从柯西1814年论文脚注增补内容和1825年的论文可以看出,他是通过长期刻苦的思考才认识到,引进复量后可以用简单形式表达实函数对之间的关系,1830-1838柯西在都灵和布拉格期间发表的工作是不连贯的,后来《分析与数学物理练习》(四卷,1840-1847)重新整理了这些工作。 他在1831年的论文中指出下述定理:函数f(z)可以按麦克劳林公式展开为幂级数,对所有z绝对值小于那些使函数或其导数无穷或不连续的z收敛(那时柯西知道的奇点只是我们现在称为极点的奇点),他证明这个级数逐项按绝对值小于一个收敛的几何级数,其和数为 ,其中Z是使f(z)不连续的第一个值,f(z)上划线是对所有绝对值为|Z|的z而言|f(z)|的最大值。他给出了函数可展为麦克劳林级数的一个有力易用的判别法则,它用了现在称为强级数的比较级数。他首先证明 再将分式展开证明定理。在定理中他假定了函数本身的连续性必推出导数的存在性和连续性,也曾经在定理叙述中补充到:收敛区域止于使函数及其导数无穷或不连续的z值,但他没有确信必须对导数加些条件,后来又把这句补充删掉了。在另一篇论文中,柯西把[解析的]f(z)=u+iv沿一个[单连通]区域边界曲线的积分和展布在这个区域上的积分联系起来,得到了一个与路径无关的基本定理新证明。他对一个矩形证明定理后推广到了不自交的闭曲线(魏尔斯特拉斯1842年独立得出)。柯西早期可能受到了格林1828年工作的影响,因为他将结果推广到了曲面上的区域。 到1846年他改变了对复函数的观点,不像1826年以前关心实积分及其求值,而是为复函数理论本身建立基础,他给出了关于沿一条任意闭曲线的积分 的新叙述:如果曲线包围一些极点,那么积分值是函数在这些极点上留数之和的2πi倍。 他还着手处理了多值函数的积分,并进一步考虑积分号下的多值函数。如果被积函数是一个代数方程或超越方程的根,如 (其中w^3=z),且如果沿着一条闭路径积分并又回到起点,那么被积函数就表示另外一个根,在这些情形中沿着闭路径积分的值依赖于起点,而沿着路径的延拓产生积分的不同值。但若环绕路径充分多次使ω回到原始值,那么积分的值将重复出现,是z的一个周期函数。积分的周期模不再像单值函数那样可以用留数表示。 柯西关于多值函数积分的概念依然是模糊的。1821年起的二十几年里,柯西独自发展了复函数理论,1843年才有法国数学家继续他的工作,皮埃尔·阿方斯·洛朗(Pierre Alphonse Laurent,1813-1854)在1843年得到了一个重要结果,他证明当一个函数在一孤立点上不连续时,必须用变数的升幂及降幂展开式来代替泰勒展开式,如果函数和其导数在一个圆环内单值且连续,这个圆环的中心是孤立点a,则函数以相反方向沿圆环的两个边界圆所取的积分适当展开,给出z的升幂及降幂展开式,它在圆环内收敛。这个洛朗展开式是 ,它是泰勒展开式的一个推广。魏尔斯特拉斯1841年得到该结果,但未发表。 皮瑟(Victor Alexandre Puiseux,1820 -1883)在1850年发表了关于多值函数的论文,论f(u,z)=0给出的复代数函数,其中f是u和z的多项式,他首次区分极点与支点(柯西未发觉其中区别)并引入本性奇点(一个无穷阶的极点)概念(魏尔斯特拉斯也曾独立提出),比如e^(1/z)=0在z=0。虽然柯西在1846年的论文中考虑了简单多值函数沿着包围支点的几条路径的变化,但皮瑟证明如果u1是f(u,z)=0的一个解,且z沿着某一条路径变化,则u1的最后值并不依赖于路径,只要路径不包围使u1为无穷或其它解(即支点)的任何点。 皮瑟还证明z的函数在支点z=a处附近的展开式必须含有z-a的分数次幂,于是改进了柯西把函数展开为麦克劳林级数的定理,他得到f(u,z)=0的解u的一个展开式,它不是展成z的幂而是z-c的幂,所以展开式在一个以c为中心,且不含极点或支点的圆内正确,然后皮瑟让c沿着一条路径变化,使那些收敛圆部分重叠,并使在一个圆内的展开式可以延伸到另一个圆。这样从u在一点的值开始,可以沿任何一条路径了解其变化。 通过皮瑟对多值函数、多值函数在复平面上的支点、以及多值函数积分的研究,皮瑟把柯西的函数论工作发展到第一阶段完毕,多值函数的理论中仍有困难需要克服。柯西写了一些关于多值函数的论文,试图跟上皮瑟的工作。虽然他引入分支切割的概念,但仍未区分极点和支点。代数函数及其积分的课题要交给黎曼继续进行。 柯西在1851年的论文中对复函数性质作了更谨慎的叙述,他肯定了复函数本身及其导数的连续性对幂级数展开式是必需的。他指出u作为z的函数,在z=a处的导数与x+iy平面上z趋于a的方向无关,且u满足u对x的二阶导+u对y的二阶导=0。在这篇论文中他还引入了新的术语,称一个永不为无穷的、恰有一个导数的单值函数为synectique,后来Charles Briot(1817-1822)和Jean-Claude Bouquet(1819-1885)用holomorphic(全纯)代替了synectique,并用meromorphic(亚纯)指在区域中只有极点的函数。