首页

> 学术论文知识库

首页 学术论文知识库 问题

集成电路芯片论文

发布时间:

集成电路芯片论文

工程硕士的学位论文的选题可以直接来源于生产实际或具有明确的生产背景和应用价值。学位论文选题应具有一定的先进性和技术难度,能体现工程硕士研究生综合运用科学理论、方法和技术手段解决工程实际问题的能力。学位论文选题可以是一个完整的集成电路工程项目,可以是工程技术研究专题,也可以是新工艺、新设备、新材料、集成电路与系统芯片新产品的研制与开发。学位论文应包括:课题意义的说明、国内外动态、设计方案的比较与评估、需要解决的主要问题和途径、本人在课题中所做的工作、理论分析、设计计算书、测试装置和试验手段、计算程序、试验数据处理、必要的图纸、图表曲线与结论、结果的技术和经济效果分析、所引用的参考文献等,与他人合作或前人基础上继续进行的课题,必须在论文中明确指出本人所做的工作。

集成电路芯片封装技术浅谈 自从美国Intel公司1971年设计制造出4位微处a理器芯片以来,在20多年时间内,CPU从Intel4004、80286、80386、80486发展到Pentium和PentiumⅡ,数位从4位、8位、16位、32位发展到64位;主频从几兆到今天的400MHz以上,接近GHz;CPU芯片里集成的晶体管数由2000个跃升到500万个以上;半导体制造技术的规模由SSI、MSI、LSI、VLSI达到 ULSI。封装的输入/输出(I/O)引脚从几十根,逐渐增加到几百根,下世纪初可能达2千根。这一切真是一个翻天覆地的变化。 对于CPU,读者已经很熟悉了,286、386、486、Pentium、Pentium Ⅱ、Celeron、K6、K6-2 ……相信您可以如数家珍似地列出一长串。但谈到CPU和其他大规模集成电路的封装,知道的人未必很多。所谓封装是指安装半导体集成电路芯片用的外壳,它不仅起着安放、固定、密封、保护芯片和增强电热性能的作用,而且还是沟通芯片内部世界与外部电路的桥梁--芯片上的接点用导线连接到封装外壳的引脚上,这些引脚又通过印制板上的导线与其他器件建立连接。因此,封装对CPU和其他LSI集成电路都起着重要的作用。新一代CPU的出现常常伴随着新的封装形式的使用。 芯片的封装技术已经历了好几代的变迁,从DIP、QFP、PGA、BGA到CSP再到MCM,技术指标一代比一代先进,包括芯片面积与封装面积之比越来越接近于1,适用频率越来越高,耐温性能越来越好,引脚数增多,引脚间距减小,重量减小,可靠性提高,使用更加方便等等。 下面将对具体的封装形式作详细说明。 一、DIP封装 70年代流行的是双列直插封装,简称DIP(Dual In-line Package)。DIP封装结构具有以下特点: 1.适合PCB的穿孔安装; 2.比TO型封装(图1)易于对PCB布线; 3.操作方便。 DIP封装结构形式有:多层陶瓷双列直插式DIP,单层陶瓷双列直插式DIP,引线框架式DIP(含玻璃陶瓷封接式,塑料包封结构式,陶瓷低熔玻璃封装式),如图2所示。 衡量一个芯片封装技术先进与否的重要指标是芯片面积与封装面积之比,这个比值越接近1越好。以采用40根I/O引脚塑料包封双列直插式封装(PDIP)的CPU为例,其芯片面积/封装面积=3×3/×50=1:86,离1相差很远。不难看出,这种封装尺寸远比芯片大,说明封装效率很低,占去了很多有效安装面积。 Intel公司这期间的CPU如8086、80286都采用PDIP封装。 二、芯片载体封装 80年代出现了芯片载体封装,其中有陶瓷无引线芯片载体LCCC(Leadless Ceramic Chip Carrier)、塑料有引线芯片载体PLCC(Plastic Leaded Chip Carrier)、小尺寸封装SOP(Small Outline Package)、塑料四边引出扁平封装PQFP(Plastic Quad Flat Package),封装结构形式如图3、图4和图5所示。 以焊区中心距,208根I/O引脚的QFP封装的CPU为例,外形尺寸28×28mm,芯片尺寸10×10mm,则芯片面积/封装面积=10×10/28×28=1:,由此可见QFP比DIP的封装尺寸大大减小。QFP的特点是: 1.适合用SMT表面安装技术在PCB上安装布线; 2.封装外形尺寸小,寄生参数减小,适合高频应用; 3.操作方便; 4.可靠性高。 在这期间,Intel公司的CPU,如Intel 80386就采用塑料四边引出扁平封装PQFP。 三、BGA封装 90年代随着集成技术的进步、设备的改进和深亚微米技术的使用,LSI、VLSI、ULSI相继出现,硅单芯片集成度不断提高,对集成电路封装要求更加严格,I/O引脚数急剧增加,功耗也随之增大。为满足发展的需要,在原有封装品种基础上,又增添了新的品种--球栅阵列封装,简称BGA(Ball Grid Array Package)。如图6所示。 BGA一出现便成为CPU、南北桥等VLSI芯片的高密度、高性能、多功能及高I/O引脚封装的最佳选择。其特点有: 引脚数虽然增多,但引脚间距远大于QFP,从而提高了组装成品率; 2.虽然它的功耗增加,但BGA能用可控塌陷芯片法焊接,简称C4焊接,从而可以改善它的电热性能: 3.厚度比QFP减少1/2以上,重量减轻3/4以上; 4.寄生参数减小,信号传输延迟小,使用频率大大提高; 5.组装可用共面焊接,可靠性高; 封装仍与QFP、PGA一样,占用基板面积过大; Intel公司对这种集成度很高(单芯片里达300万只以上晶体管),功耗很大的CPU芯片,如Pentium、Pentium Pro、Pentium Ⅱ采用陶瓷针栅阵列封装CPGA和陶瓷球栅阵列封装CBGA,并在外壳上安装微型排风扇散热,从而达到电路的稳定可靠工作。 四、面向未来的新的封装技术 BGA封装比QFP先进,更比PGA好,但它的芯片面积/封装面积的比值仍很低。 Tessera公司在BGA基础上做了改进,研制出另一种称为μBGA的封装技术,按焊区中心距,芯片面积/封装面积的比为1:4,比BGA前进了一大步。 1994年9月日本三菱电气研究出一种芯片面积/封装面积=1:的封装结构,其封装外形尺寸只比裸芯片大一点点。也就是说,单个IC芯片有多大,封装尺寸就有多大,从而诞生了一种新的封装形式,命名为芯片尺寸封装,简称CSP(Chip Size Package或Chip Scale Package)。CSP封装具有以下特点: 1.满足了LSI芯片引出脚不断增加的需要; 2.解决了IC裸芯片不能进行交流参数测试和老化筛选的问题; 3.封装面积缩小到BGA的1/4至1/10,延迟时间缩小到极短。 曾有人想,当单芯片一时还达不到多种芯片的集成度时,能否将高集成度、高性能、高可靠的CSP芯片(用LSI或IC)和专用集成电路芯片(ASIC)在高密度多层互联基板上用表面安装技术(SMT)组装成为多种多样电子组件、子系统或系统。由这种想法产生出多芯片组件MCM(Multi Chip Model)。它将对现代化的计算机、自动化、通讯业等领域产生重大影响。MCM的特点有: 1.封装延迟时间缩小,易于实现组件高速化; 2.缩小整机/组件封装尺寸和重量,一般体积减小1/4,重量减轻1/3; 3.可靠性大大提高。 随着LSI设计技术和工艺的进步及深亚微米技术和微细化缩小芯片尺寸等技术的使用,人们产生了将多个LSI芯片组装在一个精密多层布线的外壳内形成MCM产品的想法。进一步又产生另一种想法:把多种芯片的电路集成在一个大圆片上,从而又导致了封装由单个小芯片级转向硅圆片级(wafer level)封装的变革,由此引出系统级芯片SOC(System On Chip)和电脑级芯片PCOC(PC On Chip)。 随着CPU和其他ULSI电路的进步,集成电路的封装形式也将有相应的发展,而封装形式的进步又将反过来促成芯片技术向前发展。

无论是在学校还是在社会中,大家最不陌生的就是论文了吧,论文是进行各个学术领域研究和描述学术研究成果的一种说理文章。你知道论文怎样写才规范吗?以下是我整理的论文摘要模板,仅供参考,大家一起来看看吧。

一、什么是论文摘要?

1.论文摘要即“摘其要点而发”。

2.论文摘要是对论文内容不加注释和评论的简短陈述。

3.摘要又称概要、内容提要。摘要是以提供文献内容梗概为目的,不加评论和补充解释,简明、确切地记述文献重要内容的短文。

4.论文摘要就是论文内容提要,是在对论文进行总结的基础之上,用简单、明确、易懂、精辟的语言对全文内容加以概括,提取论文的主要信息。

6.内涵:短文

7.外延:陈述论文主要内容的简明、确切的,不加解释和评论的。

9.论文摘要是简明、确切、不加解释和评论地陈述论文主要内容的短文。

二、论文摘要起什么作用?

不阅读论文全文即能获得必要的信息。

1.读者尽快了解论文的主要内容,以补充题名的不足。现代科技文献信息浩如烟海,读者检索到论文题名后是否会阅读全文,主要就是通过阅读摘要来判断;所以,摘要担负着吸引读者和将文章的主要内容介绍给读者的任务。

2. 为科技情报文献检索数据库的建设和维护提供方便。论文发表后,文摘杂志或各种数据库对摘要可以直接利用,论文摘要的索引是读者检索文献的重要工具。所以论文摘要的质量高低,直接影响着论文的被检索率和被引频次。

三、论文摘要应包含那些内容?

摘要的内容应包含与论文同等量的主要信息,供读者确定有无必要阅读全文。

摘要的'四要素:

1.目的: 研究的目的、范围、重要性;

2.方法: 采用的手段和方法;

3.结果: 完成了哪些工作取得的数据和结果;

4.结论: 得出的重要结论及主要观点,论文的新见解。

(1)目的:指出研究的范围、目的、重要性、任务和前提条件,不是主题的简单重复。

(2)方法:简述课题的工作流程,研究了哪些主要内容,在这个过程中都做了哪些工作,包括对象、原理、条件、程序、手段等。

(3)结果:陈述研究之后重要的新发现、新成果及价值,包括通过调研、实验、观察并剖析其不理想的局限部分。

(4)结论:通过对这个课题的研究所得出的重要结论,包括从中取得证实的正确观点,进行分析研究,比较预测其在实际生活中运用的意义,理论与实际相结合的价值。

1、应该怎么写

文字:简明扼要:文字必须十分简练,内容需要充分概括;引起读者对文章的兴趣,使他们继续读。

2、不应该怎么写

不能冗长,少写无关的东西,语句不能含糊不清。论文摘要论文摘要不要列举例证,不讲研究过程,不用图表,不给化学结构式,也不要作自我评价。

1) 应排除本学科领域已成为常识的内容;切忌把应在引言中出现的内容写入摘要;一般也不要对论文内容作诠释和评论(尤其是自我评价)。

2) 不得简单重复题名中已有的信息。比如一篇文章的题名是《几种中国兰种子试管培养根状茎发生的研究》,摘要的开头就不要再写:“为了……,对几种中国兰种子试管培养根状茎的发生进行了研究”。

3) 结构严谨,表达简明,语义确切。摘要先写什么,后写什么,要按逻辑顺序来安排。句子之间要上下连贯,互相呼应。

4)句型应力求简单,慎用长句。每句话要表意明白,无空泛、笼统、含混之词。

5) 要使用规范化的名词术语,不用非公知公用的符号和术语。新术语或尚无合适汉文术语的,可用原文或译出后加括号注明原文。

6) 除了实在无法变通以外,一般不用数学公式和化学结构式,不出现插图、表格。

7) 不用引文,除非该文献证实或否定了他人已出版的著作。

8) 缩略语、略称、代号,除了相邻专业的读者也能清楚理解的以外,在首次出现时必须加以说明。目前摘要编写中的主要问题有:要素不全,或缺目的,或缺方法;出现引文,无独立性与自明性;繁简失当。

3.摘要的基本规范

(1)应以第三人称写作.摘要是完整的短文,具有独立性,可以单独使用.即使不看论文全文的内容,仍然可以理解论文的主要内容,作者的新观点和想法以及论文所要实现的目的,采取的方法,研究的结果与结论.

(2)叙述完整,突出逻辑性,短文结构要合理.

(3)文字简明扼要,不容赘言,采用直接表述的方法,不使用不必要的文学修饰,做到用最少的文字提供最大的信息量.

4、摘要里主要包括什么

主要包括简要的研究背景,所采用的研究工具,研究方法,得出的重要结论。另外可以说明论文的创新点

5、摘要应该怎么写

写作的过程中应当简明扼要,应当引起读者对文章的兴趣,使他们继续读,另外得出的结论写作要精炼

6、现在论文摘要常见的错误有哪些

常出现,记流水帐,把自己整篇文章从头到尾的标题说明一番。

一、[示例]

论文题目:天体对地球重力加速度的影响

论文摘要:地球重力加速度是一个极其重要的物理量,随着对重力加速度测量精度要求的日益提高,必须考虑天体对地球重力加速度的影响。

本文介绍了天体(包含日、月及太阳系行星)对地球重力加速度影响的基本概念,推导了影响的计算公式,并经过误差分析,证明此公式的相对误差小于1×10-9,完全可满足现代精密重力加速度测量的要求。

撰写论文摘要的常见毛病,一是照搬论文正文中的小标题(目录)或论文结论部分的文字;二是内容不浓缩、不概括,文字篇幅过长。

二、[示例]

论文题目:集成电路热模拟模型和算法

论文提要:众所周知,半导体器件的各种特性参数都是温度的灵敏函数学[诸如ls(T),B(T),C1(T),Cp(T)]。

集成电路将大量元件集成在一块苡片上,电路工作时,元件功耗将产生热量,沿晶片向四周扩散。但是由于半导体片及基座材料具有热阻,因此芯片上各点温度不可能相同。特别对于功率集成电路,大功率元件区域将有较高温度所以在芯片上存在着不均匀的温度分布。

但是为了简化计算,一般在分析集成电路性能时,常常忽略这种温度差别,假定所有元件者处于同一温度下。例如通用的电路模拟程序--SPICE就是这样处理的。显然这一假定对集成电路带来计算误差。对于功率集成电路误差将更大。

因此,如何计算集成电路芯片上的温度分布,如何计算元件温度不同时的电路特性,以及如何考虑芯片上热、电相互作用,这就是本文的目的。本文介绍集成电路的热模拟模型,并将热路问题模拟成电路问题,然后用电路模拟程序求解芯片温度分由。这样做可以利用成熟的电路分析程序,使计算的速度和精度大为提高。

作者根据这一模型和算法,编制了一个YM-LiN-3的FORTRAN程序,它可以确定芯片温度分布,也可发计算元件处于不同温度时的电路特性,该程序在微机IBM-PC上通过,得到满意结果。

上述论文提要字数近600,显然过长,只要认真加以修改(例如:第一段可删掉,第二段只保留其中的最后几句话,加上第三段),便可以二三百个字编写论文摘要。

集成电路毕业论文

.不会写,复制的,参考吧。1 电子技术的发展 随着科学技术的发展和人类的进步,电子技术已经成了各种工程技术的核心,特别是进入信息时代以来,电子技术更是成了基本技术,其具体应用领域涵盖了通信领域、控制系统、测试系统、计算机等等各行各业。 电子技术的出现和应用,使人类进入了高新技术时代,电子技术诞生的历史虽短,但深入的领域却是最广最深,而且成为人类探索宇宙宏光世界和微观世界的物质技术和基础。电子科学技术是人类在生产斗争和科学实验中发展起来的。1883年美国发明家爱迪生发现了热电子效应,随后在1904年弗莱明利用这个效应制成了电子二极管,并证实了电子管具有“阀门”作用,它首先被用于无线电检波。1906年美国的德福雷斯在弗莱明的二极管中放进了第三电极—栅极而发明了电子三极管,从而建树了早期电子技术上最重要的里程碑。半个多世纪以来,电子管在电子技术中立下了很大功劳;但是电子管毕竟成本高,制造繁,体积大,耗电多,从1948年美国贝尔实验室的几位研究人员发明晶体管以来,在大多数领域中已逐渐用晶体管来取代电子管。但是,我们不能否定电子管的独特优点,在有些装置中,不论从稳定性、经济性或功率上考虑,还需要采用电子管。 集成电路的第一个样品是在1958年见诸于世的。集成电路的出现和应用,标志着电子技术发展到了一个新的阶段。它实现了材料、元件、电路三者之间的统一;同传统的电子元件的设计与生产方式、电路的结构形式有着本质的不同。随着集成电路制造工艺的进步,集成度越来越高,出现了在规模和超大规模集成电路(例如可在一块6平方毫米的硅片上制成一个完整的计算机),进一步显示出集成电路的优越性。按元器件集成度(芯片上所集成的元件数量)分为小规模集成电路(100个元件以上)SSI、中规模集成电路(100—1000个元件)MSI,大规模集成电路(1000—100000个元件)LSI,超大规模集成电路(100000个以上元件)VLSI等四种,现在集成度已达到数千亿。 随着半导体技术的发展和科学研究、生产、管理和生活等方面的要求,电子计算机应时而兴起,并且日益完善。从1946年诞生第一台电子计算机以来,已经经历了电子管、晶体管、集成电路及大规模集成电路、超大规模集成电路,每秒运算速度已达百亿次。现在正在研究开发第五代计算机(人工智能计算机),他们不依靠程序工作,而是依靠人工智能工作。特别是从70年代微型计算机以来,由于价廉、方便、可靠、小巧,大大加快了电子计算机的普及速度。例如个人计算机,它从诞生至今不过经历十多年时间,但是它的发展却跨越了多个阶段,走进了千家万户。集计算机、电视、电话、传真机、音响等于一体的多媒体计算机也纷纷问世。以多媒体计算机、光纤电缆和互联网络为基础的信息高速公路已成为计算机诞生以来的又一次信息变革。未来的人工智能更将给人们的生活与工作方式带来前所未有的变化,随身携带微型计算机已成为一种时尚。 数字控制和数字测量也在不断发展和得到日益广泛的应用。数字控制机床1952年研制出来以后,发展更快。“加工中心”多工序数字控制机床和“自适应” 数字控制机床相继出现。目前利用电子计算机对几十台乃至上百台数字控制机床进行集中控制也已经实现。由于大功率半导体器件的制造工艺日益完善,电力电子技术已是当今一门发展迅速、方兴未艾的科学技术,应用于中频电源、变频调速、直流输电、不间断电源等诸多方面,使半导体进入了强电领域。 电子水准是现代化的一个重要标志,由于工业是实现现代化的重要物质基础。电子工业的发展速度和技术水平,特别是电子计算机的高度发展及其在生产领域的广泛应用,直接影响到工业、农业、科学技术和国防建设,关系着社会主义建设的发展速度和国家的安危;也直接影响到亿万人民的物质、文化生活,关系着广大群众的切身利益。 为了进一步减小器件体积、提高器件性能,人们不断寻找先进电子材料。现在已经发现的先进的电子材料有:仿生智能材料、纳米材料、先进复合材料、低维材料(量子点、量子线巴基球和巴基管)、高温超导材料和生物电子材料等,先进电子材料正应用于新型电子器件的制造之中。新型电子材料的问世,将使电子技术向更高层次发展,这些材料将使今后的电子器件具有功能化、智能化、结构功能一体化,使电子器件尺寸进一步缩小,功能更全,运算速度更快,为分子器件、单电子器件、分子计算机和生物计算机打下了基础。 几乎在所有的电子电路中,都要用到半导体二极管,它在许多的电路中起着重要的作用,它是诞生最早的半导体器件之一,其应用也非常广泛。 二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si管)。根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管、隔离二极管、肖特基二极管、发光二极管等。按照管芯结构,又可分为点接触型二极管、面接触型二极管及平面型二极管。点接触型二极管是用一根很细的金属丝压在光洁的半导体晶片表面,通以脉冲电流,使触丝一端与晶片牢固地烧结在一起,形成一个“PN结”。由于是点接触,只允许通过较小的电流(不超过几十毫安),适用于高频小电流电路,如收音机的检波等。面接触型二极管的“PN结”面积较大,允许通过较大的电流(几安到几十安),主要用于把交流电变换成直流电的“整流”电路中。平面型二极管是一种特制的硅二极管,它不仅能通过较大的电流,而且性能稳定可靠,多用于开关、脉冲及高频电路中。

编码电子锁的设计与制作论文 随着社会物质财富的日益增长,安全防盗已成为社会问题。而锁自古以来就是把守门户的铁将军,人们对它要求甚高,既要安全可靠地防盗,又要使用方便,这也是制锁者长期以来研制的主题。目前国内,大部分人使用的还是传统的机械锁。然而,眼下假冒伪劣的机械锁泛滥成灾,互开率非常之高。所谓互开率,是各种锁具的一个技术质量标准,也就是1把钥匙能开几把锁的比率。经国家工商局、国家内贸局、中国消协等部门对锁具市场的调查,发现个别产品的互开率居然超标26倍。弹子锁质量好坏主要取决于弹子数量的多少以及弹子的大小,而弹子的多少和大小受一定条件的限制。此外,即使是一把质量过关的机械锁,通过急开锁,甚至可以在不损坏锁的前提下将锁打开,提供了发展的空间。 电子锁是第三代计算机防盗报警器的核心组成部分,用于识别用户身份的合法性。它有不少优点。例如保密性强,防盗性能好可以不需要钥匙,只要记住开锁的密码和方法,便可开锁,即方便又可避免因丢失钥匙带来的烦恼和损失。如果密码泄露,主人可以比较方便地设置新的开锁密码,不会造成损失,此外,编码电子锁将电子门铃和防盗报警与电子锁合为一体,实现了一物多用。由于以上诸多优点,编码电子锁能够广泛地应用于超市、住家、办公单位等许多场所。 1 系统方案选择 本次设计中分析了两种方案,一种是中规模集成电路控制的方案,另一种是单片机控制的方案。两中方案各有各的优缺点,通过以下两个方案的比较选择设计了其中一个方案。 1.1 中规模集成电路控制 方案一:采用集成电路控制。 编码电子锁电路分为编码电路、控制电路、复位电路、解码电路、防盗报警电路、门铃电路。电子锁主要由输入元件、电路(包括电源)以及锁体三部分组成,后者包括电磁线圈、锁拴、弹簧和锁柜等。当电磁线圈中有一定的电流通过时,磁力吸动锁栓,锁便打开。用发光二极管代表电磁线圈,当发光二极管为亮状态时,代表电子锁被打开。每来1个输入时钟,编码电路的相应状态就向前前进一步。在这个操作过程中,如果按照规定的代码顺序按动编码按键,编码电路的输出就跟随这个代码的信息。正确输入编码按键的数字,控制电路通过整形供给编码电路时钟。一直按规定的编码顺序操作完,则解码电路驱动开锁电路把锁打开。在操作过程中,如果没有按照规定代码顺序按下数字键或按动了其他键,控制电路将驱动防盗报警电路产生报警信号。方案二:采用一种是用以at89s51为核心的单片机控制方案。利用单片机灵活的编程设计和丰富的io端口,及其控制的准确性,不但能实现基本的密码锁功能,还能添加调电存储、声光提示甚至添加遥控控制功能。 电子密码的硬件以单片机AT89C51 为核心。AT89C51 是一种带4k 字节闪烁可编程、可擦除只读,存储器FPEROM(Falsh Programmable and ErasableRead Only Memory)的低电压、高性能CMOS 8 位微处理器。其外接12 个按钮组成的3×4 键盘,通过4511 和7406(或7407)等驱动电路与单片机相连,以实现密码等的显示功能;利用串行EαPROM 存储器AT93C46 实现密码有效的永久保存。电子密码锁由键盘输入的识别、4位LED的显示、密码的比较、修改、存储、AT93C46 的读取与写入、报警和开锁控制电平的输出。根据框图,结合硬件结构,可以将键盘输入的识别用来作为系统的监控程序(主程序),用显示程序来延时,不断查询键盘。如果有键按下,就得到相应的键值。结合当前系统所处的状态,调用不同的操作模块,实现相应的功能。而执行模块主要有数字输入模块、确定键模块、修改键模块及显示模块。 方案比较 设计本课题时构思了两种方案:方案一是用锁存器74LS74、74LS00、74LS20和555基集成块构成的数字逻辑电路控制;方案二是用以AT89C51为核心的单片机控制。考虑到编码电子锁制作成本低,设计要求少,易实现控制要求,而单片机方案原理的复杂,调试较为繁琐,本人对数字电路基础较熟悉,有利于研究该课题。所以采用了方案一。 因此对该课题的研究具有实际应用价值。 在指导老师、同学和实习单位同事的帮助下,我顺利地完成了毕业论文。使我从中掌握了查阅资料的方法和分析问题的能力。 毕业论文的顺利完成,离不开各位同学、同学和朋友的关心和帮助。在整个的毕业论文学写作中,各位老师、同学和朋友积极的帮助我和提供有利于论文写作及毕业设计的建议和意见,在他们的帮助下,论文得于不断的完善,最终帮助完成了整个毕业论文和设计。 感谢在大学期间所有传授我知识的老师,是你们的悉心教导使我有了良好的专业课知识,这也是论文得以完成的基础。

数控技术发展趋势——智能化数控系统 1 国内外数控系统发展概况 随着计算机技术的高速发展,传统的制造业开始了根本性变革,各工业发达国家投入巨资,对现代制造技术进行研究开发,提出了全新的制造模式。在现代制造系统中,数控技术是关键技术,它集微电子、计算机、信息处理、自动检测、自动控制等高新技术于一体,具有高精度、高效率、柔性自动化等特点,对制造业实现柔性自动化、集成化、智能化起着举足轻重的作用。目前,数控技术正在发生根本性变革,由专用型封闭式开环控制模式向通用型开放式实时动态全闭环控制模式发展。在集成化基础上,数控系统实现了超薄型、超小型化;在智能化基础上,综合了计算机、多媒体、模糊控制、神经网络等多学科技术,数控系统实现了高速、高精、高效控制,加工过程中可以自动修正、调节与补偿各项参数,实现了在线诊断和智能化故障处理;在网络化基础上,CAD/CAM与数控系统集成为一体,机床联网,实现了中央集中控制的群控加工。 长期以来,我国的数控系统为传统的封闭式体系结构,CNC只能作为非智能的机床运动控制器。加工过程变量根据经验以固定参数形式事先设定,加工程序在实际加工前用手工方式或通过CAD/CAM及自动编程系统进行编制。CAD/CAM和CNC之间没有反馈控制环节,整个制造过程中CNC只是一个封闭式的开环执行机构。在复杂环境以及多变条件下,加工过程中的刀具组合、工件材料、主轴转速、进给速率、刀具轨迹、切削深度、步长、加工余量等加工参数,无法在现场环境下根据外部干扰和随机因素实时动态调整,更无法通过反馈控制环节随机修正CAD/CAM中的设定量,因而影响CNC的工作效率和产品加工质量。由此可见,传统CNC系统的这种固定程序控制模式和封闭式体系结构,限制了CNC向多变量智能化控制发展,已不适应日益复杂的制造过程,因此,对数控技术实行变革势在必行。 2 数控技术发展趋势 性能发展方向 (1)高速高精高效化 速度、精度和效率是机械制造技术的关键性能指标。由于采用了高速CPU芯片、RISC芯片、多CPU控制系统以及带高分辨率绝对式检测元件的交流数字伺服系统,同时采取了改善机床动态、静态特性等有效措施,机床的高速高精高效化已大大提高。 (2)柔性化 包含两方面:数控系统本身的柔性,数控系统采用模块化设计,功能覆盖面大,可裁剪性强,便于满足不同用户的需求;群控系统的柔性,同一群控系统能依据不同生产流程的要求,使物料流和信息流自动进行动态调整,从而最大限度地发挥群控系统的效能。 (3)工艺复合性和多轴化 以减少工序、辅助时间为主要目的的复合加工,正朝着多轴、多系列控制功能方向发展。数控机床的工艺复合化是指工件在一台机床上一次装夹后,通过自动换刀、旋转主轴头或转台等各种措施,完成多工序、多表面的复合加工。数控技术轴,西门子880系统控制轴数可达24轴。 (4)实时智能化 早期的实时系统通常针对相对简单的理想环境,其作用是如何调度任务,以确保任务在规定期限内完成。而人工智能则试图用计算模型实现人类的各种智能行为。科学技术发展到今天,实时系统和人工智能相互结合,人工智能正向着具有实时响应的、更现实的领域发展,而实时系统也朝着具有智能行为的、更加复杂的应用发展,由此产生了实时智能控制这一新的领域。在数控技术领域,实时智能控制的研究和应用正沿着几个主要分支发展:自适应控制、模糊控制、神经网络控制、专家控制、学习控制、前馈控制等。例如在数控系统中配备编程专家系统、故障诊断专家系统、参数自动设定和刀具自动管理及补偿等自适应调节系统,在高速加工时的综合运动控制中引入提前预测和预算功能、动态前馈功能,在压力、温度、位置、速度控制等方面采用模糊控制,使数控系统的控制性能大大提高,从而达到最佳控制的目的。

集成电路芯片封装技术浅谈 自从美国Intel公司1971年设计制造出4位微处a理器芯片以来,在20多年时间内,CPU从Intel4004、80286、80386、80486发展到Pentium和PentiumⅡ,数位从4位、8位、16位、32位发展到64位;主频从几兆到今天的400MHz以上,接近GHz;CPU芯片里集成的晶体管数由2000个跃升到500万个以上;半导体制造技术的规模由SSI、MSI、LSI、VLSI达到 ULSI。封装的输入/输出(I/O)引脚从几十根,逐渐增加到几百根,下世纪初可能达2千根。这一切真是一个翻天覆地的变化。 对于CPU,读者已经很熟悉了,286、386、486、Pentium、Pentium Ⅱ、Celeron、K6、K6-2 ……相信您可以如数家珍似地列出一长串。但谈到CPU和其他大规模集成电路的封装,知道的人未必很多。所谓封装是指安装半导体集成电路芯片用的外壳,它不仅起着安放、固定、密封、保护芯片和增强电热性能的作用,而且还是沟通芯片内部世界与外部电路的桥梁--芯片上的接点用导线连接到封装外壳的引脚上,这些引脚又通过印制板上的导线与其他器件建立连接。因此,封装对CPU和其他LSI集成电路都起着重要的作用。新一代CPU的出现常常伴随着新的封装形式的使用。 芯片的封装技术已经历了好几代的变迁,从DIP、QFP、PGA、BGA到CSP再到MCM,技术指标一代比一代先进,包括芯片面积与封装面积之比越来越接近于1,适用频率越来越高,耐温性能越来越好,引脚数增多,引脚间距减小,重量减小,可靠性提高,使用更加方便等等。 下面将对具体的封装形式作详细说明。 一、DIP封装 70年代流行的是双列直插封装,简称DIP(Dual In-line Package)。DIP封装结构具有以下特点: 1.适合PCB的穿孔安装; 2.比TO型封装(图1)易于对PCB布线; 3.操作方便。 DIP封装结构形式有:多层陶瓷双列直插式DIP,单层陶瓷双列直插式DIP,引线框架式DIP(含玻璃陶瓷封接式,塑料包封结构式,陶瓷低熔玻璃封装式),如图2所示。 衡量一个芯片封装技术先进与否的重要指标是芯片面积与封装面积之比,这个比值越接近1越好。以采用40根I/O引脚塑料包封双列直插式封装(PDIP)的CPU为例,其芯片面积/封装面积=3×3/×50=1:86,离1相差很远。不难看出,这种封装尺寸远比芯片大,说明封装效率很低,占去了很多有效安装面积。 Intel公司这期间的CPU如8086、80286都采用PDIP封装。 二、芯片载体封装 80年代出现了芯片载体封装,其中有陶瓷无引线芯片载体LCCC(Leadless Ceramic Chip Carrier)、塑料有引线芯片载体PLCC(Plastic Leaded Chip Carrier)、小尺寸封装SOP(Small Outline Package)、塑料四边引出扁平封装PQFP(Plastic Quad Flat Package),封装结构形式如图3、图4和图5所示。 以焊区中心距,208根I/O引脚的QFP封装的CPU为例,外形尺寸28×28mm,芯片尺寸10×10mm,则芯片面积/封装面积=10×10/28×28=1:,由此可见QFP比DIP的封装尺寸大大减小。QFP的特点是: 1.适合用SMT表面安装技术在PCB上安装布线; 2.封装外形尺寸小,寄生参数减小,适合高频应用; 3.操作方便; 4.可靠性高。 在这期间,Intel公司的CPU,如Intel 80386就采用塑料四边引出扁平封装PQFP。 三、BGA封装 90年代随着集成技术的进步、设备的改进和深亚微米技术的使用,LSI、VLSI、ULSI相继出现,硅单芯片集成度不断提高,对集成电路封装要求更加严格,I/O引脚数急剧增加,功耗也随之增大。为满足发展的需要,在原有封装品种基础上,又增添了新的品种--球栅阵列封装,简称BGA(Ball Grid Array Package)。如图6所示。 BGA一出现便成为CPU、南北桥等VLSI芯片的高密度、高性能、多功能及高I/O引脚封装的最佳选择。其特点有: 引脚数虽然增多,但引脚间距远大于QFP,从而提高了组装成品率; 2.虽然它的功耗增加,但BGA能用可控塌陷芯片法焊接,简称C4焊接,从而可以改善它的电热性能: 3.厚度比QFP减少1/2以上,重量减轻3/4以上; 4.寄生参数减小,信号传输延迟小,使用频率大大提高; 5.组装可用共面焊接,可靠性高; 封装仍与QFP、PGA一样,占用基板面积过大; Intel公司对这种集成度很高(单芯片里达300万只以上晶体管),功耗很大的CPU芯片,如Pentium、Pentium Pro、Pentium Ⅱ采用陶瓷针栅阵列封装CPGA和陶瓷球栅阵列封装CBGA,并在外壳上安装微型排风扇散热,从而达到电路的稳定可靠工作。 四、面向未来的新的封装技术 BGA封装比QFP先进,更比PGA好,但它的芯片面积/封装面积的比值仍很低。 Tessera公司在BGA基础上做了改进,研制出另一种称为μBGA的封装技术,按焊区中心距,芯片面积/封装面积的比为1:4,比BGA前进了一大步。 1994年9月日本三菱电气研究出一种芯片面积/封装面积=1:的封装结构,其封装外形尺寸只比裸芯片大一点点。也就是说,单个IC芯片有多大,封装尺寸就有多大,从而诞生了一种新的封装形式,命名为芯片尺寸封装,简称CSP(Chip Size Package或Chip Scale Package)。CSP封装具有以下特点: 1.满足了LSI芯片引出脚不断增加的需要; 2.解决了IC裸芯片不能进行交流参数测试和老化筛选的问题; 3.封装面积缩小到BGA的1/4至1/10,延迟时间缩小到极短。 曾有人想,当单芯片一时还达不到多种芯片的集成度时,能否将高集成度、高性能、高可靠的CSP芯片(用LSI或IC)和专用集成电路芯片(ASIC)在高密度多层互联基板上用表面安装技术(SMT)组装成为多种多样电子组件、子系统或系统。由这种想法产生出多芯片组件MCM(Multi Chip Model)。它将对现代化的计算机、自动化、通讯业等领域产生重大影响。MCM的特点有: 1.封装延迟时间缩小,易于实现组件高速化; 2.缩小整机/组件封装尺寸和重量,一般体积减小1/4,重量减轻1/3; 3.可靠性大大提高。 随着LSI设计技术和工艺的进步及深亚微米技术和微细化缩小芯片尺寸等技术的使用,人们产生了将多个LSI芯片组装在一个精密多层布线的外壳内形成MCM产品的想法。进一步又产生另一种想法:把多种芯片的电路集成在一个大圆片上,从而又导致了封装由单个小芯片级转向硅圆片级(wafer level)封装的变革,由此引出系统级芯片SOC(System On Chip)和电脑级芯片PCOC(PC On Chip)。 随着CPU和其他ULSI电路的进步,集成电路的封装形式也将有相应的发展,而封装形式的进步又将反过来促成芯片技术向前发展。

集成电路顶级期刊

《中国集成电路》、《郑州工业大学学报》。中国集成电路杂志《中国集成电路》杂志是由工信部主管,中国半导体行业协会主办的全国性专业电子刊物,因此是混合集成电路可投稿的核心期刊;郑州大学学报工学版创刊于1980年,原名《郑州工业大学学报》,是郑州大学主办的国内外公开发行的综合性学术期刊,双月刊,混合集成电路可以投稿至这个期刊。

推荐《仪器仪表学报》,EI期刊,以下是该杂志的收录情况,希望有所帮助:

《仪器仪表学报》被以下数据库收录:

CA 化学文摘(美)(2014)

SA 科学文摘(英)(2011)

JST 日本科学技术振兴机构数据库(日)(2013)

EI 工程索引(美)(2016)

CSCD 中国科学引文数据库来源期刊(2017-2018年度)(含扩展版)

北京大学《中文核心期刊要目总览》来源期刊:

1992年(第一版),1996年(第二版),2000年版,2004年版,2008年版,2011年版,2014年版;

如今直上银河去,同到牵牛织女家.

集成电路应用期刊

《中国集成电路》、《郑州工业大学学报》。中国集成电路杂志《中国集成电路》杂志是由工信部主管,中国半导体行业协会主办的全国性专业电子刊物,因此是混合集成电路可投稿的核心期刊;郑州大学学报工学版创刊于1980年,原名《郑州工业大学学报》,是郑州大学主办的国内外公开发行的综合性学术期刊,双月刊,混合集成电路可以投稿至这个期刊。

推荐《仪器仪表学报》,EI期刊,以下是该杂志的收录情况,希望有所帮助:

《仪器仪表学报》被以下数据库收录:

CA 化学文摘(美)(2014)

SA 科学文摘(英)(2011)

JST 日本科学技术振兴机构数据库(日)(2013)

EI 工程索引(美)(2016)

CSCD 中国科学引文数据库来源期刊(2017-2018年度)(含扩展版)

北京大学《中文核心期刊要目总览》来源期刊:

1992年(第一版),1996年(第二版),2000年版,2004年版,2008年版,2011年版,2014年版;

微芯片电泳论文范文

1990年瑞士Ciba-Geigy公司的Manz和Widmer首次提出微全分析系统(Miniaturized total chemical analysis system,μ-TAS)的概念和设计,把微全分析系统的主要构型定位为一般厚度不超过5 mm,面积为数平方厘米至十几平方厘米的平板芯片(包括微阵列生物芯片和微流控分析芯片)。1994年始,美国橡树岭国家实验室Ramsey等在Manz的工作基础上发表了一系列论文,微流控分析芯片获得了重要发展。微流控分析系统是将常规CE的原理和技术与流动注射进样技术相结合,借助微机电加工技术的手段,在平方厘米级大小的芯片上刻蚀出矩形或梯形管道和具有其它功能的单元,通过不同的管道网路、反应器、检测单元等的设计和布局,实现样品的采集、预处理、反应、分离和检测,是一种多功能化的快速、高效、高灵敏度和低消耗的微型装置;是一个跨学科的新领域,其核心是将所有化学分析过程中的各种功能及步骤微型化,包括:泵、阀、流动通道、混合反应器、相分离和试样分离、检测器、电子控制及转换点等。微流控分析系统可大大提高分析速度和极大地降低分析费用,微流控CE分析系统通常也被称为集成毛细管电泳(Integrated capillaryelectrophoresis,ICE)。微流控分析系统开创了分析科学历史的新篇章,使分析科学进入了一个微型化、集成化和自动化的崭新世界。

[闻邦椿][邱竹贤][方肇伦][张嗣瀛][陆钟武][柴天佑][王国栋] 一共7位闻邦椿 中国科学院学部委员 院士 男,汉族,1930年9月生于浙江省杭州市。1957年毕业于东北大学机械系研究生班并留校任教。现任中国振动工程学会理事长,IFToMM(国际机器理论与机构学联合会)中国委员会委员,国际转子动力学技术委员会委员。全国第六、七、八、九届政协委员。兼任上海交通大学等校国家重点实验室学术委员会主任和兼职教授。1991年当选为中国科学院院士。 他创立了振动学与机器学相结合的新学科"振动利用工程学"。发表专著和合著6部、论文250余篇,专著《振动机械的理论及应用》获全国优秀科技图书二等奖。和科研组同志一起研制成功十多种新型振动机械和工程机械,获国际奖两项,国家级奖3项,省、部、委级奖10项,为国家创造了重大经济效益和社会效益。 他指导的和联合指导的研究生有30名取得了硕士学位,有16名取得了博士学位。组织两次国际学术会议,并担任该国际会议的学术委员会主席。曾应邀去日、澳、德等十多个国家讲学和参加国际学术会议,做过20余次学术报告,宣读论文40余篇。曾多次被评为省、市劳动模范,1983年被评为沈阳市特等劳动模范。 邱竹贤 中国工程院院士 男,1921年5月出生,冶金学家,中国工程院院士。现任东北大学教授。他致力于铝冶金及融盐电化学的基础研究和应用研究,对融盐湿润、融盐渗透、阳极效应和金属雾生成等均有新发现,形成了融盐界面现象及界面反应新学科。总结了节省电能的规律,提出了行之有效的措施,为建设和发展我国铝工业作出了重要贡献。40年来,他单独或合作撰写轻金属冶金方面的论文150余篇,单独撰写的专著有《铝冶金物理化学》和《预焙槽炼铝》两本,合作撰写的有教材《铝电解》等三本,合作翻译的有《冶金热化学》等七本,其中,《铝冶金物理化学》一书能够把物理化学的基本理论和铝冶金的生产初中联系此书成为一本具有重要理论价值和应用价值的专著。他和他的同事先后于1989年和1990年得到国家教委科技进步奖二等奖(金属溶解和电流效率研究)和一等奖(铝电解中的界面现象和界面反应研究)以及1991年国家自然科学奖三等奖(铝电解中若干物理化学问题的研究)。邱竹贤参加了大型电解槽的试制工作,经过中国有色工业总公司鉴定,电流效率达到90%,电耗率降低到13500千瓦/吨铝,该课题获有色工业总公司一等奖。此种槽型在扶顺铝厂和包头铝厂得到推广应用。 方肇伦 中国科学院院士 分析化学家,中科院院士。 1934年8月16日出生于天津市。1957年10月毕业于北京大学化学系。历任中国科学院沈阳应用生态研究所实习研究员、助研、副所长、研究员。现任东北大学理学院分析科学研究中心主任、教授、博士学位研究生导师,浙江大学化学系微分析系统研究所所长、教授、博士学位研究生导师,中国仪器仪表学会分析仪器学会理事,流动注射分析专业委员会主任,国际分析化学期刊 Atomic,Spectrometry, Talanta,Analytica Chemica Acta,Spectrochimica Acta Part B, Analytical Chemistry和Fresenius Journal of Analytical Chemistry及国内《分析化学》等十余种期刊编委或顾问编委。 自1977年以来方肇伦教授为流动注射分析在我国的发展进行了大量的开拓性工作,84年以来曾有五个研究项目获得国家自然科学基金的资助,在理论和实验技术上取得多项重要成就。他当前的研究领域包括流动分析、原子光谱分析及微芯片上的微流控分析及其联用技术,主要研究方向在顺序注射—原子吸收及原子荧光光谱分析,流动注射毛细管电泳分析,智能化流动光度分析系统,微流控分析芯片及流动分析在生物过程分析中的应用。自1995年以来,以他为首的研究集体在微流控芯片的研制方面进行了大量的开拓性工作,并在该领域首次获得国家自然科学基金委重点基金的资助。 张嗣瀛 中国科学院院士 男,汉族,山东省章丘县人,1925年4月5日生。1948年8月武汉大学毕业,1949年10月到东北大学任教。1957年9月至1959年7月在莫斯科大学数学力学系进修自动控制理论。1978年晋升为教授。1983年起任博士生导师。 在自动控制理论的稳定性理论、复杂控制系统理论等方面,发表论文200余篇。专著《微分对策》,主编《现代控制理论》。参加"红箭-73"反坦克导弹的研制,先后获国家自然科学奖及国家和冶金部的奖励。以"微分对策及定性极值原理的研究"等为题的研究成果均获国家教委的奖励。 现为博士生讲授"微分几何方法"等两门课。已培养博士21人,硕士30余人,博士后2人。1981年以后分别任《控制与决策》等刊物的主编或副主编。1983年任《中国大百科全书〈自动控制与系统工程卷〉》编委兼控制理论分支主编。1985年起任国务院学位委员会第二届学科评议组成员。 1978年以来,先后被评为部、省、市劳动模范或特等劳动模范,1990年被评为国家教委、国家科委"全国高校先进科技工作者"。1997年当选为中国科学院院士。1998年获全国"五一"劳动奖章。 陆钟武 中国工程院院士 男,汉族,1929年10月生,上海市人。1953年毕业于东北工学院冶金炉专业研究生班。1982年晋升为教授。1984年至1991年任东北工学院院长。1986年任冶金热能工程学科博士生导师。1997年当选中国工程院院士。 领导建立了国内第一个冶金炉专业和冶金热能工程博士点。率先参照势流理论研究了竖炉气体力学,用高炉炉身静压成功地判断了炉内的主要变迁。查明了一批普通平炉改为内倾式后指标下降的原因,结束了各地的争论,使各厂明确了措施。建立了火焰炉热工基本方程式;"压下炉头式加热炉"获国家科技进步二等奖。提出载能体概念,创立了钢铁工业系统节能理论和技术。编写或参编10多种专著和教材,撰写了100多篇论文。 任院长期间,贯彻教学、科研"两个中心"的办学思想,并获准试办研究生院。主持制定了学院2000年的发展纲要,提出办学"六大要素"的概念。确立既为冶金工业服务,又为地方经济服务的方针。积极推进国际学术交流,借鉴国内外院校办学经验。提出创办科技开发区和建设"大学科学园"的建议,被沈阳市政府采纳实施。 柴天佑 中国工程院院士 柴天佑院士,国际知名的控制科学与工程专家,1985年获工学博士,并留东北大学任教;1988年赴澳大利亚国立大学作高级访问学者;1986年被破格晋升为副教授;1988年被晋升为教授,1990年为博士生导师。 现为东北大学自动化研究中心主任,国家冶金自动化工程技术研究中心主任,曾任国际自动控制联合会(IFAC)技术局成员及IFAC制造与仪表技术协调委员会主席(1996-1999),任第三届、第四届、第五届国务院学位委员会学科评议组成员,国家863计划先进制造与自动化领域专家委员会副主任,国家重点基础研究发展计划(973计划)项目首席科学家。 柴天佑教授长期以来从事智能解耦控制、自适应控制、过程工业综合自动化等领域的应用基础和工程技术的研究,先后主持与完成国家自然科学重点基金、863高技术计划、国家攻关计划、国家高技术产业化专项以及企业重大自动化工程等30余项科研项目,取得多项创新性成果,产生显著的社会与经济效益。 针对常规解耦控制理论与方法难于对具有不确定性的多变量强耦合的复杂工业过程进行有效控制的难题,他首先在国际上提出多变量自适应解耦控制的研究方向,打破传统解耦控制思想,提出了基于控制器设计与直接对闭环系统解耦相结合的在线解耦控制策略, 系统地提出了20余种多变量自适应解耦控制算法,建立了算法的稳定性和收敛性分析,结合电力、冶金等行业的具有多变量强耦合、强非线性、参数时变、生产条件与运行工况变化大、常规控制系统难于投入运行的复杂工业过程开展了应用研究,将所提出的自适应解耦控制方法成功应用于冶金多段加热炉、余热锅炉、合金钢棒材连轧机立式活套、大型风洞、化工精馏塔等,取得了显著的应用成效。该项成果发表的论文被SCI收录10篇,被EI收录37篇,经SCI检索被引用38次。应邀在国际会议上作大会特邀报告,在国家科学技术学术著作出版基金资助下出版了“多变量自适应解耦控制及应用”专著。该成果获得2002年辽宁省自然科学一等奖。 他带领课题组将自适应解耦控制方法与智能控制、计算机集散控制技术相结合,研发了智能解耦控制技术及系统并应用国产20万千瓦发电机组的钢球磨中储式制粉系统,进口30万千瓦发电机组的机炉协调等复杂工业过程,解决了由于具有多变量强耦合、强非线性、参数时变、运行工况变化频繁等综合复杂特性,使得常规控制系统不能投入自动运行,造成能耗高,污染严重这一重大关键技术难题,取得显著经济效益和社会效益。研究成果获得省部级科技进步一等奖3次。“多变量智能解耦控制技术及应用”获得1999年国家科技进步二等奖,“多变量智能解耦控制理论、方法及应用”被评为1999年度中国高校十大科技进展。 他提出了建模与控制相集成的以综合生产指标为目标的复杂工业生产过程优化控制方法。他率领课题组针对我国矿山资源品位低,采、选、冶生产过程复杂,关键工艺参数等难于在线连续测量、工况多变、运行环境恶劣、难于实现生产过程的优化控制的难题,提出选矿生产过程优化控制技术及企业综合自动化的全局解决方案,研发了企业综合自动化系统,成功应用于辽宁排山楼金矿,酒钢集团选矿厂等企业,产生了显著的经济效益和社会效益。反映该项成果的论文应邀两次在IFAC国际会议上作大会特邀报告,“金矿选矿生产过程综合自动化系统”获1999年国家经贸委黄金科技进步特等奖,“金矿企业综合自动化系统”获得2002年国家科技进步二等奖。 针对被控对象特性不确定、非最小相位和开环不稳定、具有各种干扰、未建模动态、执行机构出现故障、输出不可测、大检测采样周期与小控制周期不匹配、强非线性等复杂工业过程难于实现自动控制的难题,将模糊控制、神经网络等智能控制与自适应控制相结合,创造性地提出了适于复杂工业过程的随机自适应、前馈自适应、鲁棒自适应、容错自适应、推理自适应、自整定PID、非线性自适应等20余种控制算法,建立了算法的稳定性和收敛性分析。上述成果获1991年国家教委科技进步一等奖(甲类)。他领导研究小组结合复杂工业过程开展工业研究,将自适应控制与智能控制想结合,提出了适合复杂工业过程的自适应控制技术,并结合抚钢的炼钢—精炼—连铸—连轧四位一体合金钢棒材新流程生产线的建设工程,提出了带有非线性自适应补偿的活套解耦控制技术等关键自动化技术,保证了我国第一条合金钢棒材生产线的安全、可靠、高效运行,取得显著的经济效益,该成果获2000年中国高校科技进步一等奖。 研究成果发表的论文被SCI检索收录38篇,EI检索收录170篇,在国际重要会议上发表的论文被ISTP收录76篇,获国家科技进步二等奖2项,省部级特等奖、一等奖8项。研究成果受到国际同行专家的高度评价,应邀到国外20余所大学讲学,主持国际会议6次。创建了东北大学自动化研究中心,并使之成为国家工程技术研究中心。培养了一批博士后、博士生、硕士生,其中共有9名博士后出站,40余名博士生获得博士学位,百余名硕士生获得硕士学位。培养建设了一支年轻的研究与开发队伍,有的成为自动化研究中心的学术骨干,有的成为东大自动化公司的技术骨干。他领导的东大自动化公司被评为国家863高技术计划产业化基地,辽宁省十佳校办企业。 他治学严谨,作风正派,善于合作,勇于创新,为我国控制理论与控制工程学科的发展和我国工业自动化事业做出突出贡献。2002年获何梁何利基金科学与技术进步奖,2003年获辽宁省科技功勋奖,还获得全国五一劳动奖章获得者,全国优秀教师,辽宁省特等劳动模范等荣誉称号。 王国栋 中国工程院院士 王国栋,男,1942年10月生,辽宁大连市人。现任东北大学轧制技术及连轧自动化国家重点实验室学术委员会副主任。曾任轧制技术及连轧自动化国家重点实验室主任。 王国栋院士主要从事钢铁材料轧制的理论、工艺、自动化方面的研究,在板形理论和板形控制、热轧板带组织和性能的预测与控制、塑性加工理论与有限元方法、轧制过程的人工智能优化、板带新产品的开发等方面做出一系列创新成果,对轧制理论发展和轧制技术进步产生很大的影响。 承担国家的重大基础研究规划项目(973)、国家高技术项目(863)、国家攻关项目、自然科学基金重大项目等。所发表的论文被SCI、EI收录200余篇次,专著4部,合作完成译著4部。获国家科技进步奖一等奖1项,二等奖1项,省部级科技进步奖15项。担任中国金属学会轧钢学会副理事长、中国金属学会轧制理论及新技术开发学术委员会主任、中国材料研究学会第四届理事会理事。 王国栋院士主要学术成就: 在超级钢的研究中,提出晶粒适度细化、复合强化等学术思想,解决了提高材料抗拉强度、降低屈强比和在现有轧机上生产超级钢两个关键问题,完成了板材、棒线材生产工艺制定、原型钢研制、热轧超级钢轧制、产品工业应用等系统研究工作。在一批热轧带钢连轧机和棒线材连轧机批量工业生产超级钢,在汽车和建筑等部门推广使用。相关成果“低碳铁素体/珠光体钢的超细晶强韧化与控制技术”获国家科技进步奖一等奖。 承担国家重大技术装备研制项目,集成和开发了大型中厚板轧机控轧控冷、中厚板轧制钢材组织性能预测与控制、中厚板生产线自动控制等技术,形成了具有我国自主知识产权的成套中厚板核心轧制技术,闯出了大型中厚板轧机实现国产化的新路,相关成果已经在首钢、南钢等中厚板厂的新建和改造中得到应用。相关成果“首钢3500mm中厚板轧机核心轧制技术和关键设备研制”获冶金科技进步奖一等奖。 综合运用人工智能、组织性能预测、有限元等方法,建立连轧过程数模开发工具和模型参数调优工具,利用轧制过程得到的海量信息,进行轧制过程优化与数模调优。提出将“变形参数调优”、“组织性能参数调优”和“人工智能调优”三种方法融为一体进行轧制过程优化的创新思想,形成了具有特色的轧制过程智能优化理论体系和实用方法;将上述理论成果应用于宝钢、抚钢、本钢等企业,提高了产品质量,降低了生产成本。相关成果 “板带钢轧制过程的智能优化与数模调优” 获国家科技进步二等奖。 王国栋院士治学严谨,学风正派,勇于开拓,深入实际。忠诚党的教育事业,教书育人,培养博士36人,硕士34人。在1996-2004年任国家重点实验室主任期间,正确把握实验室的发展方向,加强研究平台建设,带领实验室面向国民经济主战场,形成了凝聚团队、深入现场、躬行实践、争创一流的实验室特色,成为促进我国轧制技术发展和钢铁工业进步的有生力量,在我国轧制领域有良好的学术声誉和影响。

相关百科

热门百科

首页
发表服务