首页

> 学术论文知识库

首页 学术论文知识库 问题

逆变电源设计毕业论文

发布时间:

逆变电源设计毕业论文

以下均可参考,从参考网址进入,合适的话,给我加分!谢谢1.基于labVIEW虚拟滤波器的设计与实现 2.双闭环直流调速系统设计3.单片机脉搏测量仪 4.单片机控制的全自动洗衣机毕业设计论文电梯控制的设计与实现 6.恒温箱单片机控制7.基于单片机的数字电压表 8.单片机控制步进电机毕业设计论文9.函数信号发生器设计论文 变电所一次系统设计11.报警门铃设计论文 单片机交通灯控制13.单片机温度控制系统 通信系统中的接入信道部分进行仿真与分析15.仓库温湿度的监测系统 16.基于单片机的电子密码锁17.单片机控制交通灯系统设计 18.基于DSP的IIR数字低通滤波器的设计与实现19.智能抢答器设计 20.基于LabVIEW的PC机与单片机串口通信设计的IIR数字高通滤波器 22.单片机数字钟设计23.自动起闭光控窗帘毕业设计论文 24.三容液位远程测控系统毕业论文25.基于Matlab的PWM波形仿真与分析 26.集成功率放大电路的设计27.波形发生器、频率计和数字电压表设计 28.水位遥测自控系统 毕业论文29.宽带视频放大电路的设计 毕业设计 30.简易数字存储示波器设计毕业论文31.球赛计时计分器 毕业设计论文 数字滤波器的设计毕业论文机与单片机串行通信毕业论文 34.基于CPLD的低频信号发生器设计毕业论文变电站电气主接线设计 序列在扩频通信中的应用37.正弦信号发生器 38.红外报警器设计与实现39.开关稳压电源设计 40.基于MCS51单片机温度控制毕业设计论文41.步进电动机竹竿舞健身娱乐器材 42.单片机控制步进电机 毕业设计论文43.单片机汽车倒车测距仪 44.基于单片机的自行车测速系统设计45.水电站电气一次及发电机保护 46.基于单片机的数字显示温度系统毕业设计论文47.语音电子门锁设计与实现 48.工厂总降压变电所设计-毕业论文49.单片机无线抢答器设计 50.基于单片机控制直流电机调速系统毕业设计论文51.单片机串行通信发射部分毕业设计论文 52.基于VHDL语言PLD设计的出租车计费系统毕业设计论文53.超声波测距仪毕业设计论文 54.单片机控制的数控电流源毕业设计论文55.声控报警器毕业设计论文 56.基于单片机的锁相频率合成器毕业设计论文57.基于Multism/protel的数字抢答器 58.单片机智能火灾报警器毕业设计论59.无线多路遥控发射接收系统设计毕业论文 60.单片机对玩具小车的智能控制毕业设计论文61.数字频率计毕业设计论文 62.基于单片机控制的电机交流调速毕业设计论文63.楼宇自动化--毕业设计论文 64.车辆牌照图像识别算法的实现--毕业设计65.超声波测距仪--毕业设计 66.工厂变电所一次侧电气设计67.电子测频仪--毕业设计 68.点阵电子显示屏--毕业设计69.电子电路的电子仿真实验研究 70.基于51单片机的多路温度采集控制系统71.基于单片机的数字钟设计 72.小功率不间断电源(UPS)中变换器的原理与设计73.自动存包柜的设计 74.空调器微电脑控制系统75.全自动洗衣机控制器 76.电力线载波调制解调器毕业设计论文77.图书馆照明控制系统设计 78.基于AC3的虚拟环绕声实现79.电视伴音红外转发器的设计 80.多传感器障碍物检测系统的软件设计81.基于单片机的电器遥控器设计 82.基于单片机的数码录音与播放系统83.单片机控制的霓虹灯控制器 84.电阻炉温度控制系统85.智能温度巡检仪的研制 86.保险箱遥控密码锁 毕业设计变电所的电气部分及继电保护 88.年产26000吨乙醇精馏装置设计89.卷扬机自动控制限位控制系统 90.铁矿综合自动化调度系统91.磁敏传感器水位控制系统 92.继电器控制两段传输带机电系统93.广告灯自动控制系统 94.基于CFA的二阶滤波器设计95.霍尔传感器水位控制系统 96.全自动车载饮水机97.浮球液位传感器水位控制系统 98.干簧继电器水位控制系统99.电接点压力表水位控制系统 100.低成本智能住宅监控系统的设计101.大型发电厂的继电保护配置 102.直流操作电源监控系统的研究103.悬挂运动控制系统 104.气体泄漏超声检测系统的设计105.电压无功补偿综合控制装置 型无功补偿装置控制器的设计电机调速 频段窄带调频无线接收机109.电子体温计 110.基于单片机的病床呼叫控制系统111.红外测温仪 112.基于单片微型计算机的测距仪113.智能数字频率计 114.基于单片微型计算机的多路室内火灾报警器115.信号发生器 116.基于单片微型计算机的语音播出的作息时间控制器117.交通信号灯控制电路的设计 118.基于单片机步进电机控制系统设计119.多路数据采集系统的设计 120.电子万年历 121.遥控式数控电源设计 降压变电所一次系统设计 变电站一次系统设计 124.智能数字频率计 125.信号发生器126.基于虚拟仪器的电网主要电气参数测试设计 127.基于FPGA的电网基本电量数字测量系统的设计 128.风力发电电能变换装置的研究与设计 129.电流继电器设计 130.大功率电器智能识别与用电安全控制器的设计 131.交流电机型式试验及计算机软件的研究 132.单片机交通灯控制系统的设计 133.智能立体仓库系统的设计 134.智能火灾报警监测系统 135.基于单片机的多点温度检测系统 136.单片机定时闹钟设计 137.湿度传感器单片机检测电路制作 138.智能小车自动寻址设计--小车悬挂运动控制系统 139.探讨未来通信技术的发展趋势 140.音频多重混响设计 141.单片机呼叫系统的设计 142.基于FPGA和锁相环4046实现波形发生器 143.基于FPGA的数字通信系统 144.基于单片机的带智能自动化的红外遥控小车 145.基于单片机AT89C51的语音温度计的设计 146.智能楼宇设计 147.移动电话接收机功能电路 148.单片机演奏音乐歌曲装置的设计 149.单片机电铃系统设计 150.智能电子密码锁设计 151.八路智能抢答器设计 152.组态控制抢答器系统设计 153.组态控制皮带运输机系统设计 154..基于单片机控制音乐门铃 155.基于单片机控制文字的显示 156.基于单片机控制发生的数字音乐盒 157.基于单片机控制动态扫描文字显示系统的设计 158.基于LMS自适应滤波器的MATLAB实现 功率放大器毕业论文 160.无线射频识别系统发射接收硬件电路的设计 161.基于单片机PIC16F877的环境监测系统的设计 162.基于ADE7758的电能监测系统的设计 163.智能电话报警器 164.数字频率计 课程设计 165.多功能数字钟电路设计 课程设计 166.基于VHDL数字频率计的设计与仿真 167.基于单片机控制的电子秤 168.基于单片机的智能电子负载系统设计 169.电压比较器的模拟与仿真 170.脉冲变压器设计 仿真技术及应用 172.基于单片机的水温控制系统 173.基于FPGA和单片机的多功能等精度频率计 174.发电机-变压器组中微型机保护系统 175.基于单片机的鸡雏恒温孵化器的设计 176.数字温度计的设计 177.生产流水线产品产量统计显示系统 178.水位报警显时控制系统的设计 179.红外遥控电子密码锁的设计 180.基于MCU温控智能风扇控制系统的设计 181.数字电容测量仪的设计 182.基于单片机的遥控器的设计 电话卡代拨器的设计 184.数字式心电信号发生器硬件设计及波形输出实现 185.电压稳定毕业设计论文 186.基于DSP的短波通信系统设计(IIR设计) 187.一氧化碳报警器 188.网络视频监控系统的设计 189.全氢罩式退火炉温度控制系统 190.通用串行总线数据采集卡的设计 191.单片机控制单闭环直流电动机的调速控制系统 192.单片机电加热炉温度控制系统 193.单片机大型建筑火灾监控系统 接口设备驱动程序的框架设计 195.基于Matlab的多频率FMICW的信号分离及时延信息提取 196.正弦信号发生器 197.小功率UPS系统设计 198.全数字控制SPWM单相变频器 199.点阵式汉字电子显示屏的设计与制作 200.基于AT89C51的路灯控制系统设计 200.基于AT89C51的路灯控制系统设计 201.基于AT89C51的宽范围高精度的电机转速测量系统 202.开关电源设计203.基于PDIUSBD12和K9F2808简易USB闪存设计 204.微型机控制一体化监控系统205.直流电机试验自动采集与控制系统的设计 206.新型自动装弹机控制系统的研究与开发 207.交流异步电机试验自动采集与控制系统的设计208.转速闭环控制的直流调速系统的仿真与设计209.基于单片机的数字直流调速系统设计210.多功能频率计的设计信息移频信号的频谱分析和识别212.集散管理系统—终端设计213.基于MATLAB的数字滤波器优化设计214.基于AT89C51SND1C的MP3播放器215.基于光纤的汽车CAN总线研究216.汽车倒车雷达217.基于DSP的电机控制218.超媒体技术219.数字电子钟的设计与制作220.温度报警器的电路设计与制作221.数字电子钟的电路设计222.鸡舍电子智能补光器的设计223.高精度超声波传感器信号调理电路的设计224.电子密码锁的电路设计与制作225.单片机控制电梯系统的设计226.常用电器维修方法综述227.控制式智能计热表的设计228.电子指南针设计229.汽车防撞主控系统设计230.单片机的智能电源管理系统231.电力电子技术在绿色照明电路中的应用232.电气火灾自动保护型断路器的设计233.基于单片机的多功能智能小车设计234.对漏电保护器安全性能的剖析235.解析民用建筑的应急照明236.电力拖动控制系统设计237.低频功率放大器设计238.银行自动报警系统

电梯控制系统设计基于西门子PLC的电梯控制系统

液压伺服系统设计 液压伺服系统设计 在液压伺服系统中采用液压伺服阀作为输入信号的转换与放大元件。液压伺服系统能以小功率的电信号输入,控制大功率的液压能(流量与压力)输出,并能获得很高的控制精度和很快的响应速度。位置控制、速度控制、力控制三类液压伺服系统一般的设计步骤如下: 1)明确设计要求:充分了解设计任务提出的工艺、结构及时系统各项性能的要求,并应详细分析负载条件。 2)拟定控制方案,画出系统原理图。 3)静态计算:确定动力元件参数,选择反馈元件及其它电气元件。 4)动态计算:确定系统的传递函数,绘制开环波德图,分析稳定性,计算动态性能指标。 5)校核精度和性能指标,选择校正方式和设计校正元件。 6)选择液压能源及相应的附属元件。 7)完成执行元件及液压能源施工设计。 本章的内容主要是依照上述设计步骤,进一步说明液压伺服系统的设计原则和介绍具体设计计算方法。由于位置控制系统是最基本和应用最广的系统,所以介绍将以阀控液压缸位置系统为主。 全面理解设计要求 全面了解被控对象 液压伺服控制系统是被控对象—主机的一个组成部分,它必须满足主机在工艺上和结构上对其提出的要求。例如轧钢机液压压下位置控制系统,除了应能够承受最大轧制负载,满足轧钢机轧辊辊缝调节最大行程,调节速度和控制精度等要求外,执行机构—压下液压缸在外形尺寸上还受轧钢机牌坊窗口尺寸的约束,结构上还必须保证满足更换轧辊方便等要求。要设计一个好的控制系统,必须充分重视这些问题的解决。所以设计师应全面了解被控对象的工况,并综合运用电气、机械、液压、工艺等方面的理论知识,使设计的控制系统满足被控对象的各项要求。 明角设计系统的性能要求 1)被控对象的物理量:位置、速度或是力。 2)静态极限:最大行程、最大速度、最大力或力矩、最大功率。 3)要求的控制精度:由给定信号、负载力、干扰信号、伺服阀及电控系统零飘、非线性环节(如摩擦力、死区等)以及传感器引起的系统误差,定位精度,分辨率以及允许的飘移量等。 4)动态特性:相对稳定性可用相位裕量和增益裕量、谐振峰值和超调量等来规定,响应的快速性可用载止频率或阶跃响应的上升时间和调整时间来规定; 5)工作环境:主机的工作温度、工作介质的冷却、振动与冲击、电气的噪声干扰以及相应的耐高温、防水防腐蚀、防振等要求; 6)特殊要求;设备重量、安全保护、工作的可靠性以及其它工艺要求。 负载特性分析 正确确定系统的外负载是设计控制系统的一个基本问题。它直接影响系统的组成和动力元件参数的选择,所以分析负载特性应尽量反映客观实际。液压伺服系统的负载类型有惯性负载、弹性负载、粘性负载、各种摩擦负载(如静摩擦、动摩擦等)以及重力和其它不随时间、位置等参数变化的恒值负载等。 拟定控制方案、绘制系统原理图 在全面了解设计要求之后,可根据不同的控制对象,按表6所列的基本类型选定控制方案并拟定控制系统的方块图。如对直线位置控制系统一般采用阀控液压缸的方案,方块图如图36所示。图36 阀控液压缸位置控制系统方块图表6 液压伺服系统控制方式的基本类型伺服系统 控制信号 控制参数 运动类型 元件组成机液电液气液电气液 模拟量数字量位移量 位置、速度、加速度、力、力矩、压力 直线运动摆动运动旋转运动 1.阀控制:阀-液压缸,阀-液压马达2.容积控制:变量泵-液压缸;变量泵-液压马达;阀-液压缸-变量泵-液压马达3.其它:步近式力矩马达 动力元件参数选择 动力元件是伺服系统的关键元件。它的一个主要作用是在整个工作循环中使负载按要求的速度运动。其次,它的主要性能参数能满足整个系统所要求的动态特性。此外,动力元件参数的选择还必须考虑与负载参数的最佳匹配,以保证系统的功耗最小,效率高。 动力元件的主要参数包括系统的供油压力、液压缸的有效面积(或液压马达排量)、伺服阀的流量。当选定液压马达作执行元件时,还应包括齿轮的传动比。 供油压力的选择 选用较高的供油压力,在相同输出功率条件下,可减小执行元件——液压缸的活塞面积(或液压马达的排量),因而泵和动力元件尺寸小重量轻,设备结构紧凑,同时油腔的容积减小,容积弹性模数增大,有利于提高系统的响应速度。但是随供油压力增加,由于受材料强度的限制,液压元件的尺寸和重量也有增加的趋势,元件的加工精度也要求提高,系统的造价也随之提高。同时,高压时,泄漏大,发热高,系统功率损失增加,噪声加大,元件寿命降低,维护也较困难。所以条件允许时,通常还是选用较低的供油压力。 常用的供油压力等级为7MPa到28MPa,可根据系统的要求和结构限制条件选择适当的供油压力。 伺服阀流量与执行元件尺寸的确定 如上所述,动力元件参数选择除应满足拖动负载和系统性能两方面的要求外,还应考虑与负载的最佳匹配。下面着重介绍与负载最佳匹配问题。 (1)动力元件的输出特性 将伺服阀的流量——压力曲线经坐标变换绘于υ-FL平面上,所得的抛物线即为动力元件稳态时的输出特性,见图37。 图37 参数变化对动力机构输出特性的影响a)供油压力变化;b)伺服阀容量变化;c)液压缸面积变化 图中 FL——负载力,FL=pLA; pL——伺服阀工作压力; A——液压缸有效面积; υ——液压缸活塞速度, ; qL——伺服阀的流量; q0——伺服阀的空载流量; ps——供油压力。 由图37可见,当伺服阀规格和液压缸面积不变,提高供油压力,曲线向外扩展,最大功率提高,最大功率点右移,如图37a。 当供油压力和液压缸面积不变,加大伺服阀规格,曲线变高,曲线的顶点A ps不变,最大功率提高,最大功率点不变,如图37b。 当供油压力和伺服阀规格不变,加大液压缸面积A,曲线变低,顶点右移,最大功率不变,最大功率点右移,如图37c。 (2)负载最佳匹配图解法 在负载轨迹曲线υ-FL平面上,画出动力元件输出特性曲线,调整参数,使动力元件输出特性曲线从外侧完全包围负载轨迹曲线,即可保证动力元件能够拖动负载。在图38中,曲线1、2、3代表三条动力元件的输出特性曲线。曲线2与负载轨迹最大功率点c相切,符合负载最佳匹配条件,而曲线1、3上的工作点α和b,虽能拖动负载,但效率都较低。 (3)负载最佳匹配的解析法 参见液压动力元件的负载匹配。 (4)近似计算法在工程设计中,设计动力元件时常采用近似计算法,即按最大负载力FLmax选择动力元件。在动力元件输出特性曲线上,限定 FLmax≤pLA= ,并认为负载力、最大速度和最大加速度是同时出现的,这样液压缸的有效面积可按下式计算: (37) 图38 动力元件与负载匹配图形 按式37求得A值后,可计算负载流量qL,即可根据阀的压降从伺服阀样本上选择合适的伺服阀。近似计算法应用简便,然而是偏于保守的计算方法。采用这种方法可以保证系统的性能,但传递效率稍低。 (5)按液压固有频率选择动力元件 对功率和负载很小的液压伺服系统来说,功率损耗不是主要问题,可以根据系统要求的液压固有频率来确定动力元件。 四边滑阀控制的液压缸,其活塞的有效面积为 (38) 二边滑阀控制的液压缸,其活塞的有效面积为 (39) 液压固有频率ωh可以按系统要求频宽的(5~10)倍来确定。对一些干扰力大,负载轨迹形状比较复杂的系统,不能按上述的几种方法计算动力元件,只能通过作图法来确定动力元件。 计算阀控液压马达组合的动力元件时,只要将上述计算方法中液压缸的有效面积A换成液压马达的排量D,负载力FL换成负载力矩TL,负载速度换成液压马达的角速度 ,就可以得到相应的计算公式。当系统采用了减速机构时,应注意把负载惯量、负载力、负载的位移、速度、加速度等参数都转换到液压马达的轴上才能作为计算的参数。减速机构传动比选择的原则是:在满足液压固有频率的要求下,传动比最小,这就是最佳传动比。 伺服阀的选择 根据所确定的供油压力ps和由负载流量qL(即要求伺服阀输出的流量)计算得到的伺服阀空载流量q0,即可由伺服阀样本确定伺服阀的规格。因为伺服阀输出流量是限制系统频宽的一个重要因素,所以伺服阀流量应留有余量。通常可取15%左右的负载流量作为伺服阀的流量储备。 除了流量参数外,在选择伺服阀时,还应考虑以下因素: 1)伺服阀的流量增益线性好。在位置控制系统中,一般选用零开口的流量阀,因为这类阀具有较高的压力增益,可使动力元件有较大的刚度,并可提高系统的快速性与控制精度。 2)伺服阀的频宽应满足系统频宽的要求。一般伺服阀的频宽应大于系统频宽的5倍,以减小伺服阀对系统响应特性的影响。 3)伺服阀的零点漂移、温度漂移和不灵敏区应尽量小,保证由此引起的系统误差不超出设计要求。 4)其它要求,如对零位泄漏、抗污染能力、电功率、寿命和价格等,都有一定要求。 执行元件的选择 液压伺服系统的执行元件是整个控制系统的关键部件,直接影响系统性能的好坏。执行元件的选择与设计,除了按本节所述的方法确定液压缸有效面积A(或液压马达排量D)的最佳值外,还涉及密封、强度、摩擦阻力、安装结构等问题。 反馈传感器的选择 根据所检测的物理量,反馈传感器可分为位移传感器、速度传感器、加速度传感器和力(或压力)传感器。它们分别用于不同类型的液压伺服系统,作为系统的反馈元件。闭环控制系统的控制精度主要决定于系统的给定元件和反馈元件的精度,因此合理选择反馈传感器十分重要。 传感器的频宽一般应选择为控制系统频宽的5~10倍,这是为了给系统提供被测量的瞬时真值,减少相位滞后。传感器的频宽对一般系统都能满足要求,因此传感器的传递函数可近似按比例环节来考虑。 确定系统方块图 根据系统原理图及系统各环节的传递函数,即可构成系统的方块图。根据系统的方块图可直接写出系统开环传递函数。阀控液压缸和阀控液压马达控制系统二者的传递函数具有相同的结构形式,只要把相应的符号变换一下即可。 绘制系统开环波德图并确定开环增益 系统的动态计算与分析在这里是采用频率法。首先根据系统的传递函数,求出波德图。在绘制波德图时,需要确定系统的开环增益K。 改变系统的开环增益K时,开环波德图上幅频曲线只升高或降低一个常数,曲线的形状不变,其相频曲线也不变。波德图上幅频曲线的低频段、穿越频率以及幅值增益裕量分别反映了闭环系统的稳态精度、截止频率及系统的稳定性。所以可根据闭环系统所要求的稳态精度、频宽以及相对稳定性,在开环波德图上调整幅频曲线位置的高低,来获得与闭环系统要求相适应的K值。 由系统的稳态精度要求确定K 由控制原理可知,不同类型控制系统的稳态精度决定于系统的开环增益。因此,可以由系统对稳态精度的要求和系统的类型计算得到系统应具有的开环增益K。 由系统的频宽要求确定K 分析二阶或三阶系统特性与波德图的关系知道,当ζh和K/ωh都很小时,可近似认为系统的频宽等于开环对数幅值曲线的穿越频率,即ω-3dB≈ωc,所以可绘制对数幅频曲线,使ωc在数值上等于系统要求的ω-3dB值,如图39所示。由此图可得K值。 图39 由ω-3dB绘制开环对数幅频特性a)0型系统;b)I型系统 由系统相对稳定性确定K 系统相对稳定性可用幅值裕量和相位裕量来表示。根据系统要求的幅值裕量和相位裕量来绘制开环波德图,同样也可以得到K。见图40。 实际上通过作图来确定系统的开环增益K,往往要综合考虑,尽可能同时满足系统的几项主要性能指标。 系统静动态品质分析及确定校正特性 在确定了系统传递函数的各项参数后,可通过闭环波德图或时域响应过渡过程曲线或参数计算对系统的各项静动态指标和误差进行校核。如设计的系统性能不满足要求,则应调整参数,重复上述计算或采用校正环节对系统进行补偿,改变系统的开环频率特性,直到满足系统的要求。 仿真分析 在系统的传递函数初步确定后,可以通过计算机对该系统进行数字仿真,以求得最佳设计。目前有关于数字仿真的商用软件,如Matlab软件,很适合仿真分析。

大学是干嘛的地方?无论多高的学历和职称,不会设计、制造教具,不会设计、制造教学仪器,不会维修仪器和设备;用你父母的钱进口教学仪器模仿了委托工厂仿制就是佼佼者;用你父母的钱请校外的人来维修设备、从校外采购配件;用你父母的钱请教学仪器生产企业提供教学实验讲义,将作者填上他们的名字就有教学突出成就奖;教你背诵的公式和外语,永远也比不上美国麻省理工学院在网上公开的教材内容。学生也不要埋怨学费贵,除了上面教师的原因,你们自己的基础实验、专业课就上的迷迷糊糊的,高额投资下的创新实验项目、挑战杯、科技竞赛、毕业论文、商业开发,都见不得阳光,将真金白银变成了一堆堆的垃圾!!!!

毕业论文逆变电源的设计

可以上中控网,这种题材的,多的是

1、 高压软开关充电电源硬件设计2、 自动售货机控制系统的设计3、 PLC控制电磁阀耐久试验系统设计4、 永磁同步电动机矢量控制系统的仿真研究5、 PLC在热交换控制系统设计中的应用6、 颗粒包装机的PLC控制设计7、 输油泵站机泵控制系统设计8、 基于单片机的万年历硬件设计 9、 550KV GIS中隔离开关操作产生的过电压计算10、 时滞网络化控制系统鲁棒控制器设计11、 多路压力变送器采集系统设计12、 直流电机双闭环系统硬件设计 13、 漏磁无损检测磁路优化设计14、 光伏逆变电源设计15、 胶布烘干温度控制系统的设计16、 基于MATLAB的数字滤波器设计与仿真17、 电镀生产线中PLC的应用18、 万年历的程序设计19、 变压器设计20、 步进电机运动控制系统的硬件设计21、 比例电磁阀驱动性能比较22、 220kv变电站设计23、 600A测量级电流互感器设计24、 自动售货机控制中PLC的应用25、 足球机器人比赛决策子系统与运动轨迹的研究26、 厂区35kV变电所设计27、 基于给定指标的电机设计28、 电梯控制中PLC的应用29、 常用变压器的结构及性能设计30、 六自由度机械臂控制系统软件开发31 输油泵站热媒炉PLC控制系统设计32 步进电机驱动控制系统软件设计33 足球机器人的视觉系统与色标分析的研究34 自来水厂PLC工控系统控制站设计35 永磁直流电动机磁场分析36 永磁同步电动机磁场分析37 应用EWB的电子表电路设计与仿真38 电路与电子技术基础》之模拟电子篇CAI课件的设计39 逻辑无环流直流可逆调速系统的仿真研究40 机器人足球比赛图像采集与目标识别的研究41 自来水厂plc工控系统操作站设计42 PLC结合变频器在风机节能上的应用43 交流电动机调速系统接口电路的设计44 直流电动机可逆调速系统设计45 西门子S7-300PLC在二氧化碳变压吸附中的应用46 DMC控制器设计47 电力电子电路的仿真48 图像处理技术在足球机器人系统中的应用49 管道缺陷长度对漏磁场分布影响的研究 50 生化过程优化控制方案设计51 交流电动机磁场定向控制系统设计52 开关电磁阀流量控制系统的硬件设计53 比例电磁阀的驱动电源设计54 交流电动机SVPWM控制系统设计55 PLC在恒压供水控制中的应用56 西门子S7-200系列PLC在搅拌器控制中的应用57 基于侧抑制增强图像处理方法的研究58 西门子s7-300系列plc在工业加热炉控制中的应用59 西门子s7-200系列plc在电梯控制中的应用60 PLC在恒压供水控制中的应用61 磁悬浮系统的常规控制方法研究62 建筑公司施工进度管理系统设计63 网络销售数据库系统设计64 生产过程设备信息管理系统的设计与实现

1:我是被迫的2:让我毕业3:第一章第一节第二节第三节....4:第二节挨着第一节,第三节挨着第二节...

我给你一个题目,如果你写出来了,我保你论文得优秀。因为当年我就是选这个题目得的优秀。刚才我在网上搜了一下,网上还是没有与这个系统相关的论文。 《高考最低录取分数线查询系统》基本思想很简单,现在的高考分数线查询是很繁琐的,需要先把分数查出来,然后根据录取指南再找你的分数能被录取的学校,高考过的都知道,高考报考指南是一本多么厚的书。所以,这个系统的思想就是:你用所有高校近十年的录取分数线建立一个数据库,然后开发一个系统,当你输入查询命令的时候(查询命令可以用1,2,3这三个数来代替,用flog实现;输入1,查询的是符合你所输入的分数以下的所有高校信息;输入2,查询的是符合你所输入分数段之间的所有高校信息;输入3,查询大于你所给的分数线的高校信息。)当然,你可以再加上一些附加的功能。大致思想就这些。 郑州今迈网络部竭诚为你解答,希望我的答案能帮到你!

车载逆变电源毕业论文

电梯控制系统设计基于西门子PLC的电梯控制系统

逆变电源也称逆变器,是一种DC/AC(直流电/交流电)的转换器,它将电池组的直流电源转化成电压和频率稳定的交流电源。

车载逆变电源是将汽车发动机或汽车电瓶上的直流电转换为交流电,供一般电器产品使用,是一种较方便的车用电源转换设备。

目前的转载逆变电源的原理基本都差不多,就是一个简单的震荡电路,产生一个方波就行了。把车内提供的直流12V电源变成一个正弦波的交流震荡信号,然后经过升压达到220V的输出就可以了,随着现在我国大功率管子和集成电路产品的生产能力的提高,现在逆变电源的功率越来越大,但是体积越来越小,如果你只是想练习一下自己设计电路的技术的话,倒可以一试,如果是想自己用的话,反不如买一个现成的,价格不贵,从二百元到三千元不等,看你需要多大的功率了。至于具体的技术,如果你对整流电路,震荡电路都比较熟悉的话,你对现在的集成电路可以查一下,很简单了,但是,在这里你要我给你打的话,内容太多了。相反,如果你对这些电路的知道了解的不是很透的话,我跟说了也是没有用的:)自己学一下吧。

户用逆变器的设计毕业论文

太阳能光伏效应,简称光伏(PV),又称为光生伏特效应(Photovoltaic),是指光照时不均匀半导体或半导体与金属组合的部位间产生电位差的现象。[1]人们通常不会将连接光伏组件和逆变器的布线系统视为关键部件,但是,如果未能采用太阳能应用的专用电缆,将会影响到整个系统的使用寿命。太阳能系统常常会在恶劣环境条件下使用,如高温和紫外线辐射。在欧洲,晴天时将导致太阳能系统的现场温度高达100°C。目前,我们可采用的各种材料有PVC、橡胶、TPE和高质量交叉链接材料,但遗憾的是,额定温度为90°C的橡胶电缆,还有即便是额定温度为70°C的PVC电缆也常常在户外使用,显然,这将大大影响系统的使用寿命。——2014年中国光伏市场应用浅析就光伏应用而言,户外使用的材料应根据紫外线、臭氧、剧烈温度变化和化学侵蚀情况而定。在该种环境应力下使用低档材料,将导致电缆护套易碎,甚至会分解电缆绝缘层。所有这些情况都会直接增加电缆系统损失,同时发生电缆短路的风险也会增大,从中长期看,发生火灾或人员伤害的可能性也更高。而在安装和维护期间,电缆可在屋顶结构的锐边上布线,同时电缆须承受压力、弯折、张力、交叉拉伸载荷及强力冲击。如果电缆护套强度不够,则电缆绝缘层将会受到严重损坏,从而影响整个电缆的使用寿命,或者导致短路、火灾和人员伤害危险等问题的出现。2012年,由于GDP增速放缓,并且我国的工业增速多半可能会继续保持一个适度回调。再加上由于利润越来越薄,许多企业不惜为了赚取利润生产不合格、伪劣产品。有的企业迫于市场压力,选择最低价竞标,这诸多因素更是给我国的电线电缆行业发展带来很大的瓶颈。因此,加大电线电缆产品质量提升工作可谓是迫在眉睫、刻不容缓。

什么是逆变电源?为什么要逆变?--------------------------------------------------------------------------------2008-09-18 14:29:30 智典电子频道利用晶闸管电路把直流电转变成交流电,这种对应于整流的逆向过程,定义为逆变。例如:应用晶闸管的电力机车,当下坡时使直流电动机作为发电机制动运行,机车的位能转变成电能,反送到交流电网中去。又如运转着的直流电动机,要使它迅速制动,也可让电动机作发电机运行,把电动机的动能转变为电能,反送到电网中去。把直流电逆变成交流电的电路称为逆变电路。在特定场合下,同一套晶闸管变流电路既可作整流,又能作逆变。变流器工作在逆变状态时,如果把变流器的交流侧接到交流电源上,把直流电逆变为同频率的交流电反送到电网去,叫有源逆变。如果变流器的交流侧不与电网联接,而直接接到负载,即把直流电逆变为某一频率或可调频率的交流电供给负载,则叫无源逆变。交流变频调速就是利用这一原理工作的。有源逆变除用于直流可逆调速系统外,还用于交流饶线转子异步电动机的串级调速和高压直流输电等方面。什么是逆变电源及用途?2009-02-17 15:21逆变电源,一般是指将低压的直流电转变成高压(或低压)的交流电的装置,它可以用蓄电池做电源,输出交流电。具体说,比如用12V的蓄电池是不能为普通电灯或电脑、电视等供电的,而把该蓄电池通过逆变器变成普通的220V交流电再接到这些用电器中,它们就能正常工作。一般逆变电源中自带蓄电池,电脑城卖的UPS电源就是这样的东西,不过它本身所带的蓄电池较小,只能供电脑工作几分钟到十几分钟,主要是为了在突然停电时,靠它继续为电脑供电,好让你有时间把未保存的文件保存下来,且有时间正常关机。正弦波逆变电源的用途逆变器是一种将直流电转换为交流电的装置,它用于无交流电的环境,为交流设备提供电源。它的输出功率从几十瓦到几百千瓦不等;输入直流电压从几伏到几百伏不等。它主要应用于下列场所:1.在车、船和飞机上,与交通工具上的直流电源一起,为交流电器提供电源;2.在无电源的地方,与其它发电设备(太阳能、风能、水能以及各种燃料发电机)一起,为用户提供交流电源;3.作为通讯、电力系统的不间断电源UPS(Uninterrupted Power Supply);4.作为消防应急用电源EPS (Emergent Power Supply);5.利用便携电源,提供临时交流电源等。逆变电源逆变电源也称逆变器,是一种DC/AC的转换器,它将电池组的直流电源转化成输出电压和频率稳定的交流电源。工业一级的逆变器一般均为正弦波输出,同市电的波形一致,如电力逆变器,通信逆变器;另外还有一种输出为方波或阶梯波或修正正弦波的,这一类逆变器一般都是应用于民用场合,如车载逆变器,太阳能家用逆变器,一般为小功率(1KVA以下),1KVA以上一般均做成正弦波的了。在技术工艺上,人们又把正弦波逆变器区分为高频逆变器和工频逆变器,工频逆变器技术成熟,性能稳定,搞过载能力强,但体积庞大、笨重;高频逆变器是近五六年在市场上的新星,它技术指标优越、效率很高、尤其是体积小、重量轻、高功率密度,都是现代电力电子所倡导的,现在业已抢占了中小功率逆变器一半以上的市场。有些行业领先者的高频逆变器单元已经做到了30KVA,从技术发展和生产成本来看,高频逆变器取代工频逆变器将是大势所趋。逆变器的输出有单相和三相之分,以适应不同的负载,这同市电的指标一样。逆变器有很多应用领域,比如在航空工业中利用逆变器提供一个到400Hz频率转换等,这就要用到逆变器了。5. 问:何谓逆变器的效率?答:逆变器在工作时其本身也要消耗一部分电力,因此,它的输入功率要大于它的输出功率。逆变器的效率即是逆变器输入功率与输出功率之比。如一台逆变器输入了100瓦的直流电,输出了90瓦的交流电,那么,它的效率就是90%。问:按输出波形划分,逆变器分为几类?答:主要分两类,一类是正弦波逆变器,另一类是方波逆变器。正弦波逆变器输出的是同我们日常使用的电网一样甚至更好的正弦波交流电,因为它不存在电网中的电磁污染。方波逆变器输出的则是质量较差的方波交流电,其正向最大值到负向最大值几乎在同时产生,这样,对负载和逆变器本身造成剧烈的不稳定影响。同时,其负载能力差,仅为额定负载的40-60%,不能带感性负载(详细解释见下条)。如所带的负载过大,方波电流中包含的三次谐波成分将使流入负载中的容性电流增大,严重时会损坏负载的电源滤波电容。针对上述缺点,近年来出现了准正弦波(或称改良正弦波、修正正弦波、模拟正弦波等等)逆变器,其输出波形从正向最大值到负向最大值之间有一个时间间隔,使用效果有所改善,但准正弦波的波形仍然是由折线组成,属于方波范畴,连续性不好。总括来说,正弦波逆变器提供高质量的交流电,能够带动任何种类的负载,但技术要求和成本均高。准正弦波逆变器可以满足我们大部分的用电需求,效率高,噪音小,售价适中,因而成为市场中的主流产品。方波逆变器的制作采用简易的多谐振荡器,其技术属于50年代的水平,将逐渐退出市场。二极管在逆变器中的应用高效率和节能是家电应用中首要的问题。三相无刷直流电机因其效率高和尺寸小的优势而被广泛应用在家电设备中以及很多其他应用中。此外,由于采用了电子换向器代替机械换向装置,三相无刷直流电机被认为可靠性更高。标准的三相功率级(power stage)被用来驱动一个三相无刷直流电机,如图1所示。功率级产生一个电场,为了使电机很好地工作,这个电场必须保持与转子磁场之间的角度接近90°。六步序列控制产生6个定子磁场向量,这些向量必须在一个指定的转子位置下改变。霍尔效应传感器扫描转子的位置。为了向转子提供6个步进电流,功率级利用6个可以按不同的特定序列切换的功率MOSFET。下面解释一个常用的切换模式,可提供6个步进电流。MOSFET Q1、Q3和Q5高频(HF)切换,Q2、Q4和Q6低频(LF)切换。当一个低频MOSFET处于开状态,而且一个高频MOSFET 处于切换状态时,就会产生一个功率级。步骤1) 功率级同时给两个相位供电,而对第三个相位未供电。假设供电相位为L1、L2,L3未供电。在这种情况下,MOSFET Q1和Q2处于导通状态,电流流经Q1、L1、L2和Q4。步骤2)MOSFET Q1关断。因为电感不能突然中断电流,它会产生额外电压,直到体二极管D2被直接偏置,并允许续流电流流过。续流电流的路径为D2、L1、L2和Q4。步骤3)Q1打开,体二极管D2突然反偏置。Q1上总的电流为供电电流(如步骤1)与二极管D2上的恢复电流之和。显示出其中的体-漏二极管。在步骤2,电流流入到体-漏二极管D2(见图1),该二极管被正向偏置,少数载流子注入到二极管的区和P区。当MOSFET Q1导通时,二极管D2被反向偏置, N区的少数载流子进入P+体区,反之亦然。这种快速转移导致大量的电流流经二极管,从N-epi到P+区,即从漏极到源极。电感L1对于流经Q2和Q1的尖峰电流表现出高阻抗。Q1表现出额外的电流尖峰,增加了在导通期间的开关损耗。图4a描述了MOSFET的导通过程。为改善在这些特殊应用中体二极管的性能,研发人员开发出具有快速体二极管恢复特性MOSFET。当二极管导通后被反向偏置,反向恢复峰值电流Irrm较小。我们对比测试了标准的MOSFET和快恢复MOSFET。ST推出的STD5NK52ZD(SuperFREDmesh系列)放在Q2(LF)中,如图4b所示。在Q1 MOSFET(HF)的导通工作期间,开关损耗降低了65%。采用STD5NK52ZD时效率和热性能获得很大提升(在不采用散热器的自由流动空气环境下,壳温从60°C降低到50°C)。在这种拓扑中,MOSFET内部的体二极管用作续流二极管,采用具有快速体二极管恢复特性MOSFET更为合适。SuperFREDmesh技术弥补了现有的FDmesh技术,具有降低导通电阻,齐纳栅保护以及非常高的dv/dt性能,并采用了快速体-漏恢复二极管。N沟道520V、欧姆、 STD5NK52ZD可提供多种封装,包括TO-220、DPAK、I2PAK和IPAK封装。该器件为工程师设计开关应用提供了更大的灵活性。其他优势包括非常高的dv/dt,经过100%雪崩测试,具有非常低的本征电容、良好的可重复制造性,以及改良的ESD性能。此外,与其他可选模块解决方案相比,使用分立解决方案还能在PCB上灵活定位器件,从而实现空间的优化,并获得有效的热管理,因而这是一种具有成本效益的解决方案。3. 问:何谓“感性负载”?答:通俗地说,即应用电磁感应原理制作的大功率电器产品,如电动机、压缩机、继电器、日光灯等等。这类产品在启动时需要一个比维持正常运转所需电流大得多(大约在3-7倍)的启动电流。例如,一台在正常运转时耗电150瓦左右的电冰箱,其启动功率可高达1000瓦以上。此外,由于感性负载在接通电源或者断开电源的一瞬间,会产生反电动势电压,这种电压的峰值远远大于逆变器所能承受的电压值,很容易引起逆变器的瞬时超载,影响逆变器的使用寿命。因此,这类电器对供电波形的要求较高。

中文题目 :基于DSP带同步锁相的逆变器控制系统设计 外文题目 :A Design of Phase Locked Inversion Control System Based on DSP毕业设计(论文)共 ×× 页(其中:外文文献及译文××页) 图纸共×张完成日期 20××年×月 答辩日期 20××年×月摘要 UPS ( Uninterruptible Power System)是一种电力设备,当电网供电出现紧急故障时:UPS逆变电源可以利用蓄电池为负载提供应急供电。同时UPS也具有改善电网电力质量的作用。我国UPS市场需求巨大,每年UPS的市场销售量大约在80亿元人民币。除了电信、金融等行业对UPS的需求居高不下之外,制造业、交通业、能源业对于UPS的需求量呈现上升趋势。 本文介绍了UPS逆变电源的组成,分析了各部分的作用及其工作原理,研究了实现UPS逆变控制的关键技术。在此基础上,设计了基于DSP的UPS逆变控制系统,提出了一套融合软硬件的适用于UPS逆变电源的数字化精准控制方案。 UPS逆变电源的控制系统的硬件电路设计采用TI公司的32位TMS320LF2407A作为逆变控制信号和驱动控制信号产生的主芯片。本文在Album Designer软件环境下绘制电路原理图和PCB电路板。在电路板设计中加入了各种抗干扰措施,提升了系统的稳定性。 在完成UPS逆变电源控制系统的软硬件设计的基础上,本文将控制系统和UPS整机进行联合调试。调试结果表明,在本文设计的UPS逆变电源控制系统的协调下,可以使得UPS整机正常工作,IGBT驱动信号和可控硅控制信号正常,输出信号可以精确地跟踪市电频率,并且保持相位一致,同时输出电压抑制了输入电压中的高次谐波,改善了电网的质量。

静态转换开关STS(Static Transfer Switch)是实现两个独立电源间的快速转换的无触点电子式开关装置,其最高转换时间可以达到4mS,为数字设备、控制设备或其它对电源供电连续性要求极高的用电设备提供供电保障,当一路电源超限或断电后,迅速地切换至另一路电源,保证设备运行及数据安全。它(STS)是实现所谓“分布式供电”方案的有利工具,可以大大提高机房、PLC、精密仪器等设备供电系统的可靠性。

三相电压型逆变器毕业论文

这个问题么,你要找到相应的说查一下了,我记得好像孔凡才教授编的 自动控制 一书上面好像有类似的啊。有空看一下没有坏处的。

三相逆变器是一种DC to AC的变压器,它其实与转化器是一种电压逆变的过程。转换器是将电网的交流电压转变为稳定的12V直流输出,而逆变器是将Adapter输出的12V直流电压转变为高频的高压交流电;两个部分同样都采用了用得比较多的脉宽调制(PWM)技术。其核心部分都是一个PWM集成控制器,Adapter用的是UC3842,逆变器则采用TL5001芯片。TL5001的工作电压范围~40V,其内部设有一个误差放大器,一个调节器、振荡器、有死区控制的PWM发生器、低压保护回路及短路保护回路等。输入接口部分:输入部分有3个信号,12V直流输入VIN、工作使能电压ENB及Panel电流控制信号DIM。VIN由Adapter提供,ENB电压由主板上的MCU提供,其值为0或3V,当ENB=0时,逆变器不工作,而ENB=3V时,逆变器处于正常工作状态;而DIM电压由主板提供,其变化范围在0~5V之间,将不同的DIM值反馈给PWM控制器反馈端,逆变器向负载提供的电流也将不同,DIM值越小,逆变器输出的电流就越大。电压启动回路:ENB为高电平时,输出高压去点亮Panel的背光灯灯管。PWM控制器:有以下几个功能组成:内部参考电压、误差放大器、振荡器和PWM、过压保护、欠压保护、短路保护、输出晶体管。直流变换:由MOS开关管和储能电感组成电压变换电路,输入的脉冲经过推挽放大器放大后驱动MOS管做开关动作,使得直流电压对电感进行充放电,这样电感的另一端就能得到交流电压。LC振荡及输出回路:保证灯管启动需要的1600V电压,并在灯管启动以后将电压降至800V。输出电压反馈:当负载工作时,反馈采样电压,起到稳定I逆变器电压输出的作用。

电力管理专业的,开始我也不会,还是学长给的莫‘文网,没几天就搞定了变电站综合自动化改造项目过程管理研究台山输变电工程项目进度管理系统信息化全面技术管理在自备电厂项目管理中的应用基于价值工程理论的电力工程项目经营体系与模型500kV台香线东1段工程施工项目管理的几个关键问题DEC国际工程项目管理与研究火电厂工程项目管理信息系统设计与实现变电工程施工成本管理研究甘肃送变电工程公司人力资源管理诊断研究XB电力工程公司培训现状问题与对策研究基于全寿命期理论的变电站设计管理电力物资采购合同风险管理高原冻土输电线路工程施工项目管理电力仪器公司在项目执行过程中的协调管理配电工程施工项目成本管理研究变电站工程建设中进度、质量、安全管理研究关于电力建设工程项目质量管理标准化及其研究南迪普项目执行风险管理研究南京供电公司大中型输变电工程项目管理研究ZZ电厂脱硫项目建设管理研究浙江电力招标项目代建制管理模式探讨电厂工程 建设单位的合同管理工作电力行业施工多项目管理研究电力设计项目人力资源管理研究

电压型逆变电路输出电压的调节电压型逆变电路输出电压的调节电动巡逻车调节电压型逆变电路输出电压的方式有三种,即调节直流侧电压、移相调压和脉宽调制调压。调节直流侧电压从上面的分析可以看出,改变直流侧电压Ud即可调节逆变电路输出电压。为了调节直流侧电压,可以采用如图8-11a的可控整流方式,也可以像图8-11b那样,用二极管整流桥整流,然后再用直流斩波调压。调节直流侧电压方式移相调压电动巡逻车移相调压实际上就是调节输出电压脉冲的宽度。在图8-12a的单相全桥逆变电路中,各电力晶体管的基极信号仍为180°正偏,180°反偏,V1和V2的基极信号互补,V3和V4的基极信号互补,但V3的基极信号不是比V1落后180°,而是只落后θ(0<θ<180°)。这样,输出电压波形就不再是正负各为180°的矩形波,而是正负各为θ的矩形波,各基极信号ub1-ub4及输出电压uo输出电流io的波形如图,.8-12b所示。设在tl 以前,V1和V4导通,输出电压uo为Ud,t1时刻V3和V4基极信号反向,V4截止,而因感性负载电流io不能突变,V3不能立刻导通,VD3导通续流,因V1和VD3同时导通,所以输出电压为零。到t2时刻V1和V2基极信号反向,V1截止,而V2不能立刻导通,VD2导通续流,输出电压uo为-Ud。到负载电流过零并反向时,VD2和VD3截止,V2和V3开始导通,uo仍为-Ud。t时刻V3和V4基极信号再次反向,V3截止,而V4不能立刻导通,VD4续流,uo为零。以后的过程和前面类似。这样,输出电压uo的正负脉冲宽度就各为θ。改变θ,就可调节输出电压。上一页下一页下载文档原格式(Word原格式,共2页)支付 ☛下载相关文档第4章1 电压型逆变电路电压型逆变电路第二节:电压型逆变电路电压型逆变器与电流型逆变电路的定义及特点电力电子变流技术课后答案第6章电压控制逆变器电压源型单相全桥逆变电路的设计说明书电力电子学课后答案第四章电压型逆变电路课程设计电压型逆变电路课程设计电压型三相PWM逆变器控制的研究电压型逆变电路课程设计电压型逆变器与电流型逆变电路的定义及特点电压型逆变电路三相电压型逆变电路PPT课件电压型逆变器的工作原理电压型逆变器53三相全桥电压型逆变电路电压型逆变电路输出电压的调节逆变电路工作原理电压型和电流型逆变器电压型单相全桥逆变电路电压型逆变器电流型逆变器的区别(完整word版)单相电压型全桥逆变电路设计电压型单相全桥逆变电路逆变电路的基本工作原理单相电压型逆变电路三相电压型逆变电路DC-AC逆变电路单相电压型逆变电路原理分析第4章 2三相电压型逆变电路电压源型单相全桥逆变电路的设计说明书三相电压型逆变电路电压型逆变电路课程设计报告书电压型全桥逆变电路三相全桥电压型逆变电路电压型单相全桥逆变电路单相全桥逆变电路原理单相全桥逆变电路讲解IGBT单相电压型全桥无源逆变电路设计.电流源型单相全桥逆变电路单相电压型全桥逆变电路及其simulink仿真(含开题报告)pwm技术在单相全桥逆变电路中的应用matlab仿真结果电压型单相全桥逆变电路讲课稿单相全桥逆变matlab仿真电压型单相全桥逆变电路单相全桥逆变电路原理IGBT单相电压型全桥无源逆变电路设计电力电子课程设计-IGBT单相电压型全桥无源逆变电路(完整word版)单相全桥逆变电路原理MOSFET单相全桥无源逆变电路要点电压型单相全桥逆变电路53三相全桥电压型逆变电路要点逆变电路的基本工作原理单相全桥逆变电路讲解..电压型全桥逆变电路电压型单相全桥逆变电路单相全桥逆变电路原理实验3 电压型三相全桥逆变电路全桥逆变后电压_单相电压型全桥逆变电路及其simulink仿真含开题报告单相全桥逆变电路原理单相电压型全桥逆变电路设计基于MatlabSimulink 的电压型单相全桥逆变电路三相电压型逆变电路三相电压型逆变电路三相电压型逆变器课程设计(整理)三相逆变器Matlab仿真.三项电压型逆变电路实验报告三相电压型逆变器课程设计(完整版)5.三相电压型桥式逆变电路三相电压源型逆变器2020年整理三相电压型桥式逆变电路.doc三相全控桥式整流及有源逆变电路的设计三相方波逆变电路的设计三相电压型桥式逆变电路3-4-三相电压型逆变电路三相电压型桥式逆变电路电力电子课设-三相逆变电路设计三相电压型逆变器的模型预测控制详细逆变电路原理分析三相逆变器Matlab仿真基于MATLAB/SIMULINK的三相电压型逆变器的快速仿(精)三相电压型桥式逆变电路知识分享三相电压型PWM逆变器的状态空间模型及仿真最新文档

相关百科

热门百科

首页
发表服务