生活中的作用,创造了一些简单的、不完全的数字。公元前3世纪,印度出现了整套的数字,但各地的写法不一,其中典型的是婆罗门式,它的独到之处就是从1~9每个数都有专用符号,现代数字就是从它们中脱胎而来的。当时,“0”还没有出现。到了笈多时代(300-500年)才有了“0”,叫“舜若”(shunya),表示方式是一个黑点“●”,后来衍变成“0”。这样,一套完整的数字便产生了。这就是古代印度人民对世界文化的巨大贡献。 印度数字首先传到斯里兰卡、缅甸、柬埔寨等国。7-8世纪,随着地跨亚、非、欧三洲的阿拉伯帝国的崛起,阿拉伯人如饥似渴地吸取古希腊、罗马、印度等国的先进文化,大量翻译其科学著作。771年,印度天文学家、旅行家毛卡访问阿拉伯帝国阿拨斯王朝(750-1258年)的首都巴格达,将随身携带的一部印度天文学著作《西德罕塔》献给了当时的哈里发曼苏尔(757-775),曼苏尔令翻译成阿拉伯文,取名为《信德欣德》。此书中有大量的数字,因此称“印度数字”,原意即为“从印度来的”。 阿拉伯数学家花拉子密(约780-850)和海伯什等首先接受了印度数字,并在天文表中运用。他们放弃了自己的28个字母,在实践中加以修改完善,并毫无保留地把它介绍给西方。9世纪初,花拉子密发表《印度计数算法》,阐述了印度数字及应用方法。 印度数字取代了冗长笨拙的罗马数字,在欧洲传播,遭到一些基督教徒的反对,但实践证明优于罗马数字。1202年意大利雷俄那多所发行的《计算之书》,标志着欧洲使用印度数字的开始。该书共15章,开章说:“印度九个数字是:‘9、8、7、6、5、4、3、2、1’,用这九个数字及阿拉伯人称作sifr(零)的记号‘0’,任何数都可以表示出来。” 14世纪时中国的印刷术传到欧洲,更加速了印度数字在欧洲的推广应用,逐渐为欧洲人所采用。 西方人接受了经阿拉伯人传来的印度数字,但忘却了其创始祖,称之为阿拉伯数字。数学很有用 学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。 我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。 从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。 我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。 数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等.

数学伴随我成长 1983年,大学刚刚毕业的我被分配到河北承德第一中学数学组,每位前辈都是业务精湛,师德堪称楷模,是真正能把高深的理论、经验的结晶和教学的智慧融为一体的教学专家.从此,我不放过老教师那儿我能听的每一节课,对每节课都细细地揣摩,深刻地反思.我总是把我的思考写在听课笔记上,记得四年下来,我一共听了1193节课,使我很快适应了高中教学.老教师也关注着我的成长,在我的课堂上,真的记不清多少次在学生的"起立"声中,会突然发现有一位白发人站在课室后面……他们的关注让我兴奋,催我奋进.

初中数学几何建模论文范文

中学阶段常见的数学模型有:方程模型、不等式模型、函数模型、几何模型和统计模型等。我们也把运用数学模型解决实际问题的方法统称为应用建模 。可以分五种模型来写这是某数学竞赛的建模论文要求,可以参考一下1. 题目题目是给评委的第一印象,所以论文的题目一定要避免指代不清,表达不明的现象.建议将论文所涉及的模型或所用的计算方式写入题目.如“用概率方法计算商场打折与返券的实惠效应”.2. 摘要摘要是论文中重要的组成部分.摘要应该使用简练的语言叙述论文的核心观点和主要思想.如果你有一些创新的地方,一定要在摘要中说明.进一步,必须把一些数值的结果放在摘要里面,例如:“我们的最终计算得出,对于消费者来说,打折比返券的实惠率提高了23%.”摘要应该最后书写.在论文的其他部分还没有完成之前,你不应该书写摘要.因为摘要是论文的主旨和核心内容的集中体现,只有将论文全部完成且把论文的体系罗列清楚后,才可写摘要.摘要一般分三个部分.用三句话表述整篇论文的中心.第一句,用什么模型,解决什么问题.第二句,通过怎样的思路来解决问题.第三句,最后结果怎么样.当然,对于低年级的同学,也可以不写摘要.3. 正文正文是论文的核心,也是最重要的组成部分.在论文的写作中,正文应该是从“提出问题—分析问题—选择模型—建立模型—得出结论”的方式来逐渐进行的.其中,提出问题、分析问题应该是清晰简短.而选择模型和建立模型应该是目标明确、数据详实、公式合理、计算精确.在正文写作中,应尽量不要用单纯的文字表述,尽量多地结合图表和数据,尽量多地使用科学语言,这会使得论文的层次上升.4. 结论论文的结论集中表现了这篇论文的成果,可以说,只有论文的结论经得起推敲,论文才可以获得比较高的评价.结论的书写应该注意用词准确,与正文所描述或论证的现象或数据保持绝对的统一.并且一定要对结论进行自我点评,最好是能将结论推广到社会实践中去检验.5. 参考资料在论文中,如果使用了其他人的资料.必须在论文后标明引用文章的作者、应用来源等信息.(二)、建模论文的写作步骤1. 确定题目选择一个你感兴趣的生活中的问题作为研究对象,并根据研究对象设置论文题目.最好是找一位或几位老师帮助安排研究课题.在确定好课题后,应该写一个写作计划给指导老师看看,并征求他们对该计

随着科学技术特别是信息技术的高速发展,数学建模的应用价值越来越得到众人的重视,

数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文 范文 ,欢迎阅读参考。

大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和 创新思维 ,提高其素质和创新能力,实现向素质教育的转化和深入。

一、数学建模的含义及特点

数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学 方法 及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。一般来说",数学建模"包含五个阶段。

1.准备阶段

主要分析问题背景,已知条件,建模目的等问题。

2.假设阶段

做出科学合理的假设,既能简化问题,又能抓住问题的本质。

3.建立阶段

从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。

4.求解阶段

对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。

5.验证阶段

用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。

二、加强数学建模教育的作用和意义

(一) 加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质

数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题, 因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。数学修养和素质自然而然得以培养并提高。

(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力

数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。

(三)加强数学建模教育有助于培养学生的创造性思维和创新能力

所谓创造力是指"对已积累的知识和 经验 进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、 记忆力 、思考力、 想象力 四种能力所构成"[1].现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。

很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程[2].

(四)加强数学建模教育有助于提高学生科技论文的撰写能力

数学建模的结果是以论文形式呈现的,如何将建模思想、建立的模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。

(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。要较好地完成任务,离不开良好的组织与管理、分工与协作[3].

三、开展数学建模教育及活动的具体途径和有效方法

(一)开展数学建模课堂教学

即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。案例教学法的关键在于把握两个重要环节:

案例的选取和课堂教学的组织。

教学案例一定要精心选取,才能达到预期的教学效果。其选取一般要遵循以下几点。

1. 代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。

2. 原始性:来自媒体的信息,企事业单位的 报告 ,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。

3. 创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。

案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。还要强调如何用求解结果去解释实际现象即检验模型。另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的"满堂灌",也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的[4].

(二)开展数模竞赛的专题培训指导工作

建立数学建模竞赛指导团队,分专题实行教师负责制。每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。这种针对性的数模教学,会极大地提高教学效率。

(三)建立数学建模网络课程

以现代 网络技术 为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。[5,6]

(四)开展校内数学建模竞赛活动

完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。笔者负责数学建模竞赛培训近 20 年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。

如 2008 年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约 1 万多个本科参赛队中脱颖而出的。又如 2014 年我校 57 队参加全国大学生数学建模竞赛,43 队获奖,获奖比例达 75%,创历年之最。

(五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛

全国大学生数学建模竞赛创办于 1992 年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛, 国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。

四、结束语

数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。

参考文献:

[1]辞海[M].上海辞书出版社,2002,1:237.

[2]许梅生,章迪平,张少林。 数学建模的认识与实践[J].浙江科技学院学报,2003,15(1):40-42.

[3]姜启源,谢金星,一项成功的高等教育改革实践[J].中国高教研究,2011,12:79-83.

[4]饶从军,王成。论高校数学建模教学[J].延边大学学报(自然科学学版),2006,32(3):227-230.

[5]段璐灵。数学建模课程教学改革初探[J].教育与职业,2013,5:140-142.

[6]郝鹏鹏。工程网络课程教学的实践与思考[J]科技视界,2014,29:76-77.

大部分数学知识是抽象的,概念比较枯燥,造成学生学习困难,而数学建模的运用,在很大程度上可以将抽象的数学知识转化成实体模型,让学生更容易理解和学习数学知识。教师要做的就是了解并掌握数学建模的方法,并且把这种 教学方法 运用到数学教学中。

对教师来说,发现好的教学方法不是最重要的,而是如何把方法与教学结合起来。通过对数学建模的长期研究和实践应用,笔者 总结 了数学建模的概念以及运用策略。

一、数学建模的概念

想要更好地运用数学建模,首先要了解什么是数学建模。可以说,数学建模就像一面镜子,可以使数学抽象的影像产生与之对应的具体化物象。

二、在小学数学教学中运用数学建模的策略

1.根据事物之间的共性进行数学建模

想要运用数学建模,首先要对建模对象有一定的感知。教师要创造有利的条件,促使学生感知不同事物之间的共性,然后进行数学建模。

教师应做好建模前的指导工作,为学生的数学建模做好铺垫,而学生要学会尝试自己去发现事物的共性,争取将事物的共性完美地运用到数学建模中。在建模过程中,教师要引导学生把新知识和旧知识结合起来的作用,将原来学习中发现的好方法运用到新知识的学习、新数学模型的构建中,降低新的数学建模的难度,提高学生数学建模的成功率。如在教学《图形面积》时,教师可以利用不同的图形模板,让学生了解不同图形的面积构成,寻找不同图形面积的差异以及图形之间的共性。这样直观地向学生展示图形的变化,可以加深学生对知识的理解,提高学生的学习效率。

2.认识建模思想的本质

建模思想与数学的本质紧密相连,它不是独立存在于数学教学之外的。所以在数学建模过程中,教师要帮助学生正确认识数学建模的本质,将数学建模与数学教学有机结合起来,提高学生解决问题的能力,让学生真正具备使用数学建模的能力。

建模过程并不是独立于数学教学之外的,它和数学的教学过程紧密相连。数学建模是使人对数学抽象化知识进行具体认识的工具,是运用数学建模思想解决数学难题的过程。因此,教师要将它和数学教学组成一个有机的整体,不仅要帮助学生完成建模,更要带领学生认识数学建模的本质,领悟数学建模思想的真谛,并逐渐引导学生使用数学建模解决数学学习过程中遇到的问题。

3.发挥教材在数学建模上的作用

教材是最基础的教学工具,在数学教材中有很多典型案例可以利用在数学建模上,其中很大一部分来源于生活,更易于小学生学习和理解,有助于学生构建数学建模思想。教师要利用好教材,培养学生的建模能力,帮助学生建造更易于理解的数学模型,从而提高学生的学习效率。如在教学加减法时,教材上会有很多数苹果、香蕉的例题,这些就是很好的数学模型,因为贴近生活,可以激发学生的学习兴趣,培养学生数学建模的能力,所以教师应该深入研究教材。

数学建模是一种很好的数学教学方法,教师要充分利用这种教学方法,真正做到实践与理论完美结合。

1、层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。

2、多属性决策是现代决策科学的一个重要组成部分,它的理论和方法在工程设计、经济、管理和军事等诸多领域中有着广泛的应用,如:投资决策、项目评估、维修服务、武器系统性能评定、工厂选址、投标招标、产业部门发展排序和经济效益综合评价等.多属性决策的实质是利用已有的决策信息通过一定的方式对一组(有限个)备选方案进行排序或择优.它主要由两部分组成:(l) 获取决策信息.决策信息一般包括两个方面的内容:属性权重和属性值(属性值主要有三种形式:实数、区间数和语言).其中,属性权重的确定是多属性决策中的一个重要研究内容;(2)通过一定的方式对决策信息进行集结并对方案进行排序和择优。

3、灰色预测模型(Gray Forecast Model)是通过少量的、不完全的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测.预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断。

4、Dijkstra算法能求一个顶点到另一顶点最短路径。它是由Dijkstra于1959年提出的。实际它能出始点到 其它 所有顶点的最短路径。

Dijkstra算法是一种标号法:给赋权图的每一个顶点记一个数,称为顶点的标号(临时标号,称T标号,或者固定标号,称为P标号)。T标号表示从始顶点到该标点的最短路长的上界;P标号则是从始顶点到该顶点的最短路长。

5、Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。

6、模拟退火算法是模仿自然界退火现象而得,利用了物理中固体物质的退火过程与一般优化问题的相似性从某一初始温度开始,伴随温度的不断下降,结合概率突跳特性在解空间中随机寻找全局最优解。

7、种群竞争模型:当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局是,竞争力弱的灭绝,竞争力强的达到环境容许的最大容量。使用种群竞争模型可以描述两个种群相互竞争的过程,分析产生各种结局的条件。

8、排队论发源于上世纪初。当时美国贝尔电话公司发明了自动电话,以适应日益繁忙的工商业电话通讯需要。这个新发明带来了一个新问题,即通话线路与电话用户呼叫的数量关系应如何妥善解决,这个问题久久未能解决。1909年,丹麦的哥本哈根电话公司.埃尔浪(Erlang)在热力学统计平衡概念的启发下解决了这个问题。

9、线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素。

10、非线性规划:非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈() 和托克 () 提出了非线性规划的基本定理,为非线性规划奠定了理论基础。这一方法在工业、交通运输、经济管理和军事等方面有广泛的应用,特别是在“最优设计”方面,它提供了数学基础和计算方法,因此有重要的实用价值。

数学建模全国优秀论文相关 文章 :

★ 数学建模全国优秀论文范文

★ 2017年全国数学建模大赛获奖优秀论文

★ 数学建模竞赛获奖论文范文

★ 小学数学建模的优秀论文范文

★ 初中数学建模论文范文

★ 学习数学建模心得体会3篇

★ 数学建模论文优秀范文

★ 大学生数学建模论文范文(2)

★ 数学建模获奖论文模板范文

★ 大学生数学建模论文范文

摘要:席位分配是日常生活中经常遇到的问题,对于企业、公司、、学校政府部门都能解决实际的问题。席位可以是代表大会、股东会议、公司企业员工大会、等的具体座位。假设说,有一个学校要召集开一个代表会议,席位只有20个,三个系总共200人,分别是甲系100,乙系60,丙系40.如果你是会议的策划人,你要合理的分配会议厅的20个座位,既要保证每个系部都有人参加,最关键的就是要对个公平都公平,保证三个系部对你所安排的位置没有异议。那么这个问题就要靠数学建模的方法来解决。关键词: Q值法 公平席位问题的重述:三个系部学生共200名,(甲系100.乙系60,丙系40)代表会议共20席,按比例分配三个系分别为10、6、4席。老情况变为下列情况怎样分配才是最公平的,现因学生转系三系人数为.(1) 问20席该如何分配。(2) 若增加21席又如何分配。问题的分析:一、通常分配结果的公平与否以每个代表席位所代表的人数相等或接近来衡量。目前沿用的惯例分配方法为按比例分配方法,即: 某单位席位分配数 = 某单位总人数比例′总席位 如果按上述公式参与分配的一些单位席位分配数出现小数,则先按席位分配数的整数分配席位,余下席位按所有参与席位分配单位中小数的大小依次分配之。这样最初学生人数及学生代表席位为 系名 甲 乙 丙 总数 学生数 100 60 40 200 学生人数比例 100/200 60/200 40/200 席位分配 10 6 4 20学生转系情况,各系学生人数及学生代表席位变为 系名 甲 乙 丙 总数 学生数 103 63 34 200 学生人数比例 103/200 63/200 34/200 按比例分配席位 20 按惯例席位分配 10 6 4 20(1)20席应该甲系10席、乙系6席,丙系4席这样分配二、学院决定再增加一个代表席位,总代表席位变为21个。重新按惯例分配席位,有 系名 甲 乙 丙 总数 学生数 103 63 34 200 学生人数比例 103/200 63/200 34/200 按比例分配席位 21 按惯例席位分配 11 7 3 21这个分配结果出现增加一席后,丙系比增加席位前少一席的情况,这使人觉得席位分配明显不公平。要怎样才能公平呢,这时就要用数学建模要解决。模型的建立:假设由两个单位公平分配席位的情况,设 单位 人数 席位数 每席代表人数单位A p1 n1 单位B p2 n2 要公平,应该有 = , 但这一般不成立。注意到等式不成立时有 若 > ,则说明单位A 吃亏(即对单位A不公平 ) 若 < ,则说明单位B 吃亏 (即对单位B不公平 )因此可以考虑用算式 来作为衡量分配不公平程度,不过此公式有不足之处(绝对数的特点),如:某两个单位的人数和席位为 n1 =n2 =10 , p1 =120, p2=100, 算得 p=2另两个单位的人数和席位为 n1 =n2 =10 , p1 =1020,p2=1000, 算得 p=2虽然在两种情况下都有p=2,但显然第二种情况比第一种公平。下面采用相对标准,对公式给予改进,定义席位分配的相对不公平标准公式:若 则称 为对A的相对不公平值, 记为 若 则称 为对B的相对不公平值 ,记为 由定义有对某方的不公平值越小,某方在席位分配中越有利,因此可以用使不公平值尽量小的分配方案来减少分配中的不公平。确定分配方案: 使用不公平值的大小来确定分配方案,不妨设 > ,即对单位A不公平,再分配一个席位时,关于 , 的关系可能有 1. > ,说明此一席给A后,对A还不公平;2. < ,说明此一席给A后,对B还不公平,不公平值为 3. > ,说明此一席给B后,对A不公平,不公平值为 4. < ,不可能 上面的分配方法在第1和第3种情况可以确定新席位的分配,但在第2种情况时不好确定新席位的分配。用不公平值的公式来决定席位的分配,对于新的席位分配,若有 则增加的一席应给A ,反之应给B。对不等式 rB(n1+1,n2)

初中数学建模论文很简单的中学阶段常见的数学模型有:方程模型、不等式模型、函数模型、几何模型和统计模型等。我们也把运用数学模型解决实际问题的方法统称为应用建模 。可以分五种模型来写。论文最好自己写,如果是参加竞赛的话从网上找的会被搜出来的这是某数学竞赛的建模论文要求,可以参考一下(一)、建模论文的标准组成部分建模论文作为一种研究性学习有意义的尝试,可以锻炼学生发现问题、解决问题的能力.一般来说,建模论文的标准组成部分由论文的标题、摘要、正文、结论、参考文献等部分组成.现就每个部分做个简要的说明.1. 题目题目是给评委的第一印象,所以论文的题目一定要避免指代不清,表达不明的现象.建议将论文所涉及的模型或所用的计算方式写入题目.如“用概率方法计算商场打折与返券的实惠效应”.2. 摘要摘要是论文中重要的组成部分.摘要应该使用简练的语言叙述论文的核心观点和主要思想.如果你有一些创新的地方,一定要在摘要中说明.进一步,必须把一些数值的结果放在摘要里面,例如:“我们的最终计算得出,对于消费者来说,打折比返券的实惠率提高了23%.”摘要应该最后书写.在论文的其他部分还没有完成之前,你不应该书写摘要.因为摘要是论文的主旨和核心内容的集中体现,只有将论文全部完成且把论文的体系罗列清楚后,才可写摘要.摘要一般分三个部分.用三句话表述整篇论文的中心.第一句,用什么模型,解决什么问题.第二句,通过怎样的思路来解决问题.第三句,最后结果怎么样.当然,对于低年级的同学,也可以不写摘要.3. 正文正文是论文的核心,也是最重要的组成部分.在论文的写作中,正文应该是从“提出问题—分析问题—选择模型—建立模型—得出结论”的方式来逐渐进行的.其中,提出问题、分析问题应该是清晰简短.而选择模型和建立模型应该是目标明确、数据详实、公式合理、计算精确.在正文写作中,应尽量不要用单纯的文字表述,尽量多地结合图表和数据,尽量多地使用科学语言,这会使得论文的层次上升.4. 结论论文的结论集中表现了这篇论文的成果,可以说,只有论文的结论经得起推敲,论文才可以获得比较高的评价.结论的书写应该注意用词准确,与正文所描述或论证的现象或数据保持绝对的统一.并且一定要对结论进行自我点评,最好是能将结论推广到社会实践中去检验.5. 参考资料在论文中,如果使用了其他人的资料.必须在论文后标明引用文章的作者、应用来源等信息.(二)、建模论文的写作步骤1. 确定题目选择一个你感兴趣的生活中的问题作为研究对象,并根据研究对象设置论文题目.最好是找一位或几位老师帮助安排研究课题.在确定好课题后,应该写一个写作计划给指导老师看看,并征求他们对该计划的建议.2. 开展科研课题去图书馆、互联网上查阅与课题相关的资料,观察有关的事件,收集与课题相关的信息.同时如果有条件的话,可以去拜访相关领域的专家和学者.然后将前期所收集到的资料与自己所学的相关知识组织在一起,进行论文的结构论证.完成这些工作后,你应该要制定一个课题时间安排表,这样能保证书写论文的循序渐进.记住在开始写论文后一定要不断地和老师、家长进行沟通,让老师和家长斧正论文中出现的明显错误,并能提出一些更好的研究建议.在论文写作结束以后,一定要得出结论.记住,在论文的结果出来后,有可能得出的结果与假设并不相符,这个并不重要,不要强行改变结果来迎合假设.只要你在论述过程中严格地按照科学方法进行,你的论文还是相当有价值的.最后,需要很好地写一份摘要.摘要的字数应该是论文字数的十分之一左右.3. 完成论文写作完整的论文在完成以上步骤之后就可以新鲜出炉了,完成论文后,一定要再看一遍自己的论文有没有错别字、计算错误、图形的移位或偏差等.最后,在论文的结尾处应该写上感谢的话,感谢帮助你完成这篇论文的所有人.

相关百科

热门百科

首页
发表服务