二恶英是一组化合物的统称,属于氯代三环芳烃类化合物,有近200个同系物异构体。其中毒性最强的是2,3,7,8-四氯二苯并-对-二恶英(2,3,7,8-TCDD),分子量,为无色或白色的结晶固体。难于分解:二恶英在自然界中存量极少。这些二恶英不是人工专门合成的,主要由制造含氯化学品、废物焚烧、三废排放以及农药的生产、处理过程中产生。二恶英在环境中非常稳定。世界上曾经发生过数起含有二恶英污染事件,比较有名的是1999年比利时等国发生的禽畜类产品及乳制品的二恶英污染事件,震惊了世界。不易排除:二恶英可存在于食品、空气污染物中,经呼吸道、消化道和皮肤进入人体,分布于全身,以肝脏、脂肪等组织器官中含量较高。二恶英排出较为缓慢,在猪体内,半衰期为22∼43天。二恶英在体内产生激素样效用,干扰糖皮质激素、催乳素、甲状腺素和雌激素等生物激素的作用,从而对机体产生影响。毒性强烈:二恶英属剧毒物,其毒性相当于氰化钾的300倍,是对人类健康危害最大的化学物之一,克的二恶英就可导致数十人死亡,或杀死上千只禽类。2,3,7,8-TCDD毒性最大,被称为“地球上毒性最强的毒物”,其毒性相当于氰化钾的1,000倍以上、马钱子碱的500倍以上。据报道,较大剂量的二恶英可对眼、鼻、喉等黏膜有严重的刺激作用,可引起视力模糊,肌肉、关节疼痛,恶心、呕吐等症状,并能作用于皮肤,导致严重的“氯痤疮”皮肤病变。因氯气及其他氯代烃也能够引起皮肤类似的改变,而污染也往往是混合的,所以在既往污染事件中不能排除混合作用。治疗困难:国际癌症组织将二恶英列为强致癌物,动物实验证实二恶英具有致畸作用,对免疫系统、发育中的神经系统、内分泌系统、生殖和肝脏功能造成损害。二恶英急性中毒,是一类变化较为迅速的病症。急性期的脱离接触、清除毒物等处理较为重要。到了中后期,往往仅需要对症支持治疗。但是目前,有关人类急性中毒的资料还很少。
二恶英类的毒性因氯原子的取代数量和取代位置不同而有差异,含有1-3个氯原子的被认为无明显毒性;含4-8个氯原子的有毒,其中2,3,7,8-四氯代二苯-并-对二恶英(2,3,7,8-TCDD)是迄今为止人类已知的毒性最强的污染物,国际癌症研究中心已将其列为人类一级致癌物;如果不仅2,3,7,8位置上被4个氯原子所取代,其他4个取代位置上也被氯原子取代,那么随着氯原子取代数量的增加,其毒性将会有所减弱。由于环境二恶英类主要以混合物的形式存在,在对二恶英类的毒性进行评价时,国际上常把各同类物折算成相当于2,3,7,8-TCDD的量来表示,称为毒性当量(Toxic Equivalent Quantity,简称TEQ)。为此引入毒性当量因子(Toxic Equivalency Factor,简称TEF)的概念,即将某PCDDs/PCDFs的毒性与2,3,7,8-TCDD的毒性相比得到的系数。样品中某PCDDs或PCDFs的质量浓度或质量分数与其毒性当量因子TEF的乘积,即为其毒性当量(TEQ)质量浓度或质量分数。而样品的毒性大小就等于样品中各同类物TEQ的总和。 对胎儿有毒性,胎儿发育异常,胎儿死亡。二恶英的生物半衰期较长,2,3,7,8一TCDD在小鼠体内为10~15天,大鼠体内为12~31天,人体内则长达5~10年(平均为7年)。因此,即使一次染毒也可在体内长期存在;如果长期接触二恶英还可造成体内蓄积,可能造成严重损害 。二恶英系一类剧毒物质,其毒性相当于人们熟知的剧毒物质氰化物的130倍、砒霜的900倍。大量的动物实验表明,很低浓度的二嚼英就对动物表现出致死效应。从职业暴露和工业事故受害者身上已得到一些二恶英对人体的毒性数据及临床表现,暴露在含有PCDD或PCDF的环境中,可引起皮肤痊疮、头痛、失聪、忧郁、失眠等症,并可能导致染色体损伤、心力衰竭、癌症等。有研究结果指出,二恶英还可能导致胎儿生长不良、男子精子数明显减少等,它侵人人体的途径包括饮食、空气吸入和皮肤接触。一些专家指出:人类暴露予含二恶英污染的环境中,可能引起男性生育能力丧失、不育症、女性青春期提前、胎儿及哺乳期婴儿疾患、免疫功能下降、智商降低、精神疾患等 。此外还有致死作用和“消瘦综合征”、胸腺萎缩、免疫毒性、肝脏毒性、氯痤疮、生殖毒性、发育毒性和致畸性、致癌性 。按RTECS标准为致癌物,肝及甲状腺肿瘤,皮肤肿瘤。二、毒理学资料及环境行为 急性毒性:LD5022500ng/kg(大鼠经口);114μg/kg(小鼠经口);500μg/kg(豚鼠经口)刺激性:兔经眼:2mg,中等刺激致突变:微生物突变-鼠伤寒沙门氏菌,3mg/L ; 微生物突变-大肠杆菌,2mg/L致癌性判定:动物和人皆为不肯定性反应。 一级致癌物质。二恶英中以2,3,7,8-四氯-二苯并-对-二恶英(2,3,7,8-tetrachlorodibenzo-p-dioxin,2,3,7,8-TCDD)的毒性最强,只要一盎司(克),就可以杀死100万人,相当于氰化钾(KCN)的1000倍,这是迄今为止化合物中毒性最大且含有多种毒性的物质之一,因此对它研究也最多。
二恶英是毒性最大的化合物之一,其毒性是氰化物的130倍、砒霜的900倍,有世纪之毒之称,国际癌症研究中心已将其列为人类一级致癌物。 除了剧毒之外,二恶英之所以可怕是因为它溶于脂肪,难以降解,半衰期时间长,属于持久性污染物,一旦进入人体,7年10年都很难排出,而一旦累计到一定程度,就会致人死地。
1982年,美国植物学家韦德-戴维斯发现,海地巫毒教中的回魂大师在药物中使用含有从河鲀提取的毒素粉末,整个过程里中毒者大脑能完全保持清醒,如果能挺过24h,他们就会很快恢复正常,且不会出现并发症。使人们相信他们有使人“死而后生”的能力,即所谓的“还魂术”。其实,这是由于河鲀毒素的特殊结构使其像塞子一样,凝固在神经轴突的钠离子通道的入口处,阻碍钠离子透过细胞膜传导神经的冲动,从而关闭神经系统。由于河鲀毒素不能越过大脑中血液细胞的屏障,因此受害者就会处于大脑清醒的无助状态之中。几小时或几天过后,当河鲀毒素最终开放钠离子通道时大多数受害者已经死亡。 河鲀毒素离子谱图图册参考资料。 TTX是典型的钠离子通道阻断剂,它能选择性与肌肉、神经细胞的细胞膜表面的钠离子通道受体结合,阻断电压依赖性钠离子通道,从而阻滞动物电位,抑制神经肌肉间兴奋的传导,导致与之相关的生理机能的障碍,主要造成肌肉和神经的麻痹。构效关系表明,TTX的活性基团是1,2,3 位的胍氨基和附近的C-4,C-9,C-10 位的羟基,胍基在生理pH值下发生质子化,形成正电活性区域与钠离子通道受体蛋白的负电性羰基相互作用,从而阻碍离子进入通道。钠离子受体至少有6个特异性靶分子结合位点,TTX是与钠通道受体部位I结合。TTX受体位于可兴奋细胞膜外侧、钠通道外口附近,TTX与受体部位结合,阻碍钠离子接近通道外口。研究表明,TTX特异性作用于钠通道,对钾、钙通道和神经肌肉的突触及胆碱指酶无直接影响。此外,毒素能通过血脑屏障进入中枢,对中枢产生明显的抑制作用。总的来说,TTX对呼吸和心血管的抑制是对中枢和外周的共同作用结果。 河鲀毒素毒理作用的主要表征是阻遏神经和肌肉的传导。除直接作用于胃肠道引起局部刺激症状外,河鲀毒素被机体吸收进入血液后,能迅速使神经末梢和神经中枢发生麻痹,继而使得各随意肌的运动神经麻痹;毒量增大时会毒及迷走神经,影响呼吸,造成脉搏迟缓;严重时体温和血压下降,最后导致血管运动神经和呼吸神经中枢麻痹而迅速死亡。TTX可选择性地抑制可兴奋膜的电压,阻碍Na+通道的开放,从而阻止神经冲动的发生和传导,使神经肌肉丧失兴奋性。 此后,多数研究工作都是围绕着TTX阻断可兴奋组织的Na+通道而展开。河鲀对TTX具有抵抗力和免疫性。如果该区域出现由芳香性氨基酸向非芳香性氨基酸的氨基酸置换,就会显著影响它与TTX结合的灵敏度。在对河鲀毒素没有免疫力的生物体内,钠通道的α-亚基上存在河鲀毒素的受体,河鲀毒素与α-亚基门孔附近的氨基酸残基结合,阻止钠离子进入细胞内,引起河鲀毒素中毒 。而河鲀体内细胞的构造与其他生物不同,河鲀体内还存在可以与河鲀毒素结合的其他蛋白质,从而使河鲀对体内的河鲀毒素具有免疫力。比较红鳍东方鲀(Fugu rubripes)、黑青斑东方鲀(Tetraodon nigroviridis)和斑马鱼的基因序列图谱,发现红鳍东方鲀和黑青斑东方鲀骨骼肌的通道发生了变异,正是这种变异使河鲀具有抵抗河鲀毒素的能力。红鳍东方鲀和豹纹东方鲀的变异类似,都是在通道的401位点上发生了取代,取代为一个折叠程度更高的不饱和氨基酸。 河鲀的这些氨基酸是不与河鲀毒素结合的,从而也就不能对河鲀的钠通道造成影响。通过克隆调控豹纹东方鲀骨骼肌通道表达的cDNA,发现通道区域Ⅰ401位点处存在一个不饱和氨基酸,即天冬酰胺。通过基因工程把不饱和氨基酸移植到对河鲀毒素敏感的小鼠骨骼肌通道处,移植的不饱和氨基酸的折叠程度越高,小鼠抵抗河鲀毒素的能力越强。当不饱和氨基酸的折叠程度大于取代位点氨基酸折叠程度的2500倍时,IC50(50%Na+通道发生阻断时河鲀毒素的浓度)提高至47μmol/L。 一些生物对河鲀毒素的耐受性与其独特的钠离子通道结构有关。研究发现,3×10^-6M的河鲀毒素对Arothron hispidus等7种河鲀鱼肌肉的动作电位没有影响,而3×10^-7M的河鲀毒素却阻断了3种不含河鲀毒素的其他鱼的动作电位。河鲀毒素的结合位点位于钠离子通道内高度保守的成孔区域(P-loop),对河鲀毒素敏感的钠离子通道(TTX-sensitiveNa+channel)在该区域有与TTX高度亲和的芳香性氨基酸。 如果该区出现由芳香性氨基酸向非芳香性氨基酸的氨基酸置换,就会显著影响其与TTX结合的灵敏度,从而使钠离子通道成为抗河鲀毒素的钠离子通道(TTX-resistantNa+channel)。通过对河鲀鱼(Fugu pardalis)骨骼肌通道的cDNA基因序列图谱的研究发现,通道的结构域I的成孔区域的401位置包含有一个非芳香氨基酸,即天冬酰胺酸,而此位点发生的氨基酸置换可能与河鲀鱼对高浓度的TTX耐受有关。在捕食与防御的长期进化过程中,在北美西部,一些束带蛇对河鲀毒素也具备了一定的耐受力,而且,不同地区的束带蛇对河鲀毒素的耐受力也有明显差异。对这些束带蛇的通道进行分析发现,他们的芳香氨基酸在401位点是保守的,但在结构域IV的成孔区域发生了几处氨基酸置换。 在WillowCreek地区的束带蛇的通道的结构域IV包含有3个氨基酸的置换,该地区束带蛇对TTX的耐受力比Benton地区的高两个数量级,因为后者只包含1个氨基酸替代。只在河鲀鱼与束带蛇中发现它们对河鲀毒素的耐受性与其骨骼肌和神经元的钠离子通道发生了氨基酸替代有关。这两种生物之间的一个主要差别就是,几乎所有的河鲀鱼对TTX都有一定的耐受性,而且有相同耐受机制,但是只有一部分束带蛇具有对TTX的耐受力。 起源内因说主张内因说的学者认为,河鲀等生物体含有的刺胞、毒腺中的蛋白质毒素是内源性毒素的来源。他们推测河鲀鱼体内有特定功能或微生物,能将摄入的食物转化为毒素。但始终没有更多证据证实这种说法,因此内因说没有得到广泛认可。不少研究者认为,许多海洋细菌能产生河鲀毒素,作为河鲀鱼类食物的一些动物,如海星等也含有河鲀毒素,而人工饲养的河鲀却没有河鲀毒素,表明河鲀本身并无产生TTX的能力。但后来河鲀毒素由细菌产生的观点遭到了反驳,Kmatsumura在1995年就发现从解藻朊酸弧菌(Vibrio alginolyiicus)中提取出来的河鲀毒素并没有与河鲀毒素的单克隆抗体发生反应,认为生物鉴定法存在弊端,因此有必要重新认识“TTX是由细菌产生的”这一观点。为了证实产生河鲀毒素的原因是内源性的,Kendo于1998年提取了星点东方鲀成熟的卵细胞进行人工授精及胚胎培育,发现在孵化过程中胚胎体内河鲀毒素的含量一直在增加。这表明增加的毒素是胚胎的产物。由此可知,河鲀体内的TTX可能并非直接来源于细菌,而是河鲀本身与其体内共生细菌共同的产物。河鲀等动物自身是否具有分泌毒素的功能,以及河鲀毒素如何在机体各器官内发生转移等,还有待进一步研究。 而且,河鲀毒素在河鲀之外的物种分布,和河鲀体内细菌能分泌河鲀毒素等现象,不能说明河鲀本身不能产生河鲀毒素。Matsumura就对河鲀毒素的细菌起源提出了质疑,他发现弧菌(Vibrioalginolyticus)所产的河鲀毒素并不能和河鲀毒素的单克隆抗体反应,说明细菌产生的河鲀毒素与河鲀体内的河鲀毒素并不完全相同。 但细菌产生的河鲀毒素同样能使小鼠致死,说明其可能是河鲀毒素的衍生物。但是,内源假说同样不能解释一些事实,仅在投喂配合饲料的条件下,人工养殖的河鲀体内的河鲀毒素没有或含量很低,此事实很难用内源假说来解释。Matsui等认为河鲀体内有一种能够储藏TTX的机制。但是,如果河鲀仅仅能储藏河鲀毒素,同样也难以解释胚胎发育过程中河鲀毒素含量一直在增加的现象。 因此,河鲀体内的河鲀毒素极有可能是河鲀与其体内共生细菌共同的产物,体内共生细菌产生河鲀毒素的衍生物,河鲀把此衍生物转化为河鲀自身的河鲀毒素。河鲀胚胎发育过程中河鲀毒素含量一直在增加,可能是共生细菌产生的河鲀毒素衍生物,在卵子受精前就已经累积在卵中,受精后的胚胎发育过程中,河鲀胚胎逐渐具备把此衍生物转化为自身河鲀毒素的能力。因此,胚胎发育过程中河鲀毒素含量可持续增加。 外因说在Mosher等从加州蝾螈(Tarichatorosa)中分离到河鲀毒素以前,河鲀毒素一直被认为是河鲀产生的,之后,在虾虎鱼、蛙类、马蹄蟹、海星、纽虫、箭虫、环节动物、石灰质藻类等中均分离到河鲀毒素,使人们相信河鲀毒素的分布比较广泛。1986年,Noguchi等首次报道了从花纹爱洁蟹(Atergatisfloridus)的肠道内分离到一种产河鲀毒素的细菌,1987年,Noguchi等从虫纹东方鲀肠道中也分离出能产河鲀毒素的细菌Vibrio alginolyticus,此后,从各种动物的多种动物体内或体表、海洋沉积物、淡水沉积物中也分离到了产河鲀毒素及其衍生物的各种微生物,这些发现,使人们更加相信河鲀体内河鲀毒素的体外起源假说,日本的清水、松居是最早提出“外因说”的学者。他们用含TTX的饵料饲喂人工养殖的无毒河鲀及人工采苗后饲养的河鲀,结果这些无毒河鲀发生毒化现象。由此推测,毒素的起源可能是外因性的。该假说认为河鲀体内河鲀毒素来源于环境中的河鲀毒素或产河鲀毒素的细菌。 Noguchi等采用小鼠和液相-质谱技术调查了日本1990到2003期间在离开海底10米以上的网箱养殖红鳍东方鲀的河鲀毒素毒性情况,在肝脏、皮肤、肌肉、性腺中均没有检测到河鲀毒素(检测灵敏度<),表明喂养人工配合饲料的红鳍东方鲀没有毒性,说明可以通过远离海底沉积物能有效培养无毒的红鳍东方鲀。 而Hwang等发现,不同水质对人工养殖的红鳍东方鲀的毒性往往是有影响的,在台北宜兰县两个养殖基地养殖的红鳍东方鲀是无毒的,而在毗邻的台北县养殖基地养殖的红鳍东方鲀的卵巢在1-3月是有毒的,肝脏在1-3月是有弱毒的。 江苏宜兴人工养殖的暗纹东方鲀所有受检的器官组织均是无毒的。采用投喂配合饲料和在淡水环境养殖暗纹东方鲀,其1-3龄均为无毒或低毒。 华元渝等采用高效液相色谱仪和荧光分光光度计联合法随机抽样检验经过纯全人工繁殖、苗种培育至商品鱼的暗纹东方鲀毒性,结果表明其体内4种组织器官中的河鲀毒素平均含量低于2μg/g,属基本无毒。 Nagashima等提出河鲀体内的毒素是通过食物链富集的,河鲀肝脏的薄切片吸收河鲀毒素的能力比其他鱼类肝脏的薄切片要强。实验也证明,人工养殖的河鲀不含河鲀毒素,但是在饲料中添加有毒河鲀的肝脏,养殖河鲀体内就含有河鲀毒素。大多数学者认为河鲀体内的河鲀毒素是受食物链和微生物双重影响的结果。 在河鲀毒素起源方面研究得最多的是东方鲀。一般认为,降海洄游的河鲀产生河鲀毒素的可能性有以下几种:(1)东方鲀下海后在海水环境中自身产生TTX;(2)海水中某些生物含有TTX,被河鲀吞食后吸收并储藏、浓集于体内;(3)许多海洋生物的代谢产物中含有TTX。从研究来看,河鲀自身产生河鲀毒素的可能性不大,因为除了河鲀外,海洋中还有许多河鲀喜食的生物体内都含有TTX。另外,生存于淡水中未经降海洄游的河鲀体内检不出TTX,也说明河鲀自身不产毒。但在投喂含TTX的饲料一段时间后,其体内又能检出TTX。因此,TTX很有可能是通过食物链在河鲀体内聚集的。而且,海洋中许多含毒细菌黏附于河鲀喜食的生物体表,进入河鲀体内后就与其形成互利共生的关系,河鲀可通过皮肤腺的暴露来释放TTX,从而起到抵御天敌的作用。 Noguchi等在对麻痹性贝毒导致蟹类毒化的机制的追踪过程中,从石灰藻及毒蟹内脏中分离到了可产生毒素的细菌,经鉴定,它们是假单胞菌属(Pseudomonassp.)细菌。 从该菌培养液中得到的两种毒素,经FLD-HPLC法及红外光谱、质谱分析法分析,确证为TTX及脱水TTX。进一步将其分别注射入小鼠腹腔,显示了与TTX和脱水-TTX相对应的致死率,从而确证TTX为细菌的代谢产物。Thuesen等从4种毛颚动物(Chaetognatha)体内分离到34株弧菌属(Vibriosp.)海洋细菌,其培养物和胞外产物均可阻断Na+通道。经组织培养法及液相色谱等方法同样确证该产物为TTX。 由此可见,产TTX的细菌是多样性的。吴韶菊等通过分离和筛选河鲀各个器官内的细菌,从36种细菌中挑选出了20种能分泌TTX的细菌,并发现卵巢和肝脏中TTX的含量高,其内部所含的菌株数量和毒性也都比其他组织高,从而说明河鲀所含的TTX与其共生细菌密切相关。 河鲀毒素的“体外起源”假说假定所有能产生TTX的生物都与其体内能分泌TTX的微生物有着密切联系,并且已被随后从各种携带TTX的生物体内提取出来的能产生TTX的细菌所证实。另外,TTX的累积机制不仅可通过食物链获得,也能由其自身肠道内的细菌产生,因为海洋中有些生物也摄食与河鲀同样的食物,但它们的体内并不含有TTX,从而估计河鲀体内有一种能够储藏TTX的机制。大多数研究者都认为,河鲀体内的TTX是受食物链和微生物双重影响的结果。 河鲀体内TTX的含量不仅存在个体间的差异,并且其体内各组织中TTX的含量也存在明显的差异。一般卵巢和肝脏中含量最多,精巢次之,皮肤和肌肉中则是微量或没有。Yuji等将河鲀的肝脏组织培养在含TTX的培养液中,发现它能吸收TTX,证明河鲀肝脏并不能分泌TTX,而是吸收体外的TTX。这也进一步证明了河鲀体内的TTX是外源性的。 其他学说有学者从免疫学的角度对河鲀富集河鲀毒素的机制进行了解释。用河鲀毒素做生物免疫实验,用相同浓度的河鲀毒素微量注射于有毒河鲀、无毒河鲀和小鼠体内做毒性实验。结果发现,有毒河鲀对河鲀毒素的免疫耐受能力最强,无毒河鲀的免疫耐受能力比小鼠的强。由此推断,有毒河鲀对河鲀毒素具有特殊的免疫耐受调控机制。也有学者从分子生物学角度进行了论证。 Yotsu-YamashitaM等研究认为,在河鲀体内存在一种蛋白质,可与河鲀毒素联结形成复合物,Matsui等也已经从星点东方鲀中提取出了河鲀毒素与蛋白质联结形成的复合物。 Jeen等从河鲀肝脏内提取mRNA,逆转录得到cDNA,通过cDNA末端扩增,发现cDNA中纤维蛋白原基因(flp)的含量与河鲀毒素的毒力水平呈线性关系。由此可以推断,河鲀体内的河鲀毒素是与蛋白质联结在一起以复合物的形式存在,并且河鲀毒素的含量是受基因调控的。人们对河鲀富集河鲀毒素的机理从不同的角度进行了论证,但没有形成统一的观点。不过养殖的河鲀毒性较低,这为开放河鲀鱼市场提供了理论依据。
生物小论文 (关于种子) 一、种子的发芽率 种子发芽率一般是指在适宜的条件下,经浸种吸足水分的种子,在l0天内发芽的种子数占供试种子总数的百分率。它是决定种子质量和实用价值,确定播种量和用种量的主要依据。不同的种子,其发芽力往往有很大差别,相同的种子,其发芽力也会有变化。种子的发芽力受栽培条件、成熟程度、收获时的气候、入库时的种子含水率以及贮藏条件好坏、贮藏时间长短等多因素的复杂影响。如果不进行发芽测定,盲目地进行浸种、催芽或者直接播种,就有可能出现出苗不齐、苗数不足、甚至完全不出苗等现象,其结果不仅浪费粮食,又耽误了季节,造成生产被动。认真做好种子的发芽力测定,周密计算用种量,有计划地进行生产,不但可以避免出现上述情况,还可以提高产量。水稻种子发芽率常用的测定计算方法是:先从供试品种的种子容器中,分上、中、下、边缘、中央不同部位分别随机取出少量种子,去除杂质后,在水温20—30℃条件下浸24小时,然后将吸足水分的种子以100粒为一组,分成四组,分别均匀排列在铺有滤纸或草纸的4个培养皿内,并分别以等量适量的水,放在气温30—35℃环境条件—下,逐日记载发芽数,从试验开始记载10天,最后分组计算其发芽率,四组的平均数即为该种子的发芽率,其计算公式为:发芽率(%)=发芽的种子数*100/供试种子总数 二、种子发芽需要的条件 种子发芽必需的条件是水分、温度、氧气及阳光。 水分是种子发芽的首要条件。种子必须吸收足够的水分才能加速种子内部的生理作用,促进酶的活动,有利于贮藏养料的溶解和胚的增长,从而促进种子的萌发。 温度也是种子发芽必要条件之一。种子在吸收足够水分和氧气后,还需要一定的温度才能萌发,温度是种子萌发的能量来源。温度作用在于促进酶的活性,种子萌发的最适温度也就是酶的最适宜温度。此外,温度也直接影响到种子吸水快慢和呼吸强弱。在一定温度范围内,温度越高,种子吸水越快,呼吸也越强,发芽越快。 种子发芽试验需要大量的氧气。种子发芽时呼吸作用增强,如种子缺氧呼吸,造成种子不宜发芽。 不同作物种子,发芽时对光的反应不同。大部分农作物种子(如玉米、禾谷类等种子)对光照要求不严格。这些种子发芽试验时用光照或黑暗均可。有一些好光性的种子如烟草种子,芹菜种子等,只有在光照条件下才能发芽或促进发芽。还有一些嫌光性的种子,如黑草种有光照时会抑制发芽。这些种子发芽试验时应给黑暗处理。 三、种子萌发的过程 当一粒种子萌发时。首先要吸收水分。子叶或胚乳中的营养物质转运给胚根、胚芽、胚轴。随后,胚根发育,突破种皮,形成根。胚轴伸长,胚芽发育成茎和叶。 我也曾经做过两次种子萌发的实验,是用绿豆做的,第一次实验的时候,因为总是忘了给种子加水,结果种子全都干死了,终于第一次实验以失败而告终。接着马上就迎来了第二次实验,这次记得了上次的教训,我的种子终于发芽了
河豚毒素对细胞膜的作用过程,并不是简单的“分子嵌塞作用”,而是通过毒素与膜上专一性受体结合。再通过关闭机制(gating mechanism)使通道关闭,河豚毒素作用于毒素受体(RTOX),可使h闸门(h—gate)关闭,阻滞钠离子通过细胞膜,使细胞膜失去极化状态,从而抑制甚至阻断了神经一肌肉的传导过程,导致神经肌肉活动障碍,严重者可发生麻痹状态。类似箭毒样作用,最后可引起呼吸中枢麻痹使呼吸停止,血管中枢麻痹,可引起血压下降,脉搏迟缓。最终因呼吸停止和循环衰竭而死亡。
河豚毒素是细胞膜钠离子通道选择性阻断剂。细胞膜钠离子通道的阻断,导致细胞膜去极化,从而特异性地干扰了神经一肌肉的传导过程。体外实验证明,河豚毒素对细胞膜上某些部位有非常强的亲和力,即使是非常稀的溶液(10–8M),细胞膜表面上每平方微米仅吸附几十分子,就可以完全暂时性中断钠离子流透入细胞膜,而钠离子流对神经一肌肉兴奋是必须的,然而稳定状态的钾离子流(它对静止状态的膜是重要的)则完全不受影响。有证据说明,河豚毒素的胍基对阻断钠离子通道起决定性作用。 深入研究表明,河豚毒素对细胞膜的作用过程,并不是简单的“分子嵌塞作用”,而是通过毒素与膜上专一性受体结合。再通过关闭机制(gating mechanism)使通道关闭,河豚毒素作用于毒素受体(RTOX),可使h闸门(h—gate)关闭,阻滞钠离子通过细胞膜,使细胞膜失去极化状态,从而抑制甚至阻断了神经一肌肉的传导过程,导致神经肌肉活动障碍,严重者可发生麻痹状态。类似箭毒样作用,最后可引起呼吸中枢麻痹使呼吸停止,血管中枢麻痹,可引起血压下降,脉搏迟缓。最终因呼吸停止和循环衰竭而死亡。 河豚毒素中毒主要表现为神经中枢和神经末梢的麻痹。一般先是感觉神经麻痹,继而运动神经麻痹,使肢体无力甚至不能运动。血管中枢麻痹引起血压下降,脉搏迟缓。呼吸中枢麻痹导致呼吸停止而死亡。此外,河豚毒素还可作用于胃肠道粘膜,引起急性胃肠炎症状。并能抑制去甲肾上腺素的释放。 河豚毒素是神经细胞膜药物研究的标准工具药,临床上用于治疗各种神经肌肉痛、创伤及癌痛,肠胃及破伤风痉挛等。也用于局部麻醉药及神经性汉森(Hansen)型疾病等。top 临床表现:潜伏期短,一般为30分钟至3小时,病程发展迅速。中毒者首诉局部皮肤“麻或刺痛感”,以后延及手指及脚趾,再到四肢的其他部位,麻感逐渐加重。有些患者沂说身体好象有“漂浮”感。 1.神经系统:口唇、舌尖麻木,舌和喉咙苍白,并且有蚁走和辛辣感,继则全身麻木,肌肉颤搐,共济失调,四肢无力瘫痪,最后进入广泛的肌肉麻痹:咽和喉最先麻痹,导致失音和吞咽困难,以后语言能力丧失,最后眼球固定,且常伴以惊厥。从发病到死亡,整个过程患者始终神志清楚,敏锐,但也有部分患者呈昏迷状态。 2.消化系统:症状出现早,主要表现为恶心、呕吐、腹泻和上腹部痛。严重者可出现稀水样大便、血便等症状。 3.呼吸系统:初始为呼吸窘迫、呼吸频率增高、鼻孔搐动、以及呼吸浅表。以后,呼吸窘迫变得非常明显,并出现嘴唇、四肢和身体发绀,最后,呼吸肌进行性上行麻痹,成为死亡的主要原因之一。 4.循环系统:心前区疼痛、脉率加速、细弱,出现多种心律失常,血压下降,最终导致循环衰竭。 5.视觉系统:开始瞳孔收缩,以后散大,随着症状加重,眼球固定,瞳孔和角膜反射丧失。 据日本统计资料表明,河豚鱼中毒,死亡率为60%。且死亡多发生在中毒后6~24小时内,若能存活24小时以上,则预后良好。
那种鱼的 内脏里 本身含有剧毒素
河豚毒素的作用机理是A刺激胃肠粘膜,引起恶心,呕吐B作用于腺苷酸环化酶,产生腹泻C阻断神经冲动传导,使神经麻痹D刺激迷走神经,通过呕吐中枢,引起呕吐E作用于外周神经一肌肉接头处
一种存在于河豚、蝾螈、斑足蟾等动物中的海洋毒素。分子式C11H17N3O8。无色棱柱状晶体。对热不稳定。难溶于水,可溶于弱酸的水溶液。在碱性溶液中易分解,在低的pH值溶液中也不稳定。河豚毒素是强烈的神经毒素,很低浓度的河豚毒素就能选择性地抑制钠离子通过神经细胞膜。河豚毒素还有其他药理作用,是神经生理学和肌肉生理学研究的有用工具。河豚的种类很多。体长的河豚毒性相对高些,其组织器官的毒性强弱也有差异。河豚毒素从大到小依次排列的顺序为:卵巢、肝脏、脾脏、血筋、鳃、皮、精巢。冬春季节是河豚的产卵季节。此时,河豚的肉味最鲜美,但是毒素也最高。随着科学的进步,令人恐惧的河豚毒素已步入了药学殿堂,并且在治疗人类疾病方面发挥着越来越重要的作用。河豚毒素在医疗上可以用于治疗癌症。"新生油"是从河豚肝脏中提取的抗癌药物。用于治疗鼻咽癌、食道癌、胃癌、结肠癌的治疗,疗效很好。河豚可以用于镇痛。对癌症疼痛、外科手术后的疼痛、内科胃溃疡引起的疼痛,河豚毒素制剂均有良好的止痛作用。使用河豚素的好处是用量极少(只需3微克),止痛时间长,又没有成瘾性。特别是穴位注射,作用快、效果明显,可以作为成瘾性镇痛药吗啡和杜冷丁的良好替代品。河豚毒素还可以止喘、镇痉、止痒。河豚毒素可以治疗哮喘、百日咳。对治疗胃肠道痉挛和破伤风痉挛有特效。河豚毒素对细菌有强烈杀伤作用。从河豚精巢提取的毒素,对痢疾杆菌、伤寒杆菌、葡萄球菌、链球菌、霍乱弧菌均有抑制作用,而且可以防治流感。目前,在国际市场上,河豚毒素结晶每克已经高达17万美元。现在,河豚毒素已经可以人工合成了。
河豚毒素是细胞膜钠离子通道选择性阻断剂。细胞膜钠离子通道的阻断,导致细胞膜去极化,从而特异性地干扰了神经一肌肉的传导过程。体外实验证明,河豚毒素对细胞膜上某些部位有非常强的亲和力,即使是非常稀的溶液(10–8M),细胞膜表面上每平方微米仅吸附几十分子,就可以完全暂时性中断钠离子流透入细胞膜,而钠离子流对神经一肌肉兴奋是必须的,然而稳定状态的钾离子流(它对静止状态的膜是重要的)则完全不受影响。有证据说明,河豚毒素的胍基对阻断钠离子通道起决定性作用。 深入研究表明,河豚毒素对细胞膜的作用过程,并不是简单的“分子嵌塞作用”,而是通过毒素与膜上专一性受体结合。再通过关闭机制(gating mechanism)使通道关闭,河豚毒素作用于毒素受体(RTOX),可使h闸门(h—gate)关闭,阻滞钠离子通过细胞膜,使细胞膜失去极化状态,从而抑制甚至阻断了神经一肌肉的传导过程,导致神经肌肉活动障碍,严重者可发生麻痹状态。类似箭毒样作用,最后可引起呼吸中枢麻痹使呼吸停止,血管中枢麻痹,可引起血压下降,脉搏迟缓。最终因呼吸停止和循环衰竭而死亡。 河豚毒素中毒主要表现为神经中枢和神经末梢的麻痹。一般先是感觉神经麻痹,继而运动神经麻痹,使肢体无力甚至不能运动。血管中枢麻痹引起血压下降,脉搏迟缓。呼吸中枢麻痹导致呼吸停止而死亡。此外,河豚毒素还可作用于胃肠道粘膜,引起急性胃肠炎症状。并能抑制去甲肾上腺素的释放。 河豚毒素是神经细胞膜药物研究的标准工具药,临床上用于治疗各种神经肌肉痛、创伤及癌痛,肠胃及破伤风痉挛等。也用于局部麻醉药及神经性汉森(Hansen)型疾病等。top 临床表现:潜伏期短,一般为30分钟至3小时,病程发展迅速。中毒者首诉局部皮肤“麻或刺痛感”,以后延及手指及脚趾,再到四肢的其他部位,麻感逐渐加重。有些患者沂说身体好象有“漂浮”感。 1.神经系统:口唇、舌尖麻木,舌和喉咙苍白,并且有蚁走和辛辣感,继则全身麻木,肌肉颤搐,共济失调,四肢无力瘫痪,最后进入广泛的肌肉麻痹:咽和喉最先麻痹,导致失音和吞咽困难,以后语言能力丧失,最后眼球固定,且常伴以惊厥。从发病到死亡,整个过程患者始终神志清楚,敏锐,但也有部分患者呈昏迷状态。 2.消化系统:症状出现早,主要表现为恶心、呕吐、腹泻和上腹部痛。严重者可出现稀水样大便、血便等症状。 3.呼吸系统:初始为呼吸窘迫、呼吸频率增高、鼻孔搐动、以及呼吸浅表。以后,呼吸窘迫变得非常明显,并出现嘴唇、四肢和身体发绀,最后,呼吸肌进行性上行麻痹,成为死亡的主要原因之一。 4.循环系统:心前区疼痛、脉率加速、细弱,出现多种心律失常,血压下降,最终导致循环衰竭。 5.视觉系统:开始瞳孔收缩,以后散大,随着症状加重,眼球固定,瞳孔和角膜反射丧失。 据日本统计资料表明,河豚鱼中毒,死亡率为60%。且死亡多发生在中毒后6~24小时内,若能存活24小时以上,则预后良好。
食品毒理学研究的内容包括:
有害物的来源、理化性质和结构,毒性作用及机制,开展毒理学安全性评价,开展食品中外来化学物质、生物性污染、食品包装材料和食品添加剂、食品及加工过程中形成的有害物对人体健康的危险性评估。
食品毒理学
食品毒理学(food toxicology)是研究食品中外源化学物质的性质、来源于形成以及他们的不良反应与可能的有益作用和机制,并确定这些物质的安全限量和评价食品安全性的一门科学。从毒理学角度,研究食品中可能含有的外源化学物质对食用者健康的危害,检验和评价食品的安全性或安全范围,从而达到确保人类健康的目的。
食品毒理学是按应用对象分类的一个毒理学分支,是研究食品中外源化学物的性质、来源与形成、它们的不良作用与可能的有益作用及其机制,并确定这些物质的安全限量和评价食品的安全性的科学。
研究食品中可能存在或混入的化学物质(如食用色素、香精、合成甜味剂等的添加剂、农药、化肥、天然毒素、污染物、微生物毒素及霉菌毒素等)的毒性作用、毒理作用,为其安全性评价、制定日许量(每日容许摄入量,ADI),最大残留限量等有关的食品卫生标准及预防措施,提供科学依据。
我国食品相关的毒理学评价程序、指南及管理法规得到更新和完善;食品安全风险评估体系初步建立;细胞毒理学方法、毒理组学技术等已成为食品毒理学的重要研究工具;在人群流行病学调查中,以生物标志物为手段的检测研究成为食品毒理学研究的一个热点;采用转基因小鼠模型进行致癌性研究具显著优越性;体外替代法研究也得到进一步的发展。
1.体内试验:也称为整体动物试验。可严格控制接触条件,测定多种类型的毒作用。实验多采用哺乳动物,例如大鼠、小鼠、脉鼠、家兔、仓鼠、狗和猴等。在特殊需要情况下,也采用鱼类或其他水生生物、鸟类、昆虫等。检测外源化学物的一般毒性,多在整体动物进行,例如急性毒性试验,亚急性毒性试验、亚慢性毒性试验和慢性毒性试验等。哺乳动物体内试验是毒理学的基本研究方法,其结果原则上可外推到人;但体内试验影响因素较多,难以进行代谢和机制研究。
2.体外试验:利用游离器官、培养的细胞或细胞器进行毒理学研究,医'学教育网|整理多用于外源化学物对机体急性毒作用的初步筛检、作用机制和代谢转化过程的深入观察研究。体外试验系统缺乏整体毒物动力学过程,并且难以研究外源化学物的慢性毒作用。
(1)游离器官:利用器官灌流技术将特定的液体通过血管流经某一离体的脏器(肝脏、肾脏、肺、脑等),借此可使离体脏器在一定时间内保持生活状态,与受试化学物接触,观察在该脏器出现有害作用,以及受试化学物在该脏器中的代谢情况。
(2)细胞:利用从动物或人的脏器新分离的细胞(原代细胞)或经传代培养的细胞如细胞株及细胞系。
(3)细胞器:将细胞制作匀浆,进一步离心分离成为不同的细胞器或组分,例如线粒体、微粒体、核等,用于实验。
3.限定人体试验:通过中毒事故的处理或治疗,可以直接获得关于人体的毒理学资料,这是临床毒理学的主要研究内容。有时可设计一些不损害人体健康的受控的实验,但仅限于低浓度、短时间的接触,并且毒作用应有可逆性。保健食品的人体试食试验。
4.流行病学调查:通过流行病学调查的方法,不仅可以研究已知环境因素(外源化学物)对人群健康的影响(从因到果),而且还可对已知疾病的环境病因进行探索(从果到因)。但流行病学研究干扰因素多,测定的毒效应还不够深入,有关的生物学标志还有待于发展。如突发性大规模食物中毒的调查。
食品毒理学研究的内容包括:食品中外源化学物质的性质、来源于形成以及他们的不良反应与可能的有益作用和机制,并确定这些物质的安全限量和评价食品安全性。
食品毒理学是按应用对象分类的一个毒理学分支,是研究食品中外源化学物的性质、来源与形成、它们的不良作用与可能的有益作用及其机制,并确定这些物质的安全限量和评价食品的安全性的科学。
研究食品中可能存在或混入的化学物质(如食用色素、 香精、合成甜味剂等的添加剂、 农药、 化肥、天然毒素、 污染物、微生物毒素及霉菌毒素等)的毒性作用、毒理作用,为其安全性评价、制定日许量( 每日容许摄入量,ADI), 最大残留限量等有关的食品卫生标准及预防措施,提供科学依据。
古代与中世纪毒理学:毒物(toxin)一词源于希腊文字“toxikon”,“toxa”,弓箭,“toxikon”浸过毒液的弓箭。
公元前2735年,神农编辑完成了40卷“神农本草经”典籍——有毒植物目录,如乌头、箭毒等,并提供了解毒剂。古埃及、古希腊及古罗马等有关文献中都有关于有毒植物和矿物的描述,积累了关于有毒物质及中毒知识。
理主要研究及其特点:(1)观察:自条件表现理现象外部进行系统、计划观察发现理现象产、发展规律优点:适用范围较;简便易行;所材料比较真实缺点:结难重复验证、精确析;难控制目标现象现;受观察者主观影响(观察者效应、观察者偏差)(2)实验:控制条件某种理现象进行研究;实验室实验自实验优点:揭示关系;重复检验;数量化指标明确缺点:实验情景带极认性质试处于环境意识自接受实验能干扰实验结客观性(3)测验:用套预先经标准化问题(量表)测量某种理品质;直接测验间接测验(投射测验)两种测验三基本要求:1.信度 2.效度 3.标准化(4)调查:某问题要求让受调查者自由表达其态度或意见两种式:问卷调查晤谈使用应注意:1.取代表性 2.试受社赞许性影响优点:用起比较容易收集数据比较快缺点:够严谨;能揭示关系;受研究者主观影响较(5)案:试各面或状况进行深入详尽解收集体现资料进析推知其行原优点:能够解释体某些理行产、发展、变化原助于研究者获某种假设缺点:体研究结论难推广
1 溴系阻燃剂的毒理学研究进展2 爬行动物应用于毒理学研究的现状3 环境内分泌干扰物对鱼类性别分化的影响4 污染场地中有机氯农药对土壤原生动物群的影响5 铀胁迫对两种蓝藻生长及抗氧化酶活性的影响6 人血淋巴细胞检测浊漳河地表水的遗传毒性7 水体Hg2+对中华绒螯蟹肝胰腺和血淋巴酶活性的影响8 西维因对雄性罗非鱼(GIFT Oreochromis niloticus)内分泌干扰效应的研究9 镉对血管内皮细胞损伤及其致动脉硬化的毒理学机制10 丁烯氟虫腈对家蚕(Bombyx mori)的急性毒性与风险评价11 山西工矿区土壤二氧化硫与多环芳烃复合污染对小麦种子萌发和幼苗生长的影响12 基质诱导硝化测定的土壤中锌的毒性阈值、主控因子及预测模型研究13 镉对不同生态型水稻的毒性及其在水稻体内迁移转运14 氯化镉和敌敌畏突发胁迫下斑马鱼的行为差异15 毒死蜱对雄性小鼠生殖毒性的影响
水质检测中生物检测技术的使用论文
在日常学习和工作中,大家总少不了接触论文吧,论文是学术界进行成果交流的工具。那么你有了解过论文吗?以下是我为大家收集的水质检测中生物检测技术的使用论文,欢迎大家借鉴与参考,希望对大家有所帮助。
摘要:
近年来,随着我国环保事业的逐步成熟,社会各界对环境污染问题给予了广泛的重视,特别是水质安全问题,直接影响着广大群众的正常生活。为了更好地保障人民群众的用水安全及生态环境的和谐发展,就必须加强水质检测工作的管控力度,运用科学先进的现代化技术手段,提升水质检测数据的精确性和可靠性,为人民群众的安全用水提供坚实的技术保障。鉴于此,本文就着重围绕水质检测环节中生物检测技术的具体应用进行了深入探究。
关键词:
生物检测技术;水质检测;应用:探究;
引言:
水是人们赖以生存的重要资源,水质的好坏不仅会影响到人们的生命安全,同时也会影响到正常的社会生产秩序,然而,近年来我国工业及农业产业的迅猛发展,都不可避免的加剧了我国水环境的污染问题。为了有效改善这一局面,就必须加强水质检测工作的监管力度,运用科学先进的生物检测技术,来提升水质检测工作的技术水平,确保水质检测结果的科学性和准确性,推动水质检测工作的顺利开展。
1、生物检测技术的含义及相关特性探究
(1)生物检测技术的具体含义。
生物检测的含义主要是指通过某些生物个体、群落来对周边环境污染及变化情况进行客观反映,以此来作为环境质量检测重要的参考依据。近年来,受到外界各种因素的不同影响,对我国的水资源带来了严重的破坏,由于其污染源头较为复杂,这就需要科学先进的技术手段对其进行全面深入的检测分析,而生物检测技术的优势就在于可以在特殊环境中对水污染效应进行充分展示,有效弥补了传统检测技术的不足之处。
(2)生物检测技术的相关特性。
对于生物检测技术的相关特性,我们可以结合以下三点进行分析:其一,相较理化检测的具体应用而言,生物检测技术可以在某些特定区域内对生物的污染情况加以充分反映,彻底打破了理化检测的局限性,使水质检测结果的精确性得到了进一步的提升。其二,针对仪器设备的具体应用而言,由于部分生物对污染物的反应情况较为敏感细微,但无法通过仪器设备对其进行精准的检测,这势必会影响到检测数据的准确性,而通过对生物检测技术的科学运用,就能够对微量污染物所产生的反应进行充分展示,同时还可以清晰的展示出相应的受损效应。其三,在整个生态系统之中,为了能够使微量的有毒有害物质形成聚集效果,便可以借助生物链来完成,当到达食物链末端时便可以使污染物的浓度得到显着的提升,为检测工作提供重要的参考依据。
2、水质检测的基本概况及影响要素探究
(1)水质检测的基本概况。
水资源是人们赖以生存的重要资源,同时也是宝贵的非可再生资源。近年来,我国政府部门在推动经济发展的同时对环境保护愈加重视,随着环保宣传的广泛开展,社会各界都对环保理念有了全新的认识。水质检测工作的重要价值不仅体现在人们的安全用水方面,同时也对生态环境的保护与研究发挥着非常重要的作用。结合目前的实际情况来看,水质检测在社会各个领域都得到了较为广泛的运用,水质检测对推动社会与生态环境的和谐发展具有非常重要的影响。
(2)水质检测的影响要素。
针对水质检测的影响要素,主要体现在以下三个方面:首先,是水样来源的具体影响,结合水质检测环节来看,假如检测人员对水样来源的具体情况没有进行全面掌握,就有可能对解决措施作出错误的判断,无法有效的解决该区域水源的污染问题,因此,在开展水质检测工作的具体操作之前,检测人员必须要对水质来源进行全面的了解,并结合实际情况制定出妥善的解决措施,使水质检测工作的重要价值得以充分发挥。其次,是针对类别方面的影响要素,在对水样水质进行具体检测时,必须要依据水质的不同选用适宜的水质检测方法,这就要求检测人员必须要认真对待检测工作,并严格依照检测工作的相关流程实施具体的检测操作。对此,检测人员要对不同的水质进行分析研究,针对不同水质的差异性做出准确判断,然后再运用科学合理的检测技术来对水样进行水质检测,这样才能确保水质检测数据的精确性,并使其成为相关部门制定解决方案的重要参考依据。最后,针对人为方面的影响因素,在进行水质检测的具体操作时,检测人员作为最直接的参与者,在整个检测环节中占据着非常重要的地位。为了有效避免人为操作失误情况的发生,就必须加强对整个检测环节的监管力度,在开始检测之前,要对检测仪器、试剂以及玻璃器皿等重要物品进行详细的检查,在确定一切符合标准,严格规范取样工作;进行检测工作时,检测所用的药品,一定要确保其在有效期内,过期变质的药物必须马上进行更换,检测工作要在规定时间内。另外,针对整个检测环节而言,检测人员还必须严格遵循检测标准来规范自身的实际操作,同时还要保证检测记录的准确性和客观性,从根本上避免人为失误对检测结果所造成的不利影响。
3、水质检测中生物检测技术的实际应用探究
(1)发光细菌检测技术的具体应用。
发光细菌检测技术可以对水样中存在的大部分有毒有害物质进行检测,因此在重金属以及有机物等检测领域中得到了较为广泛的运用。然而在具体的检测环节中,发光细菌检测技术也存在一定的弊端,如操作繁杂以及误差较大等相关问题。随着科技水平的日益发展,电子技术已对发光细菌检测技术做出了相应的完善,如紫外分光光度法以及荧光光度法等检测手段的辅助,可以有效提升水质检测工作的质量和效率,确保检测数据的精确性和可靠性。
(2)生物行为反应检测技术的`具体应用。
生物行为反应检测技术的操作原理主要体现在借助生物受污染物危害后所出现的趋利避害行为反应对水体污染的具体情况加以评断,并对水体污染的安全浓度加以确定,然后依据水体的实际污染情况制定出合理准确的预警措施。生物行为反应检测技术通常运用在鱼、水蚤以及双壳软体动物等生物的具体检测中,同时在实施淡水生物检测环节中一般会运用斑马鱼进行具体的检测操作,这主要是由于斑马鱼会在水质污染的情况下迅速做出行为反应,为水质检测工作提供了非常重要的参考依据。在海洋环境中,通常会运用双壳生物活体来检测水体的污染情况,而在淡水环境中,则一般会借助鱼类来完成具体的检测工作。针对贻贝双壳距离变化的具体检测操作,可以借助电磁感应技术来进行落实,此外,还可以借助高频电磁感应系统对贝壳类物质的运动情况实施检测。
(3)微生物群落检测技术的具体应用。
微生物群落检测技术通常运用于对细菌、真菌以及原生动物等微型生物在水体中的物种频率及数量的检测工作,然后再结合先进的电子技术对分布指数进行精准的计算,最后依据分布指数的具体数值对水质污染程度进行评断。伴随科技水平的全面发展,微生物群落检测技术也得到了相应的完善,检测评价指标的增加就是一个很好的证明,一般较为常见的检测评价指标有原物种种类指标、植鞭毛虫百分值以及异样性指数等。通过对生物检测技术的合理运用,使我国的水质检测技术水平得到了更好的完善与提升,这在生态环境的保护工作以及为人们提供优质用水资源等方面都发挥出了非常重要的作用。与此同时,在微生物群落检测技术的发展之中,数学分析的实用性也在逐步攀升,数学分析与计算机技术的联合应用有效拓展了生物群落参数变化规律的检测范围,使微生物群落检测技术的重要价值得以充分展现,同时对提升检测数据的精确性和可靠性也有着非常积极的影响。
(4)底栖动物及两栖动物检测技术的具体应用。
底栖动物及两栖动物检测技术的主要原理为运用生物在水体中的出现、消失以及数量的多少对水质进行具体的检测,底栖动物及两栖动物的检测参数主要包括BI指数以及群落多样性指数等。通过对两栖动物行为及生物指标的全面检测可以对水体的整体质量进行评估,尤其是在检测发育阶段中可以实现对环境因子变化的进一步感应。
4、水质检测环节中生物检测技术的应用前景探究
(1)分子生态毒理学应用于水质污染检测。
分子生态毒理学检测技术通常被运用于污染物及其代谢物与细胞内大分子代谢作用的具体研究,在对发生作用的靶分子进行研究后,便可以对个体、种群以及群落的基本情况进行预报。在科技水平日益提升的今日,生物体内胆碱酯酶活性检测被广泛运用于海水及淡水资源水质污染的检测工作。
(2)遗传毒理学应用于水质污染检测。
遗传毒理学检测原理主要是借助DNA链损伤程度的检测对遗传毒性加以判断的检测技术,相比微核试验操作而言,遗传毒理学检测技术的效果更加显着,主要是因为单细胞凝胶电泳能够对低浓度的有毒有害物质进行准确的检测,SOS显色方案作为遗传毒理学检测技术的另一种检测方法,其具体的操作原理表现在受到外界范围损伤及抑制的干扰下,DNA分子会进行错误修复,在经过遗传毒物处理后而出现的反应便可以称为SOS应答,SOS检测方法具有灵敏性强且操作便捷等技术优势。
5、结语
结合以上论述可以看出,伴随社会经济的飞速发展,工业及农业产业规模的不断壮大,加剧了我国的水污染问题。对此,为了有效解决这一难题,相关部门就必须对水质检测工作给予高度的重视,通过对生物检测技术的科学运用,使水质检测工作的效率和质量得到进一步的提升,在确保检测数据准确性的基础之上,为人民群众提供优质的用水资源,以此来推动社会与生态环境的可持续发展。
参考文献:
[1]廖伟,杨蓉,徐建,闫政,金小伟饮用水源微生物快速检测技术的发展及应用[J]中国环境监测, 2020,36(06)—:104—112.
[2]张松松生物检测技术在水环境中的应用及研究[J]环境与发展, 2020,32(06)—.74+76.
[3]李悦浅析水环境污染检测中生物监测的运用[J]绿色环保建材, 2020(01):55+57.
[4]陈朋利谈生物技术在水质检测与污水处理中的应用[J]环境与发展, 2019,31(09):81—82.
[5]施小玲.水质检测与污水处理中生物技术的应用分析[J].化工管理2019(21):42—43.
[6]谢本祥生物工程中检测技术的需求和发展趋势[J]科技经济导刊.2019,27(15)—163—164.
[7]杨磊生物技术在水质检测与污水处理中的应用[J]工程技术研究, 2019,4(05): 102+130.