首页

职称论文知识库

首页 职称论文知识库 问题

陶哲轩论文发表期刊

发布时间:

陶哲轩论文发表期刊

质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。质数是与合数相对立的两个概念,二者构成了数论当中最基础的定义之一。基于质数定义的基础之上而建立的问题有很多世界级的难题,如哥德巴赫猜想等。截至2012年6月底,质数尚未完全找到通项公式。质数的无穷性的证明质数的个数是无穷的。最经典的证明由欧几里得证得,在他的《几何原本》中就有记载。它使用了现在证明常用的方法:反证法。具体的证明如下: ●假设质数只有有限的n个,从小到大依次排列为p1,p2,……,pn,设 N = p1 × p2 × …… × pn,那么,N+1是素数或者不是素数。 ●如果N+1为素数,则N+1要大于p1,p2,……,pn,所以它不在那些假设的素数集合中。 ●如果N+1为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公约数是1,所以N+1不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。 ●因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。 ●对任何有限个素数的集合来说,用上述的方法永远可以得到有一个素数不在假设的素数集合中的结论。 ●所以原先的假设不成立。也就是说,素数有无穷多个。 其他数学家也给出了他们自己的证明。欧拉利用黎曼ζ函数证明了全部素数的倒数之和是发散的,恩斯特·库默的证明更为简洁,Hillel Furstenberg则用拓扑学加以了证明。 对于一定范围内的素数数目的计算尽管整个素数是无穷的,仍然有人会问“100000以下有多少个素数?”,“一个随机的100位数多大可能是素数?”。素数定理可以回答此问题。 编辑本段著名问题哥德巴赫猜想在1742年给欧拉的信中哥德巴赫提出了以下猜想:任一大于2的整数都可写成三个质数之和。因现今数学界已经不使用“1也是素数”这个约定,原初猜想的现代陈述为:任一大于5的整数都可写成三个质数之和。欧拉在回信中也提出另一等价版本,即任一大于2的偶数都可写成两个质数之和。今日常见的猜想陈述为欧拉的版本。把命题"任一充分大的偶数都可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b"。1966年陈景润证明了"1+2"成立,即"任一充分大的偶数都可以表示成二个素数的和,或是一个素数和一个半素数的和"。今日常见的猜想陈述为欧拉的版本,即任一大于2的偶数都可写成两个素数之和,亦称为“强哥德巴赫猜想”或“关于偶数的哥德巴赫猜想”。 从关于偶数的哥德巴赫猜想,可推出任一大于7的奇数都可写成三个质数之和的猜想。后者称为“弱哥德巴赫猜想”或“关于奇数的哥德巴赫猜想”。 若关于偶数的哥德巴赫猜想是对的,则关于奇数的哥德巴赫猜想也会是对的。弱哥德巴赫猜想尚未完全解决,但1937年时前苏联数学家维诺格拉多夫已经证明充分大的奇质数都能写成三个质数的和,也称为“哥德巴赫-维诺格拉朵夫定理”或“三素数定理”,数学家认为弱哥德巴赫猜想已基本解决。 黎曼猜想黎曼猜想是关于黎曼ζ函数ζ(s)的零点分布的猜想,由数学家波恩哈德·黎曼(1826--1866)于1859年提出。德国数学家希尔伯特列出23个数学问题.其中第8问题中便有黎曼假设。素数在自然数中的分布并没有简单的规律。黎曼发现素数出现的频率与黎曼ζ函数紧密相关。黎曼猜想提出:黎曼ζ函数ζ(s)非平凡零点(在此情况下是指s不为-2、-4、-6等点的值)的实数部份是1/2。即所有非平凡零点都应该位于直线1/2 + ti(“临界线”(critical line))上。t为一实数,而i为虚数的基本单位。至今尚无人给出一个令人信服的关于黎曼猜想的合理证明。 在黎曼猜想的研究中,数学家们把复平面上 Re(s)=1/2 的直线称为 critical line。 运用这一术语,黎曼猜想也可以表述为:黎曼ζ 函数的所有非平凡零点都位于 critical line 上。 黎曼猜想是黎曼在 1859 年提出的。在证明素数定理的过程中,黎曼提出了一个论断:Zeta函数的零点都在直线Res(s) = 1/2上。他在作了一番努力而未能证明后便放弃了,因为这对他证明素数定理影响不大。但这一问题至今仍然未能解决,甚至于比此假设简单的猜想也未能获证。而函数论和解析数论中的很多问题都依赖于黎曼假设。在代数数论中的广义黎曼假设更是影响深远。若能证明黎曼假设,则可带动许多问题的解决。 孪生质数猜想1849年,波林那克提出孪生质数猜想(the conjecture of twin primes),即猜测存在无穷多对孪生质数。 猜想中的“孪生质数”是指一对质数,它们之间相差2。例如3和5,5和7,11和13,10016957和10016959等等都是孪生质数。 100以内的质数有2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,在100内共有25个质数。 费马数2^(2^n)+1被称为“17世纪最伟大的法国数学家”的费马,也研究过质数的性质。他发现,设Fn=2^(2^n)+1,则当n分别等于0、1、2、3、4时,Fn分别给出3、5、17、257、65537,都是质数,由于F5太大(F5=4294967297),他没有再往下检测就直接猜测:对于一切自然数,Fn都是质数。这便是费马数。费马死后67年,25岁的瑞士数学家欧拉证明:F5是一个合数。 以后的Fn值,数学家再也没有找到哪个Fn值是质数,全部都是合数。目前由于平方开得较大,因而能够证明的也很少。现在数学家们取得Fn的最大值为:n=1495,其位数多达10^10584位,当然它尽管非常之大,但也不是个质数。 梅森质数17世纪还有位法国数学家叫梅森,他曾经做过一个猜想:2^p-1 ,当p是质数时,2^p-1是质数。他验算出了:当p=2、3、5、7、17、19时,所得代数式的值都是质数,后来,欧拉证明p=31时,2^p-1是质数。 p=2,3,5,7时,2^p-1都是素数,但p=11时,所得2047=23×89却不是素数。 还剩下p=67、127、257三个梅森数,由于太大,长期没有人去验证。梅森去世250年后,美国数学家科勒证明,2^67-1=193707721×761838257287,是一个合数。这是第九个梅森数。20世纪,人们先后证明:第10个梅森数是质数,第11个梅森数是合数。质数排列得杂乱无章,也给人们寻找质数规律造成了困难。 现在,数学家找到的最大的梅森质数是2^43112609-1。 编辑本段相关定理素数定理素数定理描述素数素数的大致分布情况。 素数的出现规律一直困惑著数学家。一个个地看,素数在正整数中的出现没有什么规律。可是总体地看,素数的个数竟然有规可循。对正实数x,定义π(x)为不大于x的素数个数。数学家找到了一些函数来估计π(x)的增长。以下是第一个这样的估计。 π(x)≈x/ln x 其中ln x为x的自然对数。上式的意思是当x趋近∞,π(x) 和x/ln x的比趋 近1(注:该结果为高斯所发现)。但这不表示它们的数值随着x增大而接近。 下面是对π(x)更好的估计: π(x)=Li (x) + O (x e^(-(ln x)^(1/2)/15),当 x 趋近∞。 其中 Li(x) = ∫(dt/ln x2,x),而关系式右边第二项是误差估计。 素数定理可以给出第n个素数p(n)的渐近估计:p(n)~n/ln n. 它也给出从整数中抽到素数的概率。从不大于n的自然数随机选一个,它是素数的概率大约是1/ln n。 这定理的式子於1798年法国数学家勒让德提出。1896年法国数学家哈达玛(Jacques Hadamard)和比利时数学家普森(Charles Jean de la Vallée-Poussin)先後独立给出证明。证明用到了复分析,尤其是黎曼ζ函数。 因为黎曼ζ函数与π(x)关系密切,关于黎曼ζ函数的黎曼猜想对数论很重要。一旦猜想获证,便能大大改进素数定理误差的估计。1901年瑞典数学家Helge von Koch证明出,假设黎曼猜想成立,以上关系式误差项的估计可改进为 :π(x)=Li (x) + O (x^(1/2) ln x) 至於大O项的常数则还未知道。素数定理有些初等证明只需用数论的方法。第一个初等证明於1949年由匈牙利数学家保罗·艾狄胥(“爱尔多斯”,或“爱尔多希”)和挪威数学家阿特利·西尔伯格合作得出。 在此之前一些数学家不相信能找出不需借助艰深数学的初等证明。像英国数学家哈代便说过素数定理必须以复分析证明,显出定理结果的「深度」。他认为只用到实数不足以解决某些问题,必须引进复数来解决。这是凭感觉说出来的,觉得一些方法比别的更高等也更厉害,而素数定理的初等证明动摇了这论调。Selberg-艾狄胥的证明正好表示,看似初等的组合数学,威力也可以很大。 但是,有必要指出的是,虽然该初等证明只用到初等的办法,其难度甚至要比用到复分析的证明远为困难。 算术基本定理任何一个大于1的自然数N,都可以唯一分解成有限个质数的乘积 N=(P_1^a1)*(P_2^a2)......(P_n^an) , 这里P_1

记得,如今的他有着非常辉煌的成就。在自己的专业领域上发展的非常的好。

爱因是个探索科技第一人,一个只有学点人祘个屁,怎W。

现在的他依然生活十分的美满,娶了一个小他三岁的妻子。

陶哲轩发表的论文

现在的他依然生活十分的美满,娶了一个小他三岁的妻子。

记得,如今的他有着非常辉煌的成就。在自己的专业领域上发展的非常的好。

北大的韦东奕大神与陶哲轩两人都是数学界的天才,两人都有非同一般的天赋,都有相似的经历,都有相近的研究领域,但是陶哲轩是数学界的前辈,也提出了“压缩感知”理论,目前成就还在韦神之上。

1、获得奥林匹克竞赛金牌时年纪陶哲轩更小。

1975年出生的陶哲轩,是澳大利亚籍华人,13岁获得国际数学奥林匹克竞赛金牌,比获得同样奖牌的“韦神”年纪还要小。

2、获得博士学位时间韦神更少。

陶哲轩从拿到学士学位到博士毕业,用了5年,而韦神则用的是4年。从这一点看,韦神用时更短。韦神在北京大学是“微分方程教研室”研究员,陶哲轩的研究方向也有“非线性偏微分方程”。

陶哲轩科研成就:

陶哲轩是调和分析、偏微分方程、组合数学、解析数论、代数数论等接近10个重要数学研究领域里的大师级数学家。

陶哲轩在应用数学研究领域也很有成就,如与他人共同提出了一种新的信息获取指导理论(即:数字压缩成像技术)。

该理论一经提出,就在信息论、信号和图像处理、医疗成像、模式识别、地质勘探、光学和雷达成像、无线通信等领域受到关注,并被美国《技术评论》杂志评为2007年度“十大突破性技术”。

2015年9月17日,陶哲轩宣布证明了保罗·埃尔德什(Erd s Pál)在1932年提出的埃尔德什差异问题(the Erdós discrepancy problem)存在,这是个困扰学术界80多年的问题。

数学家陶哲轩,5岁学微积分,12岁奥赛金牌,31岁菲尔兹奖,所获奖项多不胜数主要奖项Salem Prize(2000)博谢纪念奖(2002)Clay Research Award(2003)Australian Mathematical Society Medal(2005)Ostrowski Prize(2005)SASTRA拉马努金奖(2006)Levi L.Conant Prize(2005)菲尔兹奖(2006)麦克阿瑟奖(2007)Fellow of the Royal Society(2007)Alan T. Waterman Award(2008)Onsager Medal(2008)King Faisal International Prize(2010)Nemmers Prize in Mathematics(2010)Polya Prize(2010)克拉福德奖(2012)Joseph I. Lieberman Award(2013)菲尔茨奖章2006年5月22日至30日,第25届国际数学家大会在西班牙马德里举行。该大会每四年举行一次,大会开幕式上专为40岁以下杰出数学家颁发的菲尔茨奖,则被誉为“数学界的诺贝尔奖”。因陶哲轩在调和分析方面的研究成果,获得了本届菲尔茨奖。西班牙国王卡洛斯一世向陶哲轩颁发菲尔茨奖。虽然是本次最年轻的获奖者,但陶哲轩已发表了超过80篇论文。 他也成为继1982年首位华裔数学家丘成桐教授获菲尔茨奖后,获此殊荣的第二位华人。获奖时刚满31岁的陶哲轩,不仅是本次菲尔茨奖得主中最年轻的一位,同时也是第一位获得菲尔茨奖的澳大利亚人。澳洲两家博物馆请求永久陈列他的照片,他也是2007年澳洲风云人物的最后人选之一。艾伦·沃特曼奖2008年4月10日,美国国家科学基金会(NSF)在其官方网站宣布,2008年的艾伦·沃特曼奖(Alan T. Waterman Award)授予加州大学洛杉矶分校的华人数学家陶哲轩。值得一提的是,2012年获得该奖项的是加州大学伯克利分校的华裔学者杨培东。文章指出,陶哲轩杰出的研究成果已经对许多数学领域产生了巨大影响。陶哲轩于5月6日美国国务院的一次宴会上正式得到该奖。科学突破奖2014年6月23日,突破奖基金会揭晓了2014年数学突破奖的获奖名单,加州大学洛杉矶分校的陶哲轩,因调和分析、组合论、偏微分方程及解析数论等众多突破获奖。高等研究院的Richard Taylor,因自守形式理论的众多突破获奖。获得了300万美元的巨奖。突破奖是由Google的布林夫妇、阿里的马云夫妇、投资人Yuri Milner夫妇及Facebook扎克伯格夫妇等人联合发起并提供资助的一个奖项。该奖旨在表彰将科学作为一生事业并取得重大突破的科学家,每位获奖者将获得300万美元。颁奖仪式于2014年11月举行。而这5人也将组成评选委员会,选出明年的获奖者。 2015年9月17日,他宣布证明了保罗·埃尔德什(Erd s Pál)在1932年提出的埃尔德什差异问题存在,这是个困扰学术界80多年的问题。

陶哲轩发表错误论文

爱因是个探索科技第一人,一个只有学点人祘个屁,怎W。

我觉得不能,是因为他的计算方式非常的复杂,而且让人看了以后也很难理解。

不能。因为陶哲轩的逻辑难题,具有很强的逻辑性,而且深奥难懂,所以普通人看不懂。

记得,如今的他有着非常辉煌的成就。在自己的专业领域上发展的非常的好。

陶哲轩发表过的论文

我父母告诉我,我两岁时就对数字着迷了,我那时就试图教别人用数字积木计算。” 陶哲轩的导师、沃尔夫奖获得者埃利亚斯·施泰因曾表示,陶哲轩是百年难遇的奇才。 在本月22日的国际数学家大会开幕式上,当国际数学联盟主席鲍尔宣布本届菲尔茨奖得主名单时,大屏幕上出现了一张华人面孔,他就是澳大利亚华裔数学家陶哲轩。 陶哲轩因为在调和分析方面的研究成果而获此殊荣,他也成为继1982年首位华裔数学家丘成桐教授获菲尔茨奖后,获此殊荣的第二位华人。 刚于上月满31岁的陶哲轩,不仅是本次菲尔茨奖得主中最年轻的一位,同时也是第一位获得菲尔茨奖的澳大利亚人。 国际数学家大会是最高水平的全球性数学科学学术会议,被誉为国际数学界的“奥林匹克”。大会颁发的菲尔茨奖,被誉为“数学界的诺贝尔奖”。虽然是本次最年轻的获奖者,但陶哲轩已发表了超过80篇论文。 鉴于在调和分析方面的研究成果,他获得了本届菲尔茨奖。在接受国际数学家大会新闻机构的专访时,陶哲轩说在得知获得菲尔茨奖后一直不敢相信,“这个奖对我来说是莫大的荣誉”。 22日,陶哲轩和其他两位出席的获奖者——俄罗斯的奥昆科夫以及法国的维尔纳,在如雷的掌声中从西班牙国王卡洛斯一世手中领过奖章。获奖者每人还将获得1500美元奖金。 陶哲轩在获奖后鼓励大家说:“我想培养对数学的兴趣最重要的一点就是有能力和自由跟数学一起玩——给自己找些小挑战,设计一些小游戏等。”他还说:“我父母告诉我,我两岁时就对数字着迷了,我那时就试图教别人用数字积木计算。” 他的纪录至今无人能破 据澳大利亚墨尔本大学教授高德里称,陶哲轩从小就展现出了惊人的数学天分,他两岁就会加减法、7岁就学微积分、8岁开始念中学、12岁就在大学里研究数学,16岁大学毕业。1986年、1987年和1988年,陶哲轩三次成为国际数学奥林匹克最年轻的参赛者,依次赢得铜牌、银牌和金牌。他未到13岁就赢得金牌的纪录至今没有人能打破。 陶哲轩于1992年至1996年在美国普林斯顿大学攻读研究生,并于21岁时获得博士学位。年仅24岁时他就成为加州大学洛杉矶分校的终身数学教授。 陶哲轩此前曾获得多个学术大奖,2000年获颁塞勒姆奖,2002年获颁博谢纪念奖,2003年获颁克雷研究奖,以表扬他对分析学的贡献。2005年,他获得利瓦伊·L·科南特奖。2004年,本·格林和陶哲轩发表一篇论文预印稿,宣称证明存在任意长的素数等差数列。 普林斯顿大学的菲尔茨奖获得者查尔斯·费弗曼回忆,“神童”陶哲轩12岁时被父亲领到普林斯顿大学接受考试。“我当时认为他比我遇到的其他神童多一点优势,现在看来是多很多。”他说。陶哲轩的导师、沃尔夫奖获得者埃利亚斯·施泰因曾表示,陶哲轩是百年难遇的奇才。 现在,陶哲轩被看作世界上最强大的“数学智囊”,他的学术研究涉及多个领域,包括调和分析、偏微分方程、组合数学、分析数论和表示论。 不仅如此,陶哲轩还是一个优秀的团队合作者。费弗曼称,陶哲轩经常召集世界级的团队攻克难题,努力发挥每一个合作者的优势。“这是一种罕见的能力。”费弗曼说。 如今,数学家们争先让陶哲轩对他们研究的问题产生兴趣,他正在变成对失败研究的“救火员”。“如果你在一个问题上被卡住了,其中一个办法就是让陶哲轩对它感兴趣。”费弗曼说。 谦虚的他 在颁奖仪式上,陶哲轩教授表现得很谦虚,而且还坦承自己感到有点 “害怕”。这一点似乎将其东方人的传统美德诠释得淋漓尽致。 固执的他 如果有课堂上没弄明白的东西,不搞清楚他是不会罢休的。他常花大量时间去反复思考一些很简单的问题,直到彻底理解为止。 天才的他 陶哲轩在加州大学的同事说:“他就像莫扎特,数学就像从他的脑子中流出来一样,不过他却没有莫扎特的人格问题,大家都非常喜欢他。” 执著的他 陶哲轩执著地热爱着数学,他鼓励大家说:“培养对数学的兴趣的最重要的一点就是跟数学一起玩,给自己找些小挑战,设计一些小游戏等。” 三兄弟都有超人智商 音乐象棋数学都拿手 据报道,陶哲轩的父母都是中国香港移民,父亲陶象国是一名医生,母亲则是香港大学理科的高材生,曾在香港的中学任教。 陶哲轩智商高达220 陶哲轩智商高达220,而他的两个弟弟陶哲渊和陶哲仁也都是澳大利亚当地出了名的神童。兄弟三人的外貌与风格虽不尽相同,但智商都超过150。 陶哲轩的弟弟陶哲渊承继了家族的“天才”传统,先后在音乐、国际象棋和数学竞赛中获得多个奖项。两岁时的陶哲渊曾被诊断患有孤僻症,但后来进入澳大利亚阿德雷德大学同时修读数学及音乐双学位。陶哲渊曾表示,他只知道自己拥有这些才能,但并不知道为什么会有这些才能。 至于年纪最小,今年只有27岁的陶哲仁,智商也达到180,曾在澳大利亚国立大学修读理科及经济学双学位,并能熟练操作四种乐器。 作为这三个天才孩子的父亲,陶象国医生用“幸运”来形容自己的家庭,并用“快乐”形容自己的三个儿子。他说:“不管他们聪不聪明,我们只是给予他们一切我们所能办到的,而我的妻子更是辞去了数学教师的工作,以满足孩子的特别需求。” 数学天才陶哲轩档案 出生日期:1975年7月17日 出生地点:澳大利亚阿得雷德 16岁获得数学学士学位 17岁完成数学硕士课程 21岁成为普林斯顿数学博士 24岁任加州大学洛杉矶分校数学教授 曾获主要奖项: 1986~1988年依次夺得数学奥林匹克铜、银、金牌 2000年获塞勒姆奖 2002年获博谢纪念奖 2003年获克雷研究奖 2005年获利瓦伊·L·科南特奖

数学家陶哲轩,5岁学微积分,12岁奥赛金牌,31岁菲尔兹奖,所获奖项多不胜数主要奖项Salem Prize(2000)博谢纪念奖(2002)Clay Research Award(2003)Australian Mathematical Society Medal(2005)Ostrowski Prize(2005)SASTRA拉马努金奖(2006)Levi L.Conant Prize(2005)菲尔兹奖(2006)麦克阿瑟奖(2007)Fellow of the Royal Society(2007)Alan T. Waterman Award(2008)Onsager Medal(2008)King Faisal International Prize(2010)Nemmers Prize in Mathematics(2010)Polya Prize(2010)克拉福德奖(2012)Joseph I. Lieberman Award(2013)菲尔茨奖章2006年5月22日至30日,第25届国际数学家大会在西班牙马德里举行。该大会每四年举行一次,大会开幕式上专为40岁以下杰出数学家颁发的菲尔茨奖,则被誉为“数学界的诺贝尔奖”。因陶哲轩在调和分析方面的研究成果,获得了本届菲尔茨奖。西班牙国王卡洛斯一世向陶哲轩颁发菲尔茨奖。虽然是本次最年轻的获奖者,但陶哲轩已发表了超过80篇论文。 他也成为继1982年首位华裔数学家丘成桐教授获菲尔茨奖后,获此殊荣的第二位华人。获奖时刚满31岁的陶哲轩,不仅是本次菲尔茨奖得主中最年轻的一位,同时也是第一位获得菲尔茨奖的澳大利亚人。澳洲两家博物馆请求永久陈列他的照片,他也是2007年澳洲风云人物的最后人选之一。艾伦·沃特曼奖2008年4月10日,美国国家科学基金会(NSF)在其官方网站宣布,2008年的艾伦·沃特曼奖(Alan T. Waterman Award)授予加州大学洛杉矶分校的华人数学家陶哲轩。值得一提的是,2012年获得该奖项的是加州大学伯克利分校的华裔学者杨培东。文章指出,陶哲轩杰出的研究成果已经对许多数学领域产生了巨大影响。陶哲轩于5月6日美国国务院的一次宴会上正式得到该奖。科学突破奖2014年6月23日,突破奖基金会揭晓了2014年数学突破奖的获奖名单,加州大学洛杉矶分校的陶哲轩,因调和分析、组合论、偏微分方程及解析数论等众多突破获奖。高等研究院的Richard Taylor,因自守形式理论的众多突破获奖。获得了300万美元的巨奖。突破奖是由Google的布林夫妇、阿里的马云夫妇、投资人Yuri Milner夫妇及Facebook扎克伯格夫妇等人联合发起并提供资助的一个奖项。该奖旨在表彰将科学作为一生事业并取得重大突破的科学家,每位获奖者将获得300万美元。颁奖仪式于2014年11月举行。而这5人也将组成评选委员会,选出明年的获奖者。 2015年9月17日,他宣布证明了保罗·埃尔德什(Erd s Pál)在1932年提出的埃尔德什差异问题存在,这是个困扰学术界80多年的问题。

分类: 教育/科学 >> 科学技术 解析: Terence Tao(陶哲轩),在ICM 2002上做过一小时报告, 2006年Fields Medal的热门人选,2003年的Clay奖得主。是IMO(国际数学奥林匹克)历史上最年轻的金牌选手(1988年,13岁)。学调和分析和PDE的可以到Tao的Home Page(math.ucla.edu/~tao/)上去看看他的List of Publications——真是惊人的多产。他的中文名字是陶哲轩,虽然他一句中文都不会讲。下面的短文转自UCLA(加州大学洛杉矶分校)的主页,见 ucla.edu/spotlight/archive/_2000_2001/fac0900_tao 从香港移民到澳大利亚。生于1975年,8岁上高中。连续参加了三届IMO。 1986年,在华沙,11岁的Tao就获得了铜牌; 1987年,在哈瓦那,他获得银牌; 1988年,堪培拉,他终获金牌。关于这一点,见amt.canberra.edu.au/olympian 1992年17岁的Tao在Flinders University取得学士学位,并且是First ClassHons。其后获Fulbright Postgraduate Student Award,去Princeton University,他的导师是Wolf奖获得者E. M. Stein。 Stein说过Tao是百年难遇的奇才(在杭州ICM 2002"调和分析及其应用"卫星会议上听同行们讲的,未经证实)。 20岁,获得博士学位,UCLA(加州大学洛杉矶分校)助教。 24岁, UCLA full professor(正教授). BTW: Tao的大师兄Charles Fefferman是更加了不起的人物: 20岁在Princeton获Ph.D, 22岁在University of Chicago成为美国历史上最年轻的Full Professor, 29岁获Fields Medal。 参考: upcxin.bokee/blog/1252769 wiki: 陶哲轩陶哲轩(Terence Tao,小名Terry,1975年7月17日生于澳大利亚阿德莱德),是中国裔数学家,主要研究调和分析、偏微分方程、组合数学、分析数论和表示论。从1992年至1996年,他是普林斯顿大学研究生,指导教授是埃利亚斯·施泰因(Elias Stein)。他现在为加洲大学洛杉矶分校的终身数学教授,并与妻子劳拉(Laura)和儿子威廉(William)在洛杉矶居住。 研究和奖项 在1986年、1987年和1988年,陶哲轩是国际数学奥林匹克最年轻的参赛者,依次赢得铜牌、银牌和金牌。他未到13岁已赢得金牌,这纪录还没有人打平。 他在2000年获颁塞勒姆奖(Salem),2002获颁博谢纪念奖(Bôcher),和在2003年获颁克雷研究奖,以表扬他对分析学的贡献,当中包括挂谷猜想和wave map。在2005年,他获得利瓦伊·L·科南特奖(Levi L. Conant)(获奖者还有艾伦·克努森(Allen Knutson))。 在2004年,本·格林(Ben Green)和陶哲轩发表一篇论文预印稿,宣称证明存在任意长的素数等差数列。 尽管享有“数学神童”之称,尽管11岁至13岁时各获国际奥林匹克数学竞赛铜、银和金牌,尽管21岁就获普林斯顿大学博士学位、24岁即为加州大学教授,尽管2000年曾获塞勒姆奖、2003年获克雷基金会奖,但在得知自己获菲尔茨奖后,陶哲轩甚至不敢相信———“这个奖对我来说是莫大的荣誉”。 前天国际数学家大会上的菲尔茨奖得主陶哲轩,两岁时已成了教小朋友们数数的老师。 这位当之无愧的“数学神童”,这位刚满31周岁的华裔数学家,是今年问鼎这项“数学诺贝尔奖”的四人中的最年轻、也是继24年前丘成桐后获此殊荣的第二位华人。前天,西班牙首都马德里。四年一次的国际数学家大会在此召开。在来自120多个国家和地区的近4000名数学家的注目下,一位儒雅清秀的年轻华人,从国际数学联盟主席约翰·鲍尔手中,接过菲尔茨奖———这个全球数学界的诺贝尔奖。 他,就是年仅31岁的华裔数学家陶哲轩。 菲尔茨是个什么奖——— 了不起的“数学诺贝尔” “菲尔茨奖是‘数学诺贝尔奖’,这是一个了不起的奖项。”昨日采访中,中科院研究员、当代数学大家吴文俊说。 正面,希腊数学家阿基米德的目光深邃;背面,镌刻“全世界的数学家们,为知识作出新的贡献而自豪。”就是这枚金质奖章及1500美元的奖金,构成了菲尔茨奖的全部奖品。似乎,物质价值远非缺席数学的诺贝尔奖可比;然而,这个数学大奖无论从其权威性、国际性或学术影响而言,都无愧为数学界的诺贝尔奖。 首先,它由国际数学联盟颁发,在每隔四年才召开一次的国际数学家大会上颁发。中科院院士、北大数学研究所所长张恭庆告诉记者:“这是全世界顶尖数学家的联盟。”其次,每届菲尔茨奖最多同时授予4人,从1936年首度颁奖以来,包括本届4位得主在内全球仅有49人获奖。再次,它是窥视现代数学主流面貌的很好“窗口”,著名数学家、布尔巴基学派创始人之一丢东涅1978年在论文《论纯数学的当前趋势》中,全面概述了近20年来纯数学各分支的前沿;在他列举的13个目前处于主流的数学分支中,12个的部分重要工作均由菲尔茨奖获得者完成。 正因此,今年因调和分析方面的研究成果获此殊荣的陶哲轩,尽管有“数学神童”之称,尽管年少时获奖多多,但在得知自己获菲尔茨奖后,他甚至一直都不敢相信———“这个奖对我来说是莫大的荣誉”。 菲尔茨与沃尔夫谁是“老大”——— 并驾最高荣誉 数学界最高荣誉,究竟是菲尔茨奖还是沃尔夫奖? 还记得前年年底数学大师陈省身辞世后,本报曾专访其弟子吴文俊,说起陈先生获过的沃尔夫奖,也称这是“全世界数学的最高奖”。对此,中科院数学机械化研究中心主任高小山说:“菲尔茨和沃尔夫是数学界传统的两个大奖,前者是成果奖,后者是终身成就奖。” 吴文俊说:“菲尔茨奖历届都是颁给40岁以下的优秀年轻人。这么多年来只有一个例外,就是安德鲁·怀尔斯。他成功破解了一个困惑世界数学界长达3个多世纪的难题“费马大定理”,而且他证明费马大定理成立时,年龄刚刚超过40岁,所以就得到了一个菲尔茨奖颁发以来唯一的特别奖。” 与菲尔茨奖并驾齐驱的国际数学界大奖沃尔夫奖,获奖者确实都较为年长。吴文俊说:“虽然陈省身教授最著名的两篇论文都是完成于30多岁时,但他的学术成果是之后才被肯定的,所以他没拿成菲尔茨奖,拿的是沃尔夫奖。我想,恐怕诺贝尔当时设奖时还不太了解数学,所以没设数学诺贝尔奖,如果有,陈先生肯定能得。” 在数学界广为人知的,还有这样一段师徒缘:1982年首位获得菲尔茨奖的华人、毕业于香港中文大学数学系的丘成桐,他的指导教师正是这位唯一获得过沃尔夫奖的华人———陈省身。 陶哲轩的获奖理由——— 完美成就多方面 吴文俊说:“陶哲轩这个人是公认了不起的。我虽然没和他见过面,但在很多座谈会上时常听到别人赞叹他,提起他多方面的成就。” 高小山说:“应该说陶哲轩这次得奖是基于他多方面的成就,并不仅仅在于他调和分析领域的研究成果,据我所知,他证明了在素数中存在任意长的等差数列,解决了一个难题。” 众所周知,如果一个自然数只有1和它本身可以整除它,那么这个数就是素数。研究素数也许并不能带来什么直接的实际利益,但作为数论中最基本的课题之一,许多数学问题都与其紧密相关,例如素有“数学皇冠上的明珠”之称的哥德巴赫猜想。素数在纯数学及其应用中都起着重要作用,对它的研究一直在众多方面推动其他学科不断向前发展。 张恭庆说:“菲尔茨奖看重的是原创思想,陶哲轩这次获奖主要是他在数论、调和分析和组合分析的研究成果。” 南大数学系博士研究生邱华则对陶哲轩将调和分析、遍历理论和数论的完美结合十分推崇。他说:“因为调和分析内容丰富,一般学生要到研究生阶段,花1到2年时间潜心学习,才能稍稍学成。从某种程度上说,它是一种数学功力的代表。” 同为南大数学系博士研究生的郭嵩,曾与导师就陶哲轩的一篇论 *** 过深入研究。1977年出生的他对仅年长2岁的陶哲轩佩服不已:“也许这篇文章只是他众多论文中不太起眼的一篇,但对我们来说,他完成得实在太出色了。其实,早在2002年,数学界就预测陶哲轩会获得菲尔茨奖,他的导师、沃尔夫奖获得者埃利亚斯·施泰因还曾公开称赞他是百年难遇的数学奇才,因此这次获奖完全在预料中。” 陶哲轩其人其事——— 数学莫扎特 “特里(陶哲轩的英文昵称)就是数学界的莫扎特,才华横溢。”加州大学洛杉矶分校前数学系主任约翰·加内特这样评价。 陶哲轩获奖的消息,已赫然高悬于这所他所任教的大学主页上。在他年轻俊朗的脸庞后,一行大标题缓缓移出:“超级巨星陶哲轩教授,成为本校荣膺‘数学界诺贝尔奖’之第一人”。 学校物理科学院院长、数学系教授托尼·陈称赞:特里这样的天才百年难得一遇,他解决了数学领域中困扰别人多时的诸多问题;他对研究领域的跨越,好比一名优秀的心脏专家,同时在脑外科方面又卓有建树,而更令人赞叹的是,他是那样的年轻。 加内特说:特里总能将复杂的数学问题化繁为简,他称得上是当今世界最好的数学家;而且他的合作能力很强,世界上最出色的数学家都喜欢和特里一同工作,他的合作者能够组建成世界上最强大的数学系。 学校现任数学系主任克里斯托弗·希勒教授这样说:“来自美国各个州,乃至中国和罗马尼亚的优秀毕业生,都慕名前来我们学校拜陶哲轩为师。” 这位华裔数学奇才1975年7月17日出生于澳大利亚,2岁时就迷上了数字,甚至还拿着拼块教小朋友们学数数;7岁就在高中学习微积分,9岁便已达到大学微积分的水平;11岁,他在国际数学奥林匹克竞赛中赢得铜牌,小荷始露尖尖角;接下来两年,更先后获得国际奥林匹克数学竞赛银牌和金牌,并成为最年轻的金牌得奖者,此后这项纪录在澳大利亚一直无人能平。 可这些,还仅仅是他神奇的开始。接下来的履历表上,依然一片耀眼光芒:21岁,获得普林斯顿大学博士头衔;24岁,成为加州大学洛杉矶分校正教授,研究领域涉及调和分析、偏微分方程、组合数学、分析数论…… 但陶哲轩却说:“我并没有任何超能力。”他把自己的成功解释为策略的胜利:“许多人面对数学问题时,总是想着直接的解决方式,但是他们获得的只是答案。而我计算一些细节之前,更喜欢研究策略,我更想知道如果我做了一些细微的改变,会发生什么?原来的方法仍然可行吗?”固执地刨根究底,执着地寻求创新,这也许就是陶哲轩的成功秘诀。 他们的梦想——— 中国要成为数学大国 中国这个决定用两条腿走路的巨人正在一面发展技术创新,一面加强基础研究。中国不但已在物理、化学等研究领域显示了实力,“而且在数学领域的进步更是令人惊叹”。 这就是本届国际数学家大会开幕之际,法国媒体在《世界数学界重新发牌》中援引了法国高等科学研究院院长布吉尼翁的话:中国目前的数学家人数还不多,但这支队伍很快将会壮大,因为中国已下决心发展数学研究,国家大量增加投入,并以极其优越的工作条件从世界各地吸引回大量的优秀人才。 “奖项可以算是一种衡量进步的标尺。”高小山说,“现在的学习条件好了,中国数学总体也在进步,也逐渐有一些人获得了国际数学奖项。”张恭庆也说:“中国数学界当然在进步中,中国数学家们在重要杂志中发表的文章、在国际大会上受邀发表演讲的次数都在不断增长。” 这个时候,相信许多人都会想起“陈省身梦想”———中国要成为数学大国。吴文俊说:“我们中国数学界现在进步,有潜力,年轻的数学家越来越多,成绩也多。这个梦想一定可以实现。” 这个梦想,也一直是丘成桐的心心念念。昨日,记者在第一时间分别致电他在国内的三个数学中心及哈佛大学的办公室,很遗憾,始终无法找到他。但他不久前在华师大办讲座时说的话,至今犹言在耳。在谈及对中国基础数学研究的看法时,他说:“基础研究一定要一步一步走,不能急功近利,不能浮躁。” 巧的是,采访末了,吴文俊也说:“只要我们念念不忘,埋头苦干,脚踏实地,这个梦想就一定会水到渠成。” 曾经的“数学神童” 陈省身:1911年生于浙江嘉兴,15岁考入南开大学,21岁在《清华大学理科报告》上发表第一篇学术论文,23岁获硕士学位,25岁获德国汉堡大学博士学位,38岁起担任芝加哥大学的几何学教授,并在十年中复兴了美国的微分几何,形成美国的微分几何学派。 高斯:1777年生于德国不伦瑞克,有“数学王子”的美誉,和牛顿、阿基米德被誉为有史以来的三大数学家。15岁进入不伦瑞克学院,17岁得到了一个数学史上极重要的结果———《正十七边形尺规作图之理论与方法》。 莱布尼兹:1646出生于德国莱比锡。15岁在莱比锡大学学法律,期间对数学产生浓厚兴趣。20岁发表了第一篇数学论文。从此开始对无穷小算法的研究,独立创立微积分的基本概念与算法,和牛顿共同奠定微积分学。 拉马努金:1888年出生于印度,二十世纪国际数学界公认的数学奇才,对数论的众多领域作出了开创性贡献。32岁去世,身后留下近4000条未经证明的数学公式和定理,证明它们成为国际数学界的一个重大挑战。

陶哲轩十岁发表论文

陶哲轩现在过得很好,他还担任过第二届“丘成桐中学数学奖”的评审工作,又到清华大学做过演讲,是公认的数学天才。

陶哲轩1975年出身于澳大利亚,他的父母都是香港大学的高材生,1972年全家移民到澳大利亚,陶哲轩很小的时候就展现出了超强的天分,他三岁的时候就上了私立小学,仅仅一年半的时间里,陶哲轩就学习完了小学的所有课程。陶哲轩在七岁的时候就开始自学微积分,八岁就升到了中学读书,由于数学成绩过于出色,甚至在澳大利亚引起了轰动。值得一提的是,陶哲轩八岁时曾经参加美国高考,考出了惊人的760分的成绩,要知道,满分只有800分,而且很少有人能够超过750分的,可见陶哲轩的确是一位天才。

此后,陶哲轩十三岁的时候拿到了国际奥数的金牌,十四岁的时候就进入大学学习,两年后即获得学士学位,十七岁取得大学硕士学位,二十一岁时拿到了普林斯顿大学博士学位。三年后,陶哲轩被加里福利亚大学洛杉矶分校聘为正教授,他也是该校有史以来最年轻的正教授。不仅如此,陶哲轩在2006年还获得了麦克阿瑟基金天才奖和数学界的“诺贝尔奖”菲尔兹奖,仅仅两年之后,他又获得了美国国家科学基金会(NSF)的艾伦沃特曼奖,可以说是天才中的天才。值得一提的是,陶哲轩还参加了智商测试,他的最终得分达到了230分,甚至比爱因斯坦的165分还要高。

事实上,陶哲轩也是澳大利亚唯一一位荣获数学最高荣誉“菲尔兹奖”的澳籍华人数学教授,也是第二位获得此项荣誉的华人,在他前面的则是著名的数学家丘成桐。陶哲轩的主要研究领域是调和分析、偏微分方程、组合数学、解析数论,他在这些领域中都有着极高的建树,因此也被誉为“数学界的莫扎特”。陶哲轩也算是年少成名,都说“出名要趁早”,他也做到了这一点。不过,虽然年少成名,但是陶哲轩也没有“伤仲永”,他在成年之后也保持着旺盛的研究能力,得到了大量的荣誉,证明了自己当得起天才之名。

现在,陶哲轩已经四十五岁,虽然已经是中年,但是他的研究能力还是非常强的,在2009年的时候,他还来到中国,担任第二届“丘成桐中学数学奖”的评委,并且还在清华大学做了演讲。陶哲轩也的确是一位天才数学家,他在数学上有着极高的天赋,加之后天付出了远超常人的努力,所以才会取得如此高的成就。

总而言之,陶哲轩现在过得非常好。

他现在已经成为了我国科学院的院士,一直在为我国的科技发展做出自己的一份努力。

高智商、家庭良好教育与自身刻苦努力的完美结合,使陶哲轩在小学的时候就已经开始了对微积分的学习,在八岁的时候,就去参加了美国的高考,而且仅仅只差40分就是满分800了。五年后,陶哲轩又去参加了全球的数学竞赛,而且拿到了金牌,这个时候的他才只有13岁而已,就成了奥数竞赛历史上最年轻的金牌获得者,直到现在,这个记录还是没有人能够超越。1991年,陶哲轩在16岁的时候就获得了学士学位,一年后又拿到了硕士学位,更是在四年后晋升成为了博士。一路走来,陶哲轩的人生可以说是一帆风顺,步步开挂。1999年,陶哲轩24岁,被美国的加州大学聘请为教授,开启了自己的教育科研生涯。2006年,陶哲轩31岁,获得了数学界非常有名,很多人梦寐以求的菲尔茨奖,这个奖项可以说是“数学界的诺贝尔”了。2009年,陶哲轩以中国奥数总决赛面试官的身份回到了中国。并且在同年的12月,他接受了清华大学的邀请进行演讲,和清华学子们面对面交流,传授自己在数学方面的经验。现在的陶哲轩还是从事于教育事业,并且在数学领域不断探索出新,发表了许多著名论文。就在今年上半年,陶哲轩开设了专门的网课进行详细教学,让更多爱好数学的中国学生们在家里也能够学习他开设的春季课程,实现了知识跨国界分享。陶哲轩的自身经历给了我们很多的启示,即使先天不够完美,我们仍然可以通过后天勤奋弥补上去,所以遇到事情不能退缩,我们在平时就要有良好的学习习惯,只有这样,才能获得一个更完美的人生。

他现在很好,因为他的聪明才智,他在学校里非常受老师和同学们的喜爱,并且他的成绩非常优异,周围的家人和邻居对他都很喜欢,并且家长也很注重培养他的兴趣和特长,一家人过得非常幸福。

相关百科

热门百科

首页
发表服务