首页

> 期刊论文知识库

首页 期刊论文知识库 问题

初二数学教学论文

发布时间:

初二数学教学论文

初中数学的教学论文范文

导语:在初中数学教学中,只有把数学理论知识和现实问题相结合,才能激发学生的数学思维,下面要为大家分享的就是初中数学的教学论文范文,希望你会喜欢!

摘要 :

本文从初中数学出发,针对现在中国初中数学教学中存在的不足,进而对于怎样提升学生对于数学课堂的兴趣落实探索。初中数学体系十分基础,知识结构十分严谨并且紧密结合,所以需要学生维持对于数学坚持不懈的兴趣,通过这种方式才可以紧跟教学进度,从而提升学生的主动学习的动力。

关键词 :

初中数学;教学;学生;学习兴趣

1、使用多媒体教学办法激发兴趣

当前普遍应用于课堂的多媒体教学能够将难以理解的抽象知识更加形象地表现给学生,展现的办法更加直接和容易理解,除了可以辅助学生更加直观地深入观察空间以外,还可以提升学生在学习中视觉以及听觉的辅助效果,并可以帮助学生深入构筑的数学知识的课堂情景当中,从而帮助学生创设更加活泼的课堂气氛,辅助学生获得更多学习方面的经验,极大限度地提升学生对于数学的兴趣。譬如说,数学教师在初中课堂上讲述关于行程方面的数学题时,如果学生无法精确地明晰什么是两地、同时出发等概念,就一定会阻碍学生获得正确的解题办法。这个时候数学教师就能够通过使用多媒体的办法放映动画版的解题过程,其成果必然十分显著。教师在数学课堂中通过使用多媒体办法的先进的影像技术,能够把关于行程方面题目的不同状况更加形象深刻的显示在数学课堂之中,通过把数学知识通过更加新奇的娱乐办法解答出来,帮助学生构筑更加生动活泼的教学氛围,增强学生针对数学概念和相关知识点的学习兴趣,极大程度增强了学生的好奇心,从而高度提升了学生对于数学学习的兴趣。

2、使用语言艺术激发兴趣

在初中数学的课堂上,数学教师若具备较强的语言艺术,使用更加幽默的教学语言能够产生对于学生求知的诱惑力,一方面可以调整学生对于数学学习的心情,另一方面还可以构筑更为和谐的数学课堂气氛,从而提升学生课堂数学知识掌握的效率,这也成为了教师使用语言艺术的魅力。语言艺术能够辅助数学知识更加形象具体的实现,能够帮助教师将较为抽象难以理解的数学教学内容通俗化,也能够推动课堂中难以理解的数学理论更加通俗易懂,这在极大意义上可以高度激发学生对于数学知识的兴趣。因此,数学教师在初中教学课堂中,可以更频繁地使用一些生活中较为常见的案例,这样才可以激发学生对于数学的兴趣。譬如说,教师在进行样本这一节的讲授过程中,能够通过将生活中购买葡萄的案例进行辅助讲授,买家往往会询问“葡萄甜不甜”,此时的卖家往往会让买家进行品尝,而这种品尝自然只能是一个或者几个,无法进行全部品尝,此刻就展现了样本的含义——仅仅抽取主体的部分当做调查课题就可以估计总体,这样就能够辅助学生对其进行理解,也可以高效激发学生学习兴趣。

3、展现日常使用的数学知识激发兴趣

学习是为了能够切实地运用知识。因此初中数学教师在课堂上,必须更加看重如何引领其学生正确使用课堂数学知识,进而理解日常生活过程中可能产生的疑问,必须帮助学生明白数学知识是怎样使用的,他们才可能更加主动地进行数学知识的吸收,这样才能形成良性循环,极大限度地提升学生的好奇心,增强并培育学生对于数学知识的兴趣。譬如说,学习了“三角形”的数学知识,教师能够引领学生走入日常生活,譬如要求学生去测量并通过计算得到河岸宽度等一些很难直接测量的事物。教师还能够鼓励学生进行必要的讨论课,引领学生搜寻生活中可以看到的数学知识进行探讨。不仅如此,教师还需要能够将生活中可能出现的情况加入进数学教学中,推动学生更深层地明白数学其实在生活中随处可见,这就提升了学生对于数学知识的使用意识以及创造意识,从而激发学生对于数学知识的兴趣。

4、使用分层教学办法激发兴趣

每个学生都是独立具有其独特个性的,当然从教学角度来说,每个学生接收知识的层次也不尽相同。因此身为初中数学教师,必须高度明白这一特性,在数学教学中更加看重使用分层教学的办法,依据学生的现实状况依据其所在层次实现不同地教学。针对数学基础知识掌握不扎实的学生,教师在进行课堂提问以及作业批改的时候需要相对宽松,通过这种方式维护学生的自尊心以及学习自信心,推动学生可以更加深刻地体验学习的趣味;针对数学知识接收较快的学生,教师则可以适当提升难度,进而激发这类学生对数学更加深层次的探索。不仅如此,教师还需要适当鼓励学生。在学生在接受数学知识的过程中陷入困境时,教师必须激励学生主动克服困难;学生有所进步的时候应当对学生进行表扬。教师必须更多地看重学生具备的优点,在学习过程中重视表扬的作用,辅助学生产生得到学习成就的快乐,从而高度鼓励学生产生对于数学学习的热忱,激发其兴趣。

5、结语

综合上文,在初中数学的教学进程中,学生对于数学知识的学习兴趣是能够更快接收课程知识的关键条件。所以,数学教师在进行数学教学进程中,必须使用不同的办法和手段,激发学生的潜力,经过以上办法激励学生针对数学知识的学习兴趣,通过这种方式学生才可以推动学习兴趣变为动力,才可以更加主动地落实课堂知识的实践,从而高效增强数学课堂的教学成果。

参考文献:

[1]赵云涛.新课改下初中数学教学存在的问题及其对策[J].学周刊,2017(23).

[2]李灿钊.初中数学教学要注重学生综合应用能力的培养[J].中国教育学刊,2017(06).

摘要:

随着时代进步,教育理念改革的`提出,怎样有效提高初中数学教学课堂效率成为每个人心中越来越重要的一个问题。其中,提高老师教学课堂有效的教学方法之一就是问题导学法。运用导学法不但能够培养学生的逻辑思维能力,还能增强学生自觉找到问题并解决问题的能力。因此,我们应该在实际教学中充分运用问题导学法进行教育,激发学生的学习主动性,有效提高初中数学课堂的效率。

关键词:

初中数学教学;问题导学法;应用策略

在运用问题导学法课堂教学过程中,教师提出的问题要有引导性的作用,对学生有一定的启发,帮助学生提高学习数学知识的效率。另外,教师应该合理的运用这一方法,让课堂氛围变得生动有趣,激发学生的兴趣,提高学生学习数学知识的积极性,从而使学生更好的去分析解决问题。在实际教学中教师要把学生作为课堂的主体,善于运用问题导学法进行教学,帮助学生有效提高数学学习成绩。

一、现阶段的问题导学法在初中数学教学中的应用

随着素质教育化的不断改革,教师要摒弃老旧式的教学理念,学习创新更多更有效的教学方法,以其特有的课堂魅力提高学生对初中数学知识的兴趣,这样不仅能够帮助提高课堂效率,还能促进问题导学法在课堂教学中的充分运用。但是,有些教师并没有摒弃老旧式的教学方法,在课堂上只是一味的给学生进行理论教学,以至于学生觉得数学课堂枯燥乏味,不愿意学习数学知识。教师依然占据主体,掌控课堂,让学生被动学习,不能发挥其主观能动性,这不但不利于学生学习数学知识,还不能使问题导学法在课堂中合理应用。因此,教师们要认真了解现阶段数学导学法在初中数学课堂的应用,改变传统的教学观念,在课堂中多运用问题导学法。

二、问题导学法在初中数学教学中的应用策略

1、提高导入问题的质量。教师在选择课堂导入问题的时候,要选择跟教学内容密切相关的问题,而且要能够符合学生的身心发展,问题要能吸引学生的注意力,在进一步提高问题的难度,这样学生会更好的学习教学内容。例如:在对七年级下册《相交线与平行线》进行教学时,教师要提出能够分层次的问题,先提出简单的问题,再在此基础上增加难度,帮助学生分析问题,这样做不但可以增强课堂效率,吸引学生的注意力,还能对教学内容感兴趣,提高学生逻辑思维能力。

2、引导学生思考问题。教师要想更好的运用问题导学法,就要把怎样通过引导让学生积极分析思考问题放在重要的位置,所以在具体教学中,教师要先对问题进行认真分析和研究。一方面,为了让学生更好的了解问题,就可以先让学生提前预习,让学生对要学的知识有个大概的认知。另一方面,在分析问题的过程中,教师要把教学内容跟之前提到的问题结合起来,引导学生进行相关思考,然后进一步帮助学生找到答案。

3、做好课堂提问。在运用问题导学法时,教师要提前准备好课堂提问的内容,使学生对教师提出的问题感兴趣,加强学生学习的主动性。教师可以进行多样化教学,提高学生学习数学新知识的积极性。例如,在对七年级“平面直角坐标系”进行教学时,可以运用多媒体课件,展示具体的图像,让学生进行观察,通过观察提出一些问题,这样不但能让学生对教学内容感兴趣,也能培养学生积极主动学习的能力。教师也可以通过游戏的方法进行提问,让学生在做游戏中轻松学习数学知识。

4、对所学知识进行巩固。在通过问题导入法课堂教学后,为了进一步加深学生对所学知识的掌握程度,教师要进行巩固训练,一般就会通过让学生完成课后习题的方法进行考核。因此,老师要布置一些跟教学知识点相关的习题,让学生独立完成,对所学内容进行练习和巩固。另外,经过分析学生的解答,可以了解到学生具体的学习情况,然后针对学生没有很好掌握的地方,再次进行详细讲解,提升初中数学课堂的教学质量。

5、因人施教,重视每一个学生。每个学生的学习基础是不同的,但是,这不是说要把学生分成几个不同的层次,而是说要在平时的学习过程中重视每一个学生,不能只注重学习好的学生,也要把学习基础差的同学放在重点。所以,在课堂上要找好问题的切入点,不同学生不同要求。起点比较低的教学,能够让每个同学都参与进来,可以让学生更轻松的学到数学知识,提高学生的自信心。

三、结束语

经过上边的综合分析,问题导学法在初中数学课堂中的应用可以发挥非常重要的作用。所以,教师要认真学习并应用问题导学法进行教学,这样不仅仅能改变老旧式的教学模式,让初中数学课堂的效率更高,还能加强学生的学习兴趣,提高学生解决问题能力和逻辑思维能力。

参考文献

[1]王福利.问题导学法在初中数学教学中的实施要点分析[J].求知导刊,2015,(23):12-23.

[2]唐茜.谈初中数学教学中实施素质教育[J].雅安职业技术学院学报,2012,(02):46-67.

[3]王琪华.关于初中数学教学应用问题导学法的思考[J].知识文库,2015,(23):78-89.

摘要:

学习习惯和学生的智力没有直接联系,而是指学生为了使学习更有效率在学习上形成的个人的一种自觉学习的习惯。现在,大家对养成良好的学习习惯非常重视,尝试着让学生用更好更有效率的学习方式去学习,并使之成为一种习惯,自觉地去遵守,最终让学生受益匪浅。数学解方程教学在初中数学中占据重要的地位,本文结合中学生性格特征和数学学科本身的特点,积极探索了良好的学习习惯对初中数学解方程教学的影响。

关键词:

初中数学;学习习惯;解方程

我在初中数学解方程教学中对于学生良好学习习惯的培养主要做了以下几个方面:

一、培养学生认真预习的好习惯

预习是学生自己摸索、自己动手、动脑、自己阅读课文的过程,可以培养学生的自学能力。上新课前,我深钻教材,根据教学内容和学生的实际设计导学案,在学习新课的前一天把学案发给每一位学生,引导学生根据学案内容结合本节课本进行思考,探究,并把结论(还要附带解题思路)标注在学案相对位置,然后把一节课的主要内容总结出来,把疑难问题记录下来,有能力的同学还可以自己先完成课本的随堂练习。

二、培养学生认真听课的习惯

众所皆知,读书有三到,也就是非常重要的三点,只有这三点学生都具备了,那么他们才会在学习时更加认真,完全沉浸在学习中。但是这三点学生自己具备是比较困难的,必须还要有老师的指导,如对学生的课堂表现作出一定的评定,这一点是非常重要的,对学生们形成良好的习惯具有很大的促进作用。除此之外,老师还要更加细心,对学生的各种表现加以留意,并从中发现学生的优点,从各个方面去观察,对有进步和表现较好的同学进行夸奖。举个例子,如果一个成绩靠后的学生举手想要回答问题,那么我会让他第一个起来回答,并且对他这一勇敢的表现进行夸奖。如果一个害羞的学生回答问题,我就会对他这一表现进行夸奖,让他更有勇气。即使有些学生会答错或者不知道回答什么,我都不会对他们抱怨,而是对他们更加耐心,并且加以引导。总的来说,在多种情况下会给他们多种夸奖和鼓励,这样,他们就会更加自信勇敢地回答问题,并且对课堂也会充满了兴趣,学习也就会更加认真。

三、培养学生自主探究、合作交流的习惯

在教学中,我给学生留有足够的时间和空间自主探究,让他们经历观察、描述、思考、推理、交流和应用等等,让学生亲身体验如何做数学、如何实现数学的再创造,这样就使学生从逐步学会到自己会学,真正成为学习的主人。例如在学习解一元一次方程x-5=8时,起初学生会根据等式的基本性质做题,在等号左右两边同时加5,后来经过观察、思考、交流,学生能发现常数项-5从等号左边移到右边变为+5,从而总结出可以通过移项变号解这道方程,也知道解方程的每一步变形是根据等式的基本性质得到的。

四、培养学生认真审题的习惯

做题时,首先要求学生认真看清楚题目,然后理解其中的含义,看清楚题目是算对题的第一步,也是最重要的一步,因而,进行这一方面的培训可以让学生们培养细心严谨的习惯,让学生把学过的知识和题目紧紧联系在一起,从而举一反三,让学生计算速度得到提高,并且准确率大大提升。例如解方程,对于一部分不认真审题和观察题的学生,他们会先用完全平方公式展开得到,再去括号得,最后通过解一元二次方程求出x的值,认真审题和观察题的学生会在方程两边同时除以4得,再开方就可以解出x的值,这样既能使运算简单化又能提高做题的质量。

五、培养学生检验的习惯

“查”就是在做完题后从头再检查一遍,因为不可能所有人一次就能算对,每个人都有马虎的时候,所以检查是必不可少的,只要学生在做完题目后好好看一看,一般就能找出马虎而造成的错误并且改正错误,使正确率提高。但是一些学生认为太过麻烦,从不检查,或者自己觉得自己检查不出来,就让自己的父母检查,要不就等老师检查,过后再去改正这些错误。有些学生验算,只不过是一种形式,比如解方程的x等于多少时,解得x=0是错误的,学生代入方程中检验,右边=4+0=4,最终得出方程左边等于右边。学生根本就没有好好计算一下左边究竟等于多少,而是看右边等于多少,就直接写左边等于多少。针对这些不检查的坏习惯,教师布置作业时要少而精,使学生能有时间验算;批改完作业后如发现错误,发给学生自己检查,找出错误所在,草稿纸上订正后再交给老师批改,订正后全部正确再让学生订在作业本上,这样不仅能促使学生通过自己的检查找出错误所在,引以为戒,而且能培养学生认真负责,自觉检查的习惯。

六、培养学生自主复习的习惯

我们的学生绝大多数来自乡镇,周围学习环境较差,父母文化程度低,他们既没精力也没能力去管孩子的学习,因此这些孩子缺乏良好的学习习惯,他们的学习主要靠老师在抓,在查,在督促,在鼓励他们多思考、多做练习、多问问题,在帮助孩子养成主动学习,积极思考的数学学习习惯。总而言之,良好的学习习惯是学生取得优秀成果的最重要的一点,只要这样,数学对于学生来说也就更加简单有趣,最终老师才会培养出在数学方面非常优秀的学生。当然,养成良好的学习习惯需要一段时间,这个过程是比较漫长复杂的。因此教师要针对学生们的不同情况,不同阶段,做出切实可行的方针,不能超出他们的能力范围之外,让学生们慢慢在这个过程中一步步养成,并且让这些习惯慢慢渗透到他们的各个方面,最终受益终生。

参考文献:

[1]数学课程标准[S].北京:北京师范大学出版社,2012.

[2]顾云燕.新课程背景下“解方程”教学的思考与实践[J].河北教育,2009.

[3]赵辰虎.初中数学教学中培养学生良好的学习习惯[J].学周刊b版,2013.

摘要:

文章从四个方面探究了新课程改革背景下的初中数学教学策略,即创设教学情境,培养学生的兴趣,激发学生的学习意识;培养学生的思维习惯,激活学生的学习思维;开展实践教学,培养学生的实践能力,掌握有效的学习技能;运用信息技术教学,加速学生知识的形成,开拓学生的思维模式。

关键词:

新课程;初中数学;培养兴趣

通过对《新课程标准》理论的进一步研究和学习,笔者意识到想要激发学生的积极性,数学教学必须转变观念,真正落实学生主体地位。如何有效地落实学生的主体地位,激发学生的积极参与,自觉地学习数学?笔者谈谈几点策略。

一、创设教学情境,培养学生的学习兴趣,激发学生的学习意识

《数学课程标准》对广大数学教师提出了“情境教学”的教学建议。因此,在数学课堂教学过程中,教师应立足于现实情境,从学生的经验中激发学生学习数学的热情。例如,在讲授“面面垂直判定定理”时,教师情境引入“建筑工地上,工人师傅正在砌墙,为保证墙面与地面的垂直,用一根吊着铅锤的绳子,来看看细绳和墙面是否吻合…”伴随着教师的叙述,向学生展示与叙述对应的图片。接下来,教师抛出问题“工人师傅或许不知道其中的秘密,但同学们能找到理论依据吗?”教学期间,教师利用话语描述并结合图片展示创设教学情境,将抽象的知识具体化,激发学生的学习意识。只有这样,学生的认知过程和情感过程才会统一,才会为创造性思维的形成增添动力。当然,创设良好的教学情境,必须从学生的学习兴趣出发,从知识形成的过程出发,贴近学生的生活,从而激发学生的积极性和挑战性。

二、培养学生的思维习惯,激发学生的学习思维

《新课程改革》要求教师在教育观念和教学方式上进行根本性变革,打破传统师生关系的旧模式,架起架子,重塑师生平等和谐的师生关系。所以,教师应以平等的态度,启发学生的思维,激发学生的思维主动性,鼓励学生思考,争当学生的顾问。例如,当学生学完“圆的本质”之后,教师提出了“车轮为什么要变成圆形”,让学生充分发挥自由的想象力,自由交流和沟通。这样,不仅可以激发学生的积极性,而且可以培养学生的思维能力,鼓励学生敢于思考,勇于发表见解。无形中营造了一个富有生命活力的严谨又活跃的教学氛围。在这种和谐的师生关系下,数学思维和方法的渗透,良好思维品质的培养,学习思维能力的培养就水到渠成,事半功倍。

三、开展实践教学,培养学生的实践能力,引导学生掌握有效的学习技能

学生是数学学习的主人,有效的数学教学应为学生提供充分的参与数学活动的机会,激发学生的学习潜能,引导学生积极参与自主学习。具体地说,在开展一个实践教学活动时,可以采取以下步骤。

首先,学生自己观察物体或现象,或操作某些学习装置,在观察过程中要独立思考,及时与同伴进行讨论交流[1],以弥补他们在单纯的观察和操作中的不足。第二,教师按一定的顺序给学生们推荐活动,最好是课堂内外形式相结合,保证整个学习过程中活动的连续性和稳定性。第三,每位学生都要记录活动的过程,进行反思,弥补不足。例如,在“轴对称图形”教学中,教师首先折叠一张方格纸,然后用剪刀随机切割一个图形,最后展开方格纸。这时,一个轴对称图形便出现在学生面前,教师引导学生注意观察并鼓励做出类似操作。通过动手实践,学生虽然剪出的图形的形状不同,但它们都具有共同的对称性。在此基础上,推导了轴对称图形的有关知识,学生对其抽象概念和性质产生了深刻的印象[2]。

四、运用信息技术教学,加速学生知识的形成,激发学生数学思维

《新课程标准》下的数学教学不能仅靠传统的粉笔和黑板来实现。在教学中,教师经常会遇到要用更多的语言来解释的概念、动态图形及公式等知识点,而这往往也是教学的重点和难点。所以教师必须掌握现代教学方法,利用多媒体辅助,为学生提供丰富的知识和材料。例如,“2017年晋江质检的数学试卷”中最后一道填空题中,在求EF的取值范围过程中,绝大部分学生能正确求解最小值,但在求最大值时,需要不断地作图加上合情的推理才能快速找到最大值的特殊位置。在平时的教学中,如果教师能恰当地利用多媒体技术对这类题目进行展示并讲解其变化的过程,就能增加学生对这类动点问题的内在认识,减少恐惧心理,形成足够的几何动态意识,做到“动中取静,以静制动”,从而达到解题目的。

总之,教师在教学中要不断完善自己的教学策略,合理应用不同课型的特征及相关理论,使教师的教学与时俱进,更能融入学生的思维中,从而达到有效教学。

参考文献

[1]向爱民.初中数学教与学[J].读与写(教育教学刊),2011,8(1):104-105.

[2]吴开国.在初中数学课堂教学中有效实施创新教育的研究[J].金色年华:教学参考,2010(9):96.

上面的好长啊~我也来答:生活中的数学 有一个谜语:有一样东西,看不见、摸不着,但它却无处不在,请问它是什么?谜底是:空气。而数学,也像空气一样,看不见,摸不着,但它却时时刻刻存在于我们身边。 奇妙的“黄金数” 取一条线段,在线段上找到一个点,使这个点将线段分成一长一短两部分,而长段与短段的比恰好等于整段与长段的比,这个点就是这条线段的黄金分割点。这个比值为:1:…而…这个数就被叫作“黄金数”。 有趣的事,这个数在生活中随处可见:人的肚脐是人体总长的黄金分割点;有些植物茎上相邻的两片叶子的夹角恰好是把圆周分成1:…的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。 建筑师们对数…特别偏爱,无论是古埃及的金字塔,还是巴黎圣母院,或是近代的埃菲尔铁塔,都少不了…这个数。人们还发现,一些名画,雕塑,摄影的主体大都在画面的…处。音乐家们则认为将琴马放在琴弦的…处会使琴声更柔和甜美。 数…还使优选法成为可能。优选法是一种求最优化问题的方法。如在炼钢时需要加入某种化学元素来增加钢材的强度,假设已知在每吨钢中需加某化学元素的量在1000—2000克之间。为了求得最恰当的加入量,通常是取区间的中点进行试验,然后将实验结果分别与1000克与2000克时的实验结果作比较,从中选取强度较高的两点作为新的区间,再取新区间的中点做实验,直到得到最理想的效果为止。但这种方法效率不高,如果将试验点取在区间的处,效率将大大提高,这种方法被称作“法”,实践证明,对于一个因素的问题,用“法”做16次试验,就可以达到前一种方法做2500次试验的效果! “黄金数”在生活中竟有如此多的实例和运用。或许,在它的身上,还有更多的奥秘,等待我们去探寻,使它能更好地为我们服务,为我们解决更多问题。 美妙的轴对称 如果在一个图形上能找到一条直线,将这个图形沿着条直线对这可以使两边完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴。 如果仔细观察,可以发现飞机是一个标准的轴对称物体,俯视看,它的机翼、机身、机尾都呈左右对称。轴对称使它飞行起来更平稳,如果飞机没有轴对称,那飞行起来就会东倒西歪,那时,还有谁愿意乘飞机呢? 再仔细观察,不难发现有许多艺术品也成轴对称。举个最简单的例子:桥。它算是生活中最常见的艺术品了(应该算艺术品吧),就拿金华的桥来说:通济桥、金虹桥、双龙大桥、河磐桥。个个都呈轴对称。中国的古代建筑就更明显了,古代宫殿,基本上都呈轴对称。再说个有名的:北京城的布局。这可是最典型的轴对称布局了。它以故宫、天安门、人民英雄纪念碑、前门为中轴线成左右对称。将轴对称用在艺术上,能使艺术品看上去更优美。 轴对称还是一种生物现象:人的耳、眼、四肢、都是对称生长的。耳的轴对称,使我们听到的声音具有强烈的立体感,还可以确定声源的位置;而眼的对称,可以使我们看物体更准确。可见我们的生活离不开轴对称。 数学离我们很近,它体现在生活中的方方面面,我们离不开数学,数学,无处不在,上面只是两个极普通的例子,这样的例子根本举不完。我认为,生活中的数学能给人带来更多地发现。

初中数学是为之后的数学学习打下基础的,学好初中的知识点很重要,下面我为你整理了几篇初中数学教学论文范文,希望对你有帮助。

数学教学论文篇一

一、引进有效的教学方法

科学有效的教学方法对提高整体教学的有效性有很大的帮助。以初中函数的教学为例,初中三年级就开始引入了函数的相关概念。一般而言,学生会根据教科书中给出的函数方程进行简单的计算,教师也只是把一些公式教给学生,让学生进行一味的数据计算。在这种情况中,学生只能认识到函数是一个抽象的概念,根本不知道函数到底是怎么来的,也不知道对称轴、截距到底是什么。所以,教师要改进方法,进行有效的初中数学教学。

而数形结合则是一种很好的、能实现有效教学的方法之一。数形结合也就是教师要根据函数题画出相应的函数图形,以便于学生能更加清晰、明了地理解数学函数的相关概念和性质,能快速理解那些抽象难懂的问题。当然,这也就能有效地为接下来的高中函数的学习打下坚实的基础,把抽象知识变为了具体的知识。综上所述,教师应在初中函数的教学过程中改进、并利用科学有效的教学方法,以不断提高初中数学的教学质量。

二、进行激励性教育

在学习的过程中,每个学生都会希望得到教师的表扬和称赞,因为在学生眼里,教师的嘉奖是教师对自己的肯定。在这种动力的驱使下,学生的学习热情得到了激发,就会将学习当做是一件幸福的事。这也就从侧面激发了学生学习的热情,是快乐学习的具体表现形式之一。“鼓励别人一句强于指责别人百句”,这是一句英国的谚语。

每个人都希望自己无时无刻不得到别人的肯定与认可,谁都不希望自己总是被别人指责。在初中数学教学过程中,每位教师也应该多鼓励自己的学生,提升学生的学习热情,增进师生之间的交流,使学生能够毫无顾虑地向教师提问,这样就不会出现因为畏惧而不敢提问的情况。反之,学生学习的热情降低,学生消极对抗教师,师生之间的距离也拉远了。这样的做法既不利于学生初中数学的学习,也对教师的工作产生了极大的威胁。

三、寓教于乐的教学

在平时的学习中,教师要采取寓教于乐的教学方式,在教学中适当地加入相对应的数学游戏,让学生劳逸结合,实现既在娱乐中学习,又在学习中娱乐的教学和学习效果。通过这种方式,学生认识到学习是一件有趣快乐的事,并不是一件枯燥无味的事情。例如,针对初中数学书中的几何问题,教师就可以举办一个叫做“辅助线”的游戏。

游戏大致内容是教师将学生分组,并且给出一个几何的图形,让小组思考该如何做辅助线,并且思考一下假若加入这条辅助线,会对解题有什么样的帮助,随后再继续深化,讨论一下加入一条辅助线后,会不会产生另一个新的问题,从而使所有学生都参与到这个活动中来。这种教学模式可以采取举手抢答的方式,抢答成功就会得到相应的分数,在游戏活动最后,累计分数,得分最高的小组会获得奖励。这种游戏的方式,能让学生在愉快的学习中加深对函数知识的理解,有利于调动学生学习的积极性。这也是提高初中教学有效性的方式方法之一。

四、总结

总体来说,初中数学的学习是学生逻辑思维开发的最初阶段,是高中数学教育的基础。所以,教师有必要加强初中数学教育的有效性研究。以上笔者针对如何提高初中数学教学有效性的方式方法做了初步探讨,希望能够给今后初中数学的有效性教学的发展做出一定的贡献。

数学教学论文篇二

一、差别性教学的作用

(一)通过差别性教学,学生更好地成长

由于学生处于不同的知识水平,他们对知识的运用并非相同,特别在数学领域,人们在应用推理、判断方面程度是不一样的,有较强推理、判断能力的学生常常不用花费太多的时间就掌握了,但是那些应用推理、判断能力较差的学生就要花费很久。因此,教师要是根据课本上的知识来教,那么好的学生没办法得到更长远的发展,而差的学生也没办法得到提高,显而易见,这样的教学办法是不可取的。所以差别性教学教学有利于改善这一点,从每个学生的突出点出发,根据他们的突出点来制定符合他们成长的教学手段与内容,学生才可以得到更好的发展。

(二)使学生更加自信

推理、判断能力比较强的学生常常热衷于深入地研究难以解决的方面,这些学生在深入研究时能得到自信,要是直接采取同一种教育方式去教育所有的学生,那样就很难使学生获得自信,会使学生不愿意深入探究难以解决的方面。另一方面,那些应用推理、判断的程度比较浅的学生就因为太多的失败而不再相信自己了,产生放弃的念头,从而使他们渐渐地落后于其他人。因此,通过依据学生水平不同进行教学的方式,能使好的学生深入研究难以解决的方面,使落后的学生从自身实际出发,一步一个脚印,踏踏实实地进步,这样所有的学生就可以更好地完成自己的学业,更加相信自己。

二、初中数学教学中差别性教学的实施办法

(一)从学生的水平出发,有序地分组

通常,学生可以分为三种层次:第一层次的学生是起点高,有好的方法和技巧,应用推理、判断程度高的;第二层次的学生是起点一般,但有较好的方法和技巧,应用推理、判断程度较高的;第三层次的学生是起点低的。我们应进行有序分组。有序分组的过程中应关注下面三个方面:首先,必须清楚地知道学生的突出点是什么,教师与学生,教师与家长,学生与家长应好好交流。其次,有序分组应理解学生的内在想法,不可只依据卷面测试结果来区分学生,分组应该是具有伸缩性的而不是硬性的。卷面测试结果属于有序分组的一部分,学生了解自身的状况,有自己的目标,所以我们应理解他们,不能忽略他们的内在想法,这样他们才会相信自己。待分组结束后,我们要进行差别性教学。最后,教师在看待不同组的学生时,应一视同仁,付出自己的最大努力。

(二)依据分组后学生的情况,采取不同的教学方式

我们要考虑到所有的学生,将差别性教学深入应用在课堂上。1.引入新的内容。数学的内在关系是紧密相连的,教师可以回忆学过的内容来引入新的内容,此时则通过第三水平学生去回忆学过的内容,使其加深印象。第二层次的学生则解决新的内容的引出,第一层次的学生则完善第二层次的学生的内容。2.解说新的内容。解说新的内容时要考虑到第三层次的学生,循序渐进。3.课上操练。结束新的内容时,教师要对学生进行操练,第一层次的学生比较得心应手,教师则让学生操练转变形式的习题,可以给第二层次的学生比较有难度的习题进行操练。另外教师要认真对待第三层次的学生,提供难度小的习题有助于他们加深记忆。

(三)依据分组后学生的情况,安排的任务有所不同

安排的任务要使学生可以在其力所能及的范围内,从而有助于他们的成长。第一层次的学生可以多安排统合性较高的习题,加强他们的处理数学问题的规则和程序,使他们挖掘习题中那些数学处理的规则和程序。第二层次的学生,主要学会普通的题目和一部分难题的思考方向。第三层次的学生则重复做题,做很多的习题来巩固基础。

(四)依据分组后学生的情况,评估的方面有所不同

因为学生的核心目的有所不同,所以要使用不同的评估方法。举个例子,教师依据水平不同的学生,应把考试题目进行区分,让不同水平的学生做不同的题目。第一层次的学生重点做难题;第二层次的学生重点则是中等题目,外加小部分难题;第三层次的学生重点放在基本的题目上,外加一小部分中等题目。那么,所有的学生都可以在自己的范围内得到进步。

三、总结

差别性教学是根据从实际出发来解决问题的哲学思路来进行的,该方式可以一对一地处理学生遇到的困境,让所有学生都可以发挥自己的优点,弥补自己的不足,鼓励学生学习,使学生对自己有信心,有助于学生的各个方面的协调与进步。

数学教学论文篇三

一、课堂上进行有针对性的有效提问

1.问题必须要有思维容量。

不能够激发学生思考的提问是失败的,只有促进了学生的思维发展,拓宽了他们的思路,才能够提升其探究能力,引起他们对数学的热情。即使学生回答问题偏颇,即便是并非尽善尽美,教师也要表扬其优点,给予赞美,加以挖掘。面积求出来之后,斜边AB上的高如何得出?此时教师利用多媒体,展示求直线y=2x+3、y=-2x-1及y轴围成的三角形的面积。这样就把问题由一条直线转化为两条直线与坐标轴围成的面积。

2.锻炼提问的技巧。

问题的提出也有优劣,掌握提问方式,提高问题的质量,抓住学生的兴趣,创造良好的学习氛围,学生的积极性能够充分地被调动起来,学生就会顺利地成为课堂的主体、学习的主人。

二、让学生“想学”,教学语言风趣

美国心理学家调查发现,学生都喜欢幽默的教师,这样学习氛围轻松愉快,这一点是促使学生“想学”的主要因素,什么学科概莫能外。这就要求教师具有很高的综合修养。其中一点,要语言幽默:幽默是伟大的智慧,是教学的润滑剂。比如,我向学生提出分析这个“数”字,由“米女攵”构成,什么意思呢?也就是说,你只有学好了数学,你毕业以后才可能找到好的工作,才可能有钱买米吃,才可能找到女朋友,那么这个“攵”是什么意思呢?这个更凸显数学的重要了,就是以手持杖或执鞭责打学不好数学的人……这些生动形象的解说,不胜枚举,当然还需要教师表情、语调等的配合。

三、对学生进行正确的思维训练

对学生进行正确的思维训练要充分唤起学生的主动性。讲例题,让学生自主审题,题目给了学生就可以,然后读题、审题、解题一系列的思维活动让学生自己完成;学生有了问题,反复推敲“个体参悟”,不行则“同伴互导”,再不行,“教师解难”,即使是“教师解难”,一样不要急于递给答案,教师应对学生逐步启发:问题里涉及什么概念?用什么公式才能表达这一规律?问题解决了,还有没有别的解题方法?学生养成思维训练的习惯,随着综合能力的提高,课堂上随时就会有智慧熠熠生辉了。

四、总结

总之,数学是培养人的创造性素质的最佳途径,成功非一日之功,我们教师要为教育竭尽微忱,为学生终生的数学学习奠定良好的发展基础。

数学论文初二

在数学教学中,只有把数学理论知识和现实问题相结合,才能激发学生的数学思维,调动他们的积极探究欲望,使学生在探究数学知识时能够不断获得发展。本文是我为大家整理的初二的数学教学论文内容,欢迎查看!

一、注重概念教学理念的创新

(一)以适学情境的构建激发学生学习兴趣

在教学理念方面,教师应改变以往完全将概念教学集中在抽象的教学材料方面,可适时引入一定的情境素材以激发学生学习的动机。具体实践中可引入相关的数学 故事 或数学趣闻等。如关于数学概念的形成,可引入“杨辉三角形”概念的提出或祖冲之对圆周率的计算过程等,也可将国外许多如哥德巴赫猜想或象棋发明者塞萨的 事迹 等内容融入课堂中,集中学生注意力的同时也能加深学生对数学知识的理解。以初中数学“平面直角坐标系”教学内容为例,教学中教师可首先为学生讲述笛卡尔的故事,笛卡尔通过对蜘蛛结网的观察而推出由点的运动可以形成直线或曲线,进而得出直角坐标系的概念。此时学生便会对平面直角坐标系的概念产生一定的求知欲望,既增强了与教师之间的互动交流,也能够满足以学生为主体的教学目的。

(二)注重对概念教学“形式”与“实质”关系的处理

教学中的“形式”可理解为初中数学教学中的相关概念与定理,而“实质”为数学知识的具体应用。概念教学中教师可充分发挥自身的引导作用,如关于代数式教学过程中,不必对代数式给予更多繁琐的定义,其会为学生带来更多抽象性问题,可首先在概念引入前列举相关的代数式使学生从中体会代数式的内涵。再如,初中数学中的乘法公式教学内容,只需使学生理解字母a与b即可,不必要求学生完全进行文字叙述,如(a+b)(a-b)=a2-b2,对括号内项特征掌握后便能理解该公式,当面对其他如(a+b-c)(a-b+c)类型题时,学生能够直接通过平方差公式的概念对其进行解答。另外,在其他内容教学中如平行线判定或方程教学中也需注意“形式”与“实质”关系的处理,确保学生能够得到实质性的训练。

二、对概念教学内容的创新

现阶段,大多初中数学课堂教学在教学内容体系上仍存在以本为本、以纲为纲的现象,使学生的学习过程中以及教师的教学受到一定程度的制约,所以需改变这种照本宣科的教学方式,注重对教学内容进行创新,具体创新策略主要表现在以下两方面。

(一)把握教材整体内容与概念层次特征

初中数学教材中的概念内容本身具有螺旋式上升特点,无法一次为学生所理解,需要教师对教材的相关概念进行整体把握,并注重各部分概念能够层层推进。以初中数学教学中的绝对值概念为例,教材中对其定义为正数绝对值为其本身,负数绝对值为其相反数,而零的绝对值仍为零。若单纯依靠此定义,学生很难理解,所以在教材内容中又对绝对值概念提出其主要为原点与此时数的点的距离,学生能够初步认识绝对值概念。而在二次根式教学内容时,教学内容又涉及到绝对值概念,学生可将开平方运算联系到绝对值,领会概念的实质。因此,实际概念教学过程中教师需在掌握教学内容整体的基础上按照概念层次性特点进行教学。

(二)概念知识与实际应用的结合

数学学习的目的在于使学生将习得的概念与规律运用在实际生活中,促进实践动手能力的提高。然而大多数学教师为防止信息丢失,对所有的概念内容在讲授中面面俱到,如在学生未练习应用因式分解概念的情况下,便将因式分解可在哪种数系范围中进行或具体分解为哪种形式等进行系统讲解,但是学生尚未掌握前一部分概念的应用便涉及更多内容,很难形成良好的知识体系。因此,要求教师在概念知识教学中应在保证不脱离教材的前提下,对教材内容适当取舍,使学生能够边学边用。

三、注重 教学 方法 的创新

素质 教育 的推行更强调对学生创新意识的培养。以往教学中过于陈旧的教学模式很难构建良好的课堂氛围,促进学生思维能力的提高,因此需要在概念教学中改变以往“满堂灌”或“填鸭式”的教学方法,引入一定的问题情境以调动学生参与课堂积极性。

(一)对数学概念本质的揭示

概念教学过程中,问题情境的引入需考虑到素材的选择问题,避免造成数学概念内容失去自身的层次性特征与连续性特征。以函数的概念为例,若从字面概念定义,可引入x,y两个变量,在一定范围中y都存在与x值相对应的确定值,此时y为x的函数,而x为自变量。此时,教师可将生活中的摩天轮运动引入其中,提出假设学生坐在摩天轮上,运动过程中与地面高度会存在那种变化,不同时间内高度能否确定等,学生便会寻找相关的函数数学语言去分析摩天轮运动时间与高度存在的关系,以此使抽象化的函数概念具体化,通过对事物本质的揭示促进数学思维能力的增强。

(二)对数学教学信息的概括

数学概念本身是对事物本质的反映,具有极为明显的抽象特点,要求教学过程中教师能够采用正确的教学方法使概念中的内容特征与表现规律展示出来,引导学生对信息内容进行概括,这样数学概念将更为清晰。例如,数学教学中引入摩天轮旋转实例,其旋转的时间与高度本身存在一定函数关系,且保持相互对应。通过学生对摩天轮旋转特征的描述,找出与时间相对应的高度,这样在教师的适时引导下将会完整的概括出函数的概念,习得函数知识的同时也提高学生对数学概念的概括能力。因此,概念教学中教师应采取切合实际的教学方法,避免脱离学生生活,使学生能够自然掌握数学概念。

四、注重教学手段的创新

信息化时代的到来使传统数学教学手段受到一定的冲击,要求初中数学教学过程中应引入更具形、色、声等特征的多媒体教学手段,使原本较为枯燥的课堂教学更为生动,并将抽象的数学概念形象化,有效地提高数学教学效果。

(一)充分发挥多媒体教学设备的作用

在教育心理学内容中,提出学生 抽象思维 能力的培养要求采用直观教学的方式,无论在数学概念掌握或数学知识结构形成方面都需充分发挥教学中形象直观教学的应用。而传统初中数学教学中并未注重引入更加生动的教具,不具备可感性,所以可通过多媒体设备的引入,将较为抽象的概念以及图形参数等融入其中。例如,平面几何教学过程中,教师可利用计算机进行图形的绘制,将整个过程向学生展示,这样关于平面几何的相关概念与图形都可为学生所理解。

(二)课堂演示与实践过程的结合

多媒体手段应用过程中,在课堂演示方面需由教师操作完成,可使关于数学概念的电子课件利用教学网络向终端屏幕传送,讲解的同时应向学生提问确保学生能够参与到课堂活动中,并对学生学习情况给出适时的评价。例如,关于平面几何中“圆”的概念,讲解过程中可将圆心为O、半径为R的圆在屏幕中画出,然后引导学生利用数学概念对圆的画法进行描述,并实际操作验证。教师可组织学生利用数学概念自行画圆,对于完成情况较好的可在屏幕中体现出来,以此增强学生的自信心,激发学生学习兴趣并促进实践动手能力的提高。

作者:陈建芳 单位:昆山市周庄中学

一、问题探究教学模式的基本涵义与基本原则

要想让问题探究教学模式在初中数学教学中获得良好的教学效果,教师就要准确把握问题探究教学模式的基本涵义和基本原则.问题探究教学模式的主要内容是教师通过各种方式,让学生在教学过程中,能够自主地发现问题、提出问题和解决问题,并且在探索问题的过程中获取知识和培养能力.在初中数学教学中有效运用问题探究教学模式的基本原则:(1)以学生为主体的原则.在问题探究教学模式中,要注重教师的主导作用,更要充分发挥学生的主体作用,让学生能够积极主动地参与到教学过程中.(2)以问题为核心的原则.以问题为核心就是指在教学过程中培养学生的问题意识,学生具有良好的问题意识是实施问题探索教学模式的源头,教师要让学生知道如何去发现问题、提出问题和解决问题,这也是决定问题探究教学模式能否成功的关键原则.(3)以情感为依托的原则.在教学过程中,教师要注重知识的传授,还要注重与学生之间的情感交流.构建和谐的课堂师生情感关系,对实施问题探究教学模式具有十分重要的促进作用,也是问题探究教学模式获得良好效果的保证.

二、在初中数学教学中有效运用问题探究教学模式的策略

初中数学课堂实施问题探究教学模式的目的主要是:为了促进学生综合能力的发展和提高课堂教学效率和质量.

1.准确把握学生实际的认知水平

任何教学方式要想获得良好的教学效果,都必须要遵循课堂教学中学生实际的认识结构才行.不然的话,就算再好的教学模式,也是不可能获得良好教学质量和效果的.学生实际的数学认知结构是整个问题探究模式的出发点.因此,在初中数学教学中运用问题探究教学模式时,教师一定要对学生现有的认知结构有准确的把握和认识,这样才能有针对性地对学生开展问题探究教学模式.

2.注重培养学生课堂教学中的问题意识

培养学生课堂教学中的问题意识是整个问题探索教学模式的核心内容,也是该教学模式能否成功的关键因素.因此,在初中数学教学中运用问题探究教学模式时,教师一定要认真研究,并运用多种方式,将要教授的学习内容转化为数学问题思维情境,让学生在问题思维模式下自主学习,真正遵循初中数学教学中“提出问题—建构数学—解决问题”的探究过程.例如,在讲“相似形”时,教师可以设计这样一个问题情境:用多媒体播放埃及的金字塔,让学生观察大小金字塔的外形之间有什么相似之处,之间有什么联系.根据这个问题情境,教师可以设置如下两个问题:(1)根据相似形能否测出大金字塔的高度?(2)相似形各边比例是否相等?各个对应的角是否相等?为什么?让学生自己去寻求解答.通过教师创设的这种问题情境,再由学生自主去探索,这种让学生亲身去经历提出问题、解决问题、应用 反思 的过程,就能使学生切实感受到在探索中学习的快乐,而且这种模式也能使教师课堂教学的知识目标、能力目标都得到较好的落实.

3.探索课堂师生之间的情感体验模式

初中数学教学中运用问题探究教学模式,不仅要关注学生数学学习的效果和质量,也要关注学生在数学课堂活动中所表现出来的情感与态度.因为问题探究式教学模式就是让学生在课堂中根据教师创设的问题进行探索、讨论和交流,这就使学生只有在态度上真正接受、喜欢和参与,才能使相关的讨论或探索获得良好的效果.因此,学生的情感态度对开展问题探究式教学是有重要影响的,也是教师需要认真去关注的一个问题.教师在运用问题探究式教学向学生传授知识的同时,也要采取各种方式在课堂上构建一个和谐、民主的师生情感关系,这对培养学生的学习兴趣是非常重要的.总之,本文对初中数学教学中有效运用问题探究式教学进行了一些理论和实践的探讨,其中最主要的就是对初中数学问题探究式教学如何开展的问题,无论采用探究什么形式和方法,最重要的是要适合学生的发展,扬长避短,最终使数学教学优点发挥到最大化,让这种探究模式成为教学的主流,让数学教学发展得更好,这对今后初中数学教学改革有非常重要的意义.

作者:李权 单位:江苏沭阳县马厂中学

关于“0” (供你参考) 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 生活中的数学 有一个谜语:有一样东西,看不见、摸不着,但它却无处不在,请问它是什么?谜底是:空气。而数学,也像空气一样,看不见,摸不着,但它却时时刻刻存在于我们身边。 ......................................................... 生活中的数学 摘要:本文通过对生活中商品促销的实例分析,得出数学其实与我们的生活息息相关,数学在现实生活中无处不在的结论。 关键词:数学;生活;促销 “对我来说什么都可以变成数学。”数学家笛卡儿曾这样说过。“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。”我国家喻户晓的数学家华罗庚也曾下过这样的结论。的确,正如两位前辈所说,数学与我们的生活息息相关,数学的脚步无处不在。 2006年已经接近尾声了,迎面而来的是新的一年——2007年。行走在繁华的大街上,随处可见商家打出的“满400送400”,“满300送300”的促销招牌。“这真实惠!”消费者们蜂拥而至,商场里人山人海,抢购成风。此情此景,真让人以为回到了物资短缺的年代。实际上商家心里早打好了如意算盘。俗话说:只有买亏,没有卖亏,“满400送400元券”只是商家的一种促销手段,其中暗藏着数学问题,暗藏着商业机密,暗藏着许多玄机。 去年,我们一家三口,也在新年之际在商场里“血拼”,当时是满400送400元券。我们先用980元买了一件苹果牌的皮夹克给爸爸,送来了800元购物券。我们并没有过分浪费,花了298元券买了一件藏青色的李宁牌棉袄,又用剩下的500元券中的488买了一件太子龙男装(由于是购物券,不设找零)。到底便宜了多少?298+488+980=1766(元)——这是原来不打折时需要花的钱。980/1776,所打的折扣大约是五五折。 我的姑姑和姑夫从前也做过服装生意,我对服装的进货成本与销售价的关系也有些了解。服装的进价一般只占建议零售价的20%~30%。随着竞争的加剧和商场促销力度越来越大,为了保持利润,商家或厂家还不断地把衣服的建议零售价标高。就如前几天在电视中看见的一位消费者所说,某一品牌同一款式的一条尼料的裤子,三年前建议零售价还只是299元,今年标价变成了999元。这么一算,进价大概只有商场里售价的10%~20%。就算打了五五折,商家还稳赚三至五成的毛利。 广告,广告,便是广而告之。许多人一窝蜂似的赶来抢购、血拼,商场的人流量多了,商品销售量也快速增长。就按人流量是平时的三倍算,这里又出现了一个数学问题。假设平时人流量少时,一件商品按8折销售。8折减去进价2折,标价部分的6成就成了毛利。虽然现在“满400送400元券”时同一件商品可能只赚三至五成,但销量起码是平时的三倍以上。就按三成毛利和三倍销量来计算,3×3=9,与平时的6成毛利相比,一天能多赚50%。虽说这样卖每件单位毛利率有所下降,毛利额却因销售量的增加而增长,更因大量销售而加快了资金周转,带来额外的收益。 商品标价和促销中有数学,购物消费中有数学,装修房子有数学,织毛衣中有数学……总而言之,数学在现实生活中无处不在!

初二数学论文篇二 初二数学两极分化的成因和对策 【摘要】初中数学出现两极分化是一种危险信号,预示着部分初二数学学困生面对初三难度更大的数学学习会有放弃的可能,而数学在整个初中学科中地位显著,所以初二学生一旦有放弃数学学习的心理将会产生十分严重的后果。避免初中数学两极分化是初中数学教学的重要课题。本文分析了产生初二数学两极分化的原因,提出了避免两极分化的对策。 【关键词】初中数学 两极分化 原因 对策 从每年各地统计的数据来看,进入初二的学生,数学学习两级分化呈现出较严重的趋势,数学学困生所占比例大,这种状况直接影响着大面积提高数学教学的质量,也影响着中考的成绩。初中数学出现两级分化是一个危险信号,说明部分学生数学能力已跟不上数学教学进度,而接下来的初三数学教学难度会进一步加大,部分学困生有可能面对越来越艰巨的学习任务而放弃数学学习。而数学在整个初中学科中地位显著,放弃数学学习的后果可想而知。所以,避免或减少数学两极分化显得尤为重要。那么,形成初中阶段数学两极分化有一些什么原因,如何有效避免初中数学的两极分化,有哪些可行性措施和策略可以避免初中数学的两极分化呢?笔者根据自己多年的初中数学实践,现谈谈在此方面的点滴感悟,希望能对抑制初中数学的两极分化带来一些启示。 一、初中数学出现两极分化的原因 初中数学出现分化的原因是多方面的,限于篇幅,这里无法一一罗列,但有三方面的原因是不能不被提及的,这三方面的原因分别为:一方面是因为初二学生对数学学习的热情有的随着成绩的稳中向好而加强,而部分数学学习困难者面对越来越多的困难和压力而数学学习的步伐无法跟上队伍,成绩也呈现大幅度的下降趋势,且兴趣也越来越谈,学习数学的激情正在消退,产生了数学厌学心理;一方面是因为学困生掌握数学知识、技能不够全面、系统,没有形成较好的数学认知结构,也没有形成一定的数学学习能力,不能为连续学习提供必要的认知基础。所以就打退堂鼓,产生放弃的心理认同;一方面是因为学生个体思维方式和学习方法无法适应数学学习的要求。这些都是制约初中数学两极分化的重要原因。 二、避免初二数学两极分化的办法 1.在初中数学学习中要形成提前完成预习,课内重视听讲,课后及时复习的习惯 良好的预习习惯是学习新知识,巩固旧知识的不二法门,初二学生应在数学新知识接受之前提前预习,除了提前对数学课程进行学习外,每天晚上都应预习第二天的数学知识,课堂上才能更好的听讲,有更多的收获。数学能力的培养主要在课堂上进行,所以要重视课内的学习,要在课堂内寻求正确的数学学习方法。上课时要紧跟教师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲的有哪些出入。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将教师所讲的数学知识点回忆一遍,正确掌握各类公式的推理过程。要独立完成每一道数学作业,勤于思考,不懂即问,形成良好的解题习惯。在每个阶段的数学学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成数学知识网络,纳入自己的数学知识体系。 2.熟悉各种数学题型,勤于练兵,提炼数学解题技巧 千锤百炼才成钢,数学学习也一样,只有在数学知识的海洋中劈波斩浪,迎头搏击,才能立于潮头。所以要想学好数学,多做题目是难免的,要熟悉掌握各种题型的解题思路,要从简单的题型开始,以数学教材上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决问题能力,掌握一般的解题规律。对于一些易错题,可在自己的错题集写出解题思路和正确的解题过程,加深对错误题的认识,提高免错能力。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意,往往在考试中会暴露充分,故在平时养成良好的解题习惯是非常重要的。 3.以良好的心态对待各种数学考试。 数学考试是检验数学学习效果的重要方式之一,进入初二阶段,数学考试也会有一些适当的增加,但每次考试成绩也只是代表一个阶段的成绩,无法代表整个初二学年的成绩,每个阶段学生的努力会刷新每一次成绩,只要努力成绩是可以提高的。学生对待考试要有良好的心态,不以一次成绩论英难,自己在任何时候都要情绪稳定,思路正常,要克服浮躁情绪,对自己要有信心。在考试前要做好考前准备,练练常规题,把自己的思路展开,切忌考试时去提高解题的速度。对于一些容易的基础题要争取拿全分,对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平发挥正常甚至发挥超常。 三、对待初中数学两极分化中的学生应采取的措施 虽然我们避免两极分化,但初中数学的两极分化不会因我们的努力而完全阻止。那么在两极分化后初中数学教师必须采取一些措施防止两极分化的拉大。如在布置数学作业时,要注意难易程度,要注意加强对学困生的辅导、转化,督促他们认真完成布置的作业。对作业做得较好或作业有所进步的学困生要及时表扬鼓励。数学教师要注意克服急躁冒进的情绪,如对学困生加大、加重作业量的做法是不可取的。对待数学学困生,要放低要求,采取循序渐进的原则、谆谆诱导的方法,从起点开始,耐心地辅导他们一点一滴地补习功课,让他们逐步提高。数学学困生学习被动,依赖性强。往往对数学概念、公式、定理、法则死记硬背,不愿动脑筋,一遇到问题就问老师,甚至扔在一边不管,教师在解答问题时,要注意启发式教学方法的应用,逐步让他们自己动脑,引导他们分析问题,解答问题。不要给他们现成答案,要随时纠正他们在分析解答中出现的错误,逐步培养他们独立完成作业的习惯。对数学学困生不仅要关心爱护和耐心细致地辅导,还要与严格要求相结合,不少数学学困生就是因为学习意志不强,生活懒惰,思想不集中,作业不及时完成或抄袭,根本没有预习、复习的习惯等。因此教师要特别注意检查学困生的作业完成情况,在教学过程中,要对他们提出严格的要求,督促他们认真学习。要有意识地出一些比较容易的数学题目,培养学困生的信心,对他们知识薄弱的地方要进行个别辅导,这样还可使有些学困生经过努力也有得较高分的机会,让他们有成就感,逐步改变他们头脑中在数学学习上总比别人低一等的印象。从而培养他们的自信心和自尊心,激励他们积极争取,努力向上,进而达到转化的目的。 初二数学学习中出现两极分化是必然结果,我们不必大惊小怪,要理性面对,并想方设法缩小差距,认真做好培优转困工作,只要我们注意方式方法,采取行之有效的措施,就一定会收到缩小两极分化的良好效果。初二数学教师任重道远,期待着都能勇挑重担,一往直前地把缩小数学两极分化工作落实在自己的教学行动中。 【参考文献】 1.石燕宁:农村初中数学两极分化的原因及对策分析[J],《中学教学参考》,. 2.张占武:初中数学差生的学习障碍成因分析及转化[J],《吉林教育》,. (作者单位:546100广西来宾市第三中学) 看了“初二数学论文怎么写”的人还看: 1. 2000字的初中数学论文怎么写 2. 初中数学小论文范文 3. 初中数学论文范文 4. 有关初中数学小论文范文 5. 数学小论文的范文

初二数学教学论文具体题目

《谈课堂上的互动、合作学习》、《发掘教材潜能,开拓学生思维》、《浅谈教学设计对课堂成效性的影响》

教学论文 源于教学,成于思考 ,是教师在日常教学中经验的积累,对教育的感悟。一个好的论文题目很重要,下面我收集了一些关于初中数学教学论文题目,希望对你有帮助

1. 新课程理念下中学数学教学的合作学习问题探析

2. 浅谈新课标下的数学课题学习

3. 乘船中的数学问题

4. 忽似一夜春风来----浅议数学教学中的顿悟

5. 初中数学教学应重视学生直觉思维能力的培养

6. 七年级学生学习情况的调研

7. 老师,这个答案为什么错了?——由一堂没有准备的探究课引发的思考

8. 新课程背景下学生数学学习发展性评价的构建

9. 让学生走出“零阅读”的尴尬

10. 初中数学学生学法辅导之探究

11. 合理运用数学情境教学

12. 让学生在自信、兴趣和成功的体验中学习数学

13. 创设有效问题情景,培养探究合作能力

14. 重视数学教学中的生成展示过程,培养学生创新思维能力

15. 从一道中考题的剖析谈梯形中面积的求解方法

16. 浅谈课堂教学中的教学机智

17. 从《确定位置》的教学谈体验教学

18. 谈主体性数学课堂交流活动实施策略

19. 对数学例题教学的一些看法

20. 新课程标准下数学教学新方式

21. 举反例的两点技巧

22. 数学课堂教学中分层教学的实践与探索

23. 新课程中数学情境创设的思考

24. 数学新课程教学中学生思维的激发与引导

25. 新课程初中数学直觉思维培养的研究与实践

26. “问题解决”与创造精神的培养

27. 做个学习数学的有心人

28. 让学生的创新之花绽放得更鲜艳

29. 对数学探索教学的观察与思考

30. “先学后教”教学模式的探索与研究

1. 新形势、新气象、新变化

2. 浅谈新浙教版七年级数学教学体会

3. 让课堂充满问题 让问题充满思考

4. 改变试卷讲评方式,提高学生复习效率

5. 构建信息能力培养的平台----新课标下的数学教学

6. 在数学新课程教学中谈如何培养学生的合作学习

7. 数学教学中的对学生发展性评价的浅显研究

8. 对目前初中数学课堂教学的一些思考

9. 读书无颖者顺教有疑,有疑者顺教无颖

10. 心与心的交流、共创人文和谐

11. 展示过程学习,促进数学能力发展

12. 它山之石,可以攻玉——北师大教材的几点借鉴和反思

13. 新课程理念下初中数学课堂教学的反思

14. 借新课程理念,探中下生转化之路

15. 论新课标下数学试卷讲评课的思考

16. 谈数学教学中的四个“适”

17. 是否一定要“探究”

18. 数学建模——数学与现实世界的桥梁

19. 新课标下学生问题意识的培养

20. 数学课堂教学应让学生多思考

21. 实施新课程、新教材的体会与思考

22. 谈合作学习中的误区和对策

23. 探究性学习在初中数学课堂中的尝试

24. 浅谈数学教学情境的创设

25. 点击思维过程,培养学生思维深刻性

26. 让每个学生在课堂上都有自由发展的空间

27. 初中数学探究性学习兴趣培养之初探

28. 新课程标准下数学教学的反思

29. 新课标下如何培养学生的问题意识

30. 小组合作学习在初中数学教学中的实施策略

1. 新课标教学课堂有效教学的艺术

2. 动与静 大成 徐孝萍

3. 试析学生在课堂学习中的行为表现成因及对策

4. 让学生快乐地学习——浅谈关注学生学习状况,提高数学教学效率

5. 加强师生互动,提高课堂效率

6. 对培养学生学习主动性的感受

7. 为数学和谐之美,教师应有所作为

8. 初一学生数学学习习惯的调查和干预策略

9. 《初三复习课例题设计之一》

10. 《新课标下数学学科对学生的评价》

11. 《如何让学生爱上你的课》

12. 《优化数学预习作业,促进师生和谐对话》

13. 有感于听 ≠懂;懂 ≠会;会 ≠通

14. 《浅谈多媒体技术在数学积教学中的应用》

15. 新《标准》下数学课堂上的教师个性对学生学习的影响

16. 贴近现实生活,注重应用意识

17. 创设现实生活版的数学教学

18. 注重体验教学——让数学走向生活

19. 多元化的评价给学生插上了自信的翅膀

20. 对初一学生数学解题错误的分析

21. 新课程下更应重视数学阅读

22. 谈学生的数学思维综合品质培养

23. 合作教学法,培养学生创新能力的尝试

24. 在数学教学中进行德育渗透

25. 新课程理念下初中数学教学中的应用意识的渗透

26. “问题解决”与创新意识的培养

27. 浅谈如何维持数学课的教学秩序

28. 小班化教学有效自主学习指导策略

29. 课改区中考学生复习之秘诀

新颖的数学论文题目有:

1、数学模型在解决实际问题中的作用。

2、中学数学中不等式的证明。

3、组合数学与中学数学。

4、构造方法在数学解题中的应用。

5、高中新教材中数学教学方法探讨。

6、组合数学恒等式的证明方法。

7、浅谈中学数学教育。

8、浅谈中学不等式的几何证明方法。

9、数学教育中学生创造性思维能力的培养。

10、高等数学在初等数学中的应用。

11、向量在几何中的应用。

12、情境认识在数学教学中的应用。

13、高中数学应用题的编制和一些解题方法。

14、浅谈反证法在中学教学中的应用。

15、探索证明线段相等的方法。

16、几个带参数的二阶边界值问题的正解的存在性研究。

17、关于丢番图方程1+x+y=z的一类特殊情况的研究。

18、变限积分函数的性质及应用。

19、有限集上函数的迭代及其应用。

20、小学课堂环境改着的行动研究。

21、网络环境下小学数学主题教学模式应用研究。

22、培养小学生数学学习兴趣的教学策略研究。

23、小学五年级儿童数学学习策略干预对改善其执行功能的研究。

24、小学生数学创新思维的培养。

25、促进小学生数学课堂参与的数学策略研究。

26、使学生真正成为学习的主人。

27、改革课堂教学的着力点。

28、谈素质教育在小学数学教学中的实施。

29、素质教育与小学数学教育改革。

30、浅谈学生数学思维能力的培养。

初二数学论文范文

初二数学小论文:《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。 数学小论文 今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做!!! 想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了! 想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法! 想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。 我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!

《勾股定理的证明方法探究》 勾股定理又叫毕氏定理:在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和。 据考证,人类对这条定理的认识,少说也超过 4000 年!又据记载,现时世上一共有超过 300 个对这定理的证明! 勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若鹜,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。 勾股定理的证明:在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。 首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。 1.中国方法:画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。 左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是 a^2+b^2=c^2。 这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。 2.希腊方法:直接在直角三角形三边上画正方形,如图。 容易看出, △ABA’ ≌△AA'C 。 过C向A’’B’’引垂线,交AB于C’,交A’’B’’于C’’。 △ABA’与正方形ACDA’同底等高,前者面积为后者面积的一半,△AA’’C与矩形AA’’C’’C’同底等高,前者的面积也是后者的一半。由△ABA’≌△AA’’C,知正方形ACDA’的面积等于矩形AA’’C’’C’的面积。同理可得正方形BB’EC的面积等于矩形B’’BC’C’’的面积。 于是, S正方形AA’’B’’B=S正方形ACDA’+S正方形BB’EC, 即 a2+b2=c2。 至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。 这就是希腊古代数学家欧几里得在其《几何原本》中的证法。 以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念: ⑴ 全等形的面积相等; ⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。 这是完全可以接受的朴素观念,任何人都能理解。 我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法: 如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。 赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。 西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。 下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。 如图, S梯形ABCD= (a+b)2 = (a2+2ab+b2), ① 又S梯形ABCD=S△AED+S△EBC+S△CED = ab+ ba+ c2 = (2ab+c2)。 ② 比较以上二式,便得 a2+b2=c2。 这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。 1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。 在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。 如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则 △BCD∽△BAC,△CAD∽△BAC。 由△BCD∽△BAC可得BC2=BD ? BA, ① 由△CAD∽△BAC可得AC2=AD ? AB。 ② 我们发现,把①、②两式相加可得 BC2+AC2=AB(AD+BD), 而AD+BD=AB, 因此有 BC2+AC2=AB2,这就是 a2+b2=c2。 这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。 在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法: 设△ABC中,∠C=90°,由余弦定理 c2=a2+b2-2abcosC, 因为∠C=90°,所以cosC=0。所以 a2+b2=c2。 这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。 人们对勾股定理感兴趣的原因还在于它可以作推广。 欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。 从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。 勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。 若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。 总之,在勾股定理探索的道路上,我们走向了数学殿堂天啊,那么多的字啊。

在数学教学中,只有把数学理论知识和现实问题相结合,才能激发学生的数学思维,调动他们的积极探究欲望,使学生在探究数学知识时能够不断获得发展。本文是我为大家整理的初二的数学教学论文内容,欢迎查看!

一、注重概念教学理念的创新

(一)以适学情境的构建激发学生学习兴趣

在教学理念方面,教师应改变以往完全将概念教学集中在抽象的教学材料方面,可适时引入一定的情境素材以激发学生学习的动机。具体实践中可引入相关的数学 故事 或数学趣闻等。如关于数学概念的形成,可引入“杨辉三角形”概念的提出或祖冲之对圆周率的计算过程等,也可将国外许多如哥德巴赫猜想或象棋发明者塞萨的 事迹 等内容融入课堂中,集中学生注意力的同时也能加深学生对数学知识的理解。以初中数学“平面直角坐标系”教学内容为例,教学中教师可首先为学生讲述笛卡尔的故事,笛卡尔通过对蜘蛛结网的观察而推出由点的运动可以形成直线或曲线,进而得出直角坐标系的概念。此时学生便会对平面直角坐标系的概念产生一定的求知欲望,既增强了与教师之间的互动交流,也能够满足以学生为主体的教学目的。

(二)注重对概念教学“形式”与“实质”关系的处理

教学中的“形式”可理解为初中数学教学中的相关概念与定理,而“实质”为数学知识的具体应用。概念教学中教师可充分发挥自身的引导作用,如关于代数式教学过程中,不必对代数式给予更多繁琐的定义,其会为学生带来更多抽象性问题,可首先在概念引入前列举相关的代数式使学生从中体会代数式的内涵。再如,初中数学中的乘法公式教学内容,只需使学生理解字母a与b即可,不必要求学生完全进行文字叙述,如(a+b)(a-b)=a2-b2,对括号内项特征掌握后便能理解该公式,当面对其他如(a+b-c)(a-b+c)类型题时,学生能够直接通过平方差公式的概念对其进行解答。另外,在其他内容教学中如平行线判定或方程教学中也需注意“形式”与“实质”关系的处理,确保学生能够得到实质性的训练。

二、对概念教学内容的创新

现阶段,大多初中数学课堂教学在教学内容体系上仍存在以本为本、以纲为纲的现象,使学生的学习过程中以及教师的教学受到一定程度的制约,所以需改变这种照本宣科的教学方式,注重对教学内容进行创新,具体创新策略主要表现在以下两方面。

(一)把握教材整体内容与概念层次特征

初中数学教材中的概念内容本身具有螺旋式上升特点,无法一次为学生所理解,需要教师对教材的相关概念进行整体把握,并注重各部分概念能够层层推进。以初中数学教学中的绝对值概念为例,教材中对其定义为正数绝对值为其本身,负数绝对值为其相反数,而零的绝对值仍为零。若单纯依靠此定义,学生很难理解,所以在教材内容中又对绝对值概念提出其主要为原点与此时数的点的距离,学生能够初步认识绝对值概念。而在二次根式教学内容时,教学内容又涉及到绝对值概念,学生可将开平方运算联系到绝对值,领会概念的实质。因此,实际概念教学过程中教师需在掌握教学内容整体的基础上按照概念层次性特点进行教学。

(二)概念知识与实际应用的结合

数学学习的目的在于使学生将习得的概念与规律运用在实际生活中,促进实践动手能力的提高。然而大多数学教师为防止信息丢失,对所有的概念内容在讲授中面面俱到,如在学生未练习应用因式分解概念的情况下,便将因式分解可在哪种数系范围中进行或具体分解为哪种形式等进行系统讲解,但是学生尚未掌握前一部分概念的应用便涉及更多内容,很难形成良好的知识体系。因此,要求教师在概念知识教学中应在保证不脱离教材的前提下,对教材内容适当取舍,使学生能够边学边用。

三、注重 教学 方法 的创新

素质 教育 的推行更强调对学生创新意识的培养。以往教学中过于陈旧的教学模式很难构建良好的课堂氛围,促进学生思维能力的提高,因此需要在概念教学中改变以往“满堂灌”或“填鸭式”的教学方法,引入一定的问题情境以调动学生参与课堂积极性。

(一)对数学概念本质的揭示

概念教学过程中,问题情境的引入需考虑到素材的选择问题,避免造成数学概念内容失去自身的层次性特征与连续性特征。以函数的概念为例,若从字面概念定义,可引入x,y两个变量,在一定范围中y都存在与x值相对应的确定值,此时y为x的函数,而x为自变量。此时,教师可将生活中的摩天轮运动引入其中,提出假设学生坐在摩天轮上,运动过程中与地面高度会存在那种变化,不同时间内高度能否确定等,学生便会寻找相关的函数数学语言去分析摩天轮运动时间与高度存在的关系,以此使抽象化的函数概念具体化,通过对事物本质的揭示促进数学思维能力的增强。

(二)对数学教学信息的概括

数学概念本身是对事物本质的反映,具有极为明显的抽象特点,要求教学过程中教师能够采用正确的教学方法使概念中的内容特征与表现规律展示出来,引导学生对信息内容进行概括,这样数学概念将更为清晰。例如,数学教学中引入摩天轮旋转实例,其旋转的时间与高度本身存在一定函数关系,且保持相互对应。通过学生对摩天轮旋转特征的描述,找出与时间相对应的高度,这样在教师的适时引导下将会完整的概括出函数的概念,习得函数知识的同时也提高学生对数学概念的概括能力。因此,概念教学中教师应采取切合实际的教学方法,避免脱离学生生活,使学生能够自然掌握数学概念。

四、注重教学手段的创新

信息化时代的到来使传统数学教学手段受到一定的冲击,要求初中数学教学过程中应引入更具形、色、声等特征的多媒体教学手段,使原本较为枯燥的课堂教学更为生动,并将抽象的数学概念形象化,有效地提高数学教学效果。

(一)充分发挥多媒体教学设备的作用

在教育心理学内容中,提出学生 抽象思维 能力的培养要求采用直观教学的方式,无论在数学概念掌握或数学知识结构形成方面都需充分发挥教学中形象直观教学的应用。而传统初中数学教学中并未注重引入更加生动的教具,不具备可感性,所以可通过多媒体设备的引入,将较为抽象的概念以及图形参数等融入其中。例如,平面几何教学过程中,教师可利用计算机进行图形的绘制,将整个过程向学生展示,这样关于平面几何的相关概念与图形都可为学生所理解。

(二)课堂演示与实践过程的结合

多媒体手段应用过程中,在课堂演示方面需由教师操作完成,可使关于数学概念的电子课件利用教学网络向终端屏幕传送,讲解的同时应向学生提问确保学生能够参与到课堂活动中,并对学生学习情况给出适时的评价。例如,关于平面几何中“圆”的概念,讲解过程中可将圆心为O、半径为R的圆在屏幕中画出,然后引导学生利用数学概念对圆的画法进行描述,并实际操作验证。教师可组织学生利用数学概念自行画圆,对于完成情况较好的可在屏幕中体现出来,以此增强学生的自信心,激发学生学习兴趣并促进实践动手能力的提高。

作者:陈建芳 单位:昆山市周庄中学

一、问题探究教学模式的基本涵义与基本原则

要想让问题探究教学模式在初中数学教学中获得良好的教学效果,教师就要准确把握问题探究教学模式的基本涵义和基本原则.问题探究教学模式的主要内容是教师通过各种方式,让学生在教学过程中,能够自主地发现问题、提出问题和解决问题,并且在探索问题的过程中获取知识和培养能力.在初中数学教学中有效运用问题探究教学模式的基本原则:(1)以学生为主体的原则.在问题探究教学模式中,要注重教师的主导作用,更要充分发挥学生的主体作用,让学生能够积极主动地参与到教学过程中.(2)以问题为核心的原则.以问题为核心就是指在教学过程中培养学生的问题意识,学生具有良好的问题意识是实施问题探索教学模式的源头,教师要让学生知道如何去发现问题、提出问题和解决问题,这也是决定问题探究教学模式能否成功的关键原则.(3)以情感为依托的原则.在教学过程中,教师要注重知识的传授,还要注重与学生之间的情感交流.构建和谐的课堂师生情感关系,对实施问题探究教学模式具有十分重要的促进作用,也是问题探究教学模式获得良好效果的保证.

二、在初中数学教学中有效运用问题探究教学模式的策略

初中数学课堂实施问题探究教学模式的目的主要是:为了促进学生综合能力的发展和提高课堂教学效率和质量.

1.准确把握学生实际的认知水平

任何教学方式要想获得良好的教学效果,都必须要遵循课堂教学中学生实际的认识结构才行.不然的话,就算再好的教学模式,也是不可能获得良好教学质量和效果的.学生实际的数学认知结构是整个问题探究模式的出发点.因此,在初中数学教学中运用问题探究教学模式时,教师一定要对学生现有的认知结构有准确的把握和认识,这样才能有针对性地对学生开展问题探究教学模式.

2.注重培养学生课堂教学中的问题意识

培养学生课堂教学中的问题意识是整个问题探索教学模式的核心内容,也是该教学模式能否成功的关键因素.因此,在初中数学教学中运用问题探究教学模式时,教师一定要认真研究,并运用多种方式,将要教授的学习内容转化为数学问题思维情境,让学生在问题思维模式下自主学习,真正遵循初中数学教学中“提出问题—建构数学—解决问题”的探究过程.例如,在讲“相似形”时,教师可以设计这样一个问题情境:用多媒体播放埃及的金字塔,让学生观察大小金字塔的外形之间有什么相似之处,之间有什么联系.根据这个问题情境,教师可以设置如下两个问题:(1)根据相似形能否测出大金字塔的高度?(2)相似形各边比例是否相等?各个对应的角是否相等?为什么?让学生自己去寻求解答.通过教师创设的这种问题情境,再由学生自主去探索,这种让学生亲身去经历提出问题、解决问题、应用 反思 的过程,就能使学生切实感受到在探索中学习的快乐,而且这种模式也能使教师课堂教学的知识目标、能力目标都得到较好的落实.

3.探索课堂师生之间的情感体验模式

初中数学教学中运用问题探究教学模式,不仅要关注学生数学学习的效果和质量,也要关注学生在数学课堂活动中所表现出来的情感与态度.因为问题探究式教学模式就是让学生在课堂中根据教师创设的问题进行探索、讨论和交流,这就使学生只有在态度上真正接受、喜欢和参与,才能使相关的讨论或探索获得良好的效果.因此,学生的情感态度对开展问题探究式教学是有重要影响的,也是教师需要认真去关注的一个问题.教师在运用问题探究式教学向学生传授知识的同时,也要采取各种方式在课堂上构建一个和谐、民主的师生情感关系,这对培养学生的学习兴趣是非常重要的.总之,本文对初中数学教学中有效运用问题探究式教学进行了一些理论和实践的探讨,其中最主要的就是对初中数学问题探究式教学如何开展的问题,无论采用探究什么形式和方法,最重要的是要适合学生的发展,扬长避短,最终使数学教学优点发挥到最大化,让这种探究模式成为教学的主流,让数学教学发展得更好,这对今后初中数学教学改革有非常重要的意义.

作者:李权 单位:江苏沭阳县马厂中学

数学小论文初二上

有什么其他的具体要求??比如题目啦 字数啦什么的

在数学教学中,只有把数学理论知识和现实问题相结合,才能激发学生的数学思维,调动他们的积极探究欲望,使学生在探究数学知识时能够不断获得发展。本文是我为大家整理的初二的数学教学论文内容,欢迎查看!

一、注重概念教学理念的创新

(一)以适学情境的构建激发学生学习兴趣

在教学理念方面,教师应改变以往完全将概念教学集中在抽象的教学材料方面,可适时引入一定的情境素材以激发学生学习的动机。具体实践中可引入相关的数学 故事 或数学趣闻等。如关于数学概念的形成,可引入“杨辉三角形”概念的提出或祖冲之对圆周率的计算过程等,也可将国外许多如哥德巴赫猜想或象棋发明者塞萨的 事迹 等内容融入课堂中,集中学生注意力的同时也能加深学生对数学知识的理解。以初中数学“平面直角坐标系”教学内容为例,教学中教师可首先为学生讲述笛卡尔的故事,笛卡尔通过对蜘蛛结网的观察而推出由点的运动可以形成直线或曲线,进而得出直角坐标系的概念。此时学生便会对平面直角坐标系的概念产生一定的求知欲望,既增强了与教师之间的互动交流,也能够满足以学生为主体的教学目的。

(二)注重对概念教学“形式”与“实质”关系的处理

教学中的“形式”可理解为初中数学教学中的相关概念与定理,而“实质”为数学知识的具体应用。概念教学中教师可充分发挥自身的引导作用,如关于代数式教学过程中,不必对代数式给予更多繁琐的定义,其会为学生带来更多抽象性问题,可首先在概念引入前列举相关的代数式使学生从中体会代数式的内涵。再如,初中数学中的乘法公式教学内容,只需使学生理解字母a与b即可,不必要求学生完全进行文字叙述,如(a+b)(a-b)=a2-b2,对括号内项特征掌握后便能理解该公式,当面对其他如(a+b-c)(a-b+c)类型题时,学生能够直接通过平方差公式的概念对其进行解答。另外,在其他内容教学中如平行线判定或方程教学中也需注意“形式”与“实质”关系的处理,确保学生能够得到实质性的训练。

二、对概念教学内容的创新

现阶段,大多初中数学课堂教学在教学内容体系上仍存在以本为本、以纲为纲的现象,使学生的学习过程中以及教师的教学受到一定程度的制约,所以需改变这种照本宣科的教学方式,注重对教学内容进行创新,具体创新策略主要表现在以下两方面。

(一)把握教材整体内容与概念层次特征

初中数学教材中的概念内容本身具有螺旋式上升特点,无法一次为学生所理解,需要教师对教材的相关概念进行整体把握,并注重各部分概念能够层层推进。以初中数学教学中的绝对值概念为例,教材中对其定义为正数绝对值为其本身,负数绝对值为其相反数,而零的绝对值仍为零。若单纯依靠此定义,学生很难理解,所以在教材内容中又对绝对值概念提出其主要为原点与此时数的点的距离,学生能够初步认识绝对值概念。而在二次根式教学内容时,教学内容又涉及到绝对值概念,学生可将开平方运算联系到绝对值,领会概念的实质。因此,实际概念教学过程中教师需在掌握教学内容整体的基础上按照概念层次性特点进行教学。

(二)概念知识与实际应用的结合

数学学习的目的在于使学生将习得的概念与规律运用在实际生活中,促进实践动手能力的提高。然而大多数学教师为防止信息丢失,对所有的概念内容在讲授中面面俱到,如在学生未练习应用因式分解概念的情况下,便将因式分解可在哪种数系范围中进行或具体分解为哪种形式等进行系统讲解,但是学生尚未掌握前一部分概念的应用便涉及更多内容,很难形成良好的知识体系。因此,要求教师在概念知识教学中应在保证不脱离教材的前提下,对教材内容适当取舍,使学生能够边学边用。

三、注重 教学 方法 的创新

素质 教育 的推行更强调对学生创新意识的培养。以往教学中过于陈旧的教学模式很难构建良好的课堂氛围,促进学生思维能力的提高,因此需要在概念教学中改变以往“满堂灌”或“填鸭式”的教学方法,引入一定的问题情境以调动学生参与课堂积极性。

(一)对数学概念本质的揭示

概念教学过程中,问题情境的引入需考虑到素材的选择问题,避免造成数学概念内容失去自身的层次性特征与连续性特征。以函数的概念为例,若从字面概念定义,可引入x,y两个变量,在一定范围中y都存在与x值相对应的确定值,此时y为x的函数,而x为自变量。此时,教师可将生活中的摩天轮运动引入其中,提出假设学生坐在摩天轮上,运动过程中与地面高度会存在那种变化,不同时间内高度能否确定等,学生便会寻找相关的函数数学语言去分析摩天轮运动时间与高度存在的关系,以此使抽象化的函数概念具体化,通过对事物本质的揭示促进数学思维能力的增强。

(二)对数学教学信息的概括

数学概念本身是对事物本质的反映,具有极为明显的抽象特点,要求教学过程中教师能够采用正确的教学方法使概念中的内容特征与表现规律展示出来,引导学生对信息内容进行概括,这样数学概念将更为清晰。例如,数学教学中引入摩天轮旋转实例,其旋转的时间与高度本身存在一定函数关系,且保持相互对应。通过学生对摩天轮旋转特征的描述,找出与时间相对应的高度,这样在教师的适时引导下将会完整的概括出函数的概念,习得函数知识的同时也提高学生对数学概念的概括能力。因此,概念教学中教师应采取切合实际的教学方法,避免脱离学生生活,使学生能够自然掌握数学概念。

四、注重教学手段的创新

信息化时代的到来使传统数学教学手段受到一定的冲击,要求初中数学教学过程中应引入更具形、色、声等特征的多媒体教学手段,使原本较为枯燥的课堂教学更为生动,并将抽象的数学概念形象化,有效地提高数学教学效果。

(一)充分发挥多媒体教学设备的作用

在教育心理学内容中,提出学生 抽象思维 能力的培养要求采用直观教学的方式,无论在数学概念掌握或数学知识结构形成方面都需充分发挥教学中形象直观教学的应用。而传统初中数学教学中并未注重引入更加生动的教具,不具备可感性,所以可通过多媒体设备的引入,将较为抽象的概念以及图形参数等融入其中。例如,平面几何教学过程中,教师可利用计算机进行图形的绘制,将整个过程向学生展示,这样关于平面几何的相关概念与图形都可为学生所理解。

(二)课堂演示与实践过程的结合

多媒体手段应用过程中,在课堂演示方面需由教师操作完成,可使关于数学概念的电子课件利用教学网络向终端屏幕传送,讲解的同时应向学生提问确保学生能够参与到课堂活动中,并对学生学习情况给出适时的评价。例如,关于平面几何中“圆”的概念,讲解过程中可将圆心为O、半径为R的圆在屏幕中画出,然后引导学生利用数学概念对圆的画法进行描述,并实际操作验证。教师可组织学生利用数学概念自行画圆,对于完成情况较好的可在屏幕中体现出来,以此增强学生的自信心,激发学生学习兴趣并促进实践动手能力的提高。

作者:陈建芳 单位:昆山市周庄中学

一、问题探究教学模式的基本涵义与基本原则

要想让问题探究教学模式在初中数学教学中获得良好的教学效果,教师就要准确把握问题探究教学模式的基本涵义和基本原则.问题探究教学模式的主要内容是教师通过各种方式,让学生在教学过程中,能够自主地发现问题、提出问题和解决问题,并且在探索问题的过程中获取知识和培养能力.在初中数学教学中有效运用问题探究教学模式的基本原则:(1)以学生为主体的原则.在问题探究教学模式中,要注重教师的主导作用,更要充分发挥学生的主体作用,让学生能够积极主动地参与到教学过程中.(2)以问题为核心的原则.以问题为核心就是指在教学过程中培养学生的问题意识,学生具有良好的问题意识是实施问题探索教学模式的源头,教师要让学生知道如何去发现问题、提出问题和解决问题,这也是决定问题探究教学模式能否成功的关键原则.(3)以情感为依托的原则.在教学过程中,教师要注重知识的传授,还要注重与学生之间的情感交流.构建和谐的课堂师生情感关系,对实施问题探究教学模式具有十分重要的促进作用,也是问题探究教学模式获得良好效果的保证.

二、在初中数学教学中有效运用问题探究教学模式的策略

初中数学课堂实施问题探究教学模式的目的主要是:为了促进学生综合能力的发展和提高课堂教学效率和质量.

1.准确把握学生实际的认知水平

任何教学方式要想获得良好的教学效果,都必须要遵循课堂教学中学生实际的认识结构才行.不然的话,就算再好的教学模式,也是不可能获得良好教学质量和效果的.学生实际的数学认知结构是整个问题探究模式的出发点.因此,在初中数学教学中运用问题探究教学模式时,教师一定要对学生现有的认知结构有准确的把握和认识,这样才能有针对性地对学生开展问题探究教学模式.

2.注重培养学生课堂教学中的问题意识

培养学生课堂教学中的问题意识是整个问题探索教学模式的核心内容,也是该教学模式能否成功的关键因素.因此,在初中数学教学中运用问题探究教学模式时,教师一定要认真研究,并运用多种方式,将要教授的学习内容转化为数学问题思维情境,让学生在问题思维模式下自主学习,真正遵循初中数学教学中“提出问题—建构数学—解决问题”的探究过程.例如,在讲“相似形”时,教师可以设计这样一个问题情境:用多媒体播放埃及的金字塔,让学生观察大小金字塔的外形之间有什么相似之处,之间有什么联系.根据这个问题情境,教师可以设置如下两个问题:(1)根据相似形能否测出大金字塔的高度?(2)相似形各边比例是否相等?各个对应的角是否相等?为什么?让学生自己去寻求解答.通过教师创设的这种问题情境,再由学生自主去探索,这种让学生亲身去经历提出问题、解决问题、应用 反思 的过程,就能使学生切实感受到在探索中学习的快乐,而且这种模式也能使教师课堂教学的知识目标、能力目标都得到较好的落实.

3.探索课堂师生之间的情感体验模式

初中数学教学中运用问题探究教学模式,不仅要关注学生数学学习的效果和质量,也要关注学生在数学课堂活动中所表现出来的情感与态度.因为问题探究式教学模式就是让学生在课堂中根据教师创设的问题进行探索、讨论和交流,这就使学生只有在态度上真正接受、喜欢和参与,才能使相关的讨论或探索获得良好的效果.因此,学生的情感态度对开展问题探究式教学是有重要影响的,也是教师需要认真去关注的一个问题.教师在运用问题探究式教学向学生传授知识的同时,也要采取各种方式在课堂上构建一个和谐、民主的师生情感关系,这对培养学生的学习兴趣是非常重要的.总之,本文对初中数学教学中有效运用问题探究式教学进行了一些理论和实践的探讨,其中最主要的就是对初中数学问题探究式教学如何开展的问题,无论采用探究什么形式和方法,最重要的是要适合学生的发展,扬长避短,最终使数学教学优点发挥到最大化,让这种探究模式成为教学的主流,让数学教学发展得更好,这对今后初中数学教学改革有非常重要的意义.

作者:李权 单位:江苏沭阳县马厂中学

同学们,你们想不想很快地判断出一个数能否被4、7、9、11、13等数整除?在学习了被2、3、5整除的数的特征后,我和同学们在课余时间摸索出了能被其他一些数整除的数的特征,总结如下,希望对同学们的学习有所帮助。 1、能被9整除的数的特征。一个数各个数位上的数字之和能被9整除,这个数就能被9整除。如29736,因为2+9+7+3+6=27,27能被9整除,所以29736也能被9整除,即: 29736÷9=3304。 2、能被4、25整除的数的特征。一个数的末两位的数能被4或25整除,这个数就能被4或25整除。例如:13120,末两位的数是20,20能被4整除,13120也能被4整除,即 13120÷4=3280。又如,4775,末两位的数是75,75能被25整除,4775也能被25整除,即 4775÷25=191。 3、能被8、125整除的数的特征。一个数的末三位的数能被8或125整除,这个数就能被8或125整除。如26720,末三位的数是720,720能被8整除,26720也能被8整除,即 26720÷8=3340。请你用这种方法判断一下58375能否被125整除。 4、 被7、11、13整除的数的特征。一个数的末三位数与末三位以前的数字所表示的数的差(大数减小数)能被7、11或13整除,这个数就能被7、11或13整除。如;57001,末三位数字表示的数是1,末三位以前的数是57,57—1=56,56能被7整除,所以57001也能被7整除,56不能被11、13整除,所以57001不能被11或13整除。又如:77168,因为168—77=91,91能同时被7和13整除,所以77168也能同时被7和13整除,即77168÷7=11024,77168÷13=5936。 另外,能被11整除的数还具有这样的特征:奇数位(指个位、百位、万位……)上的数字之和与偶数位(指十位、千位、十万位……)上的数字之和的差能被11整除,这个数就能被11整除。例如58234,奇数位上的数字之和是4+2+5=11,偶数位上的数字之和是3+8=11,11—11=0,0能被11整除,58234也能被11整除,58234÷11=5294。

数学小论文一 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 数学小论文二 各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域. 数学小论文三 数学是什么 什么是数学?有人说:“数学,不就是数的学问吗?” 这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。 历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。” 那么,究竟什么是数学呢? 伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。 数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。 纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。 应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。 高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。 体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。 广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。 各门科学的“数学化”,是现代科学发展的一大趋势。

相关百科

热门百科

首页
发表服务