把分数看成整数做乘法
巧 分 苹 果 在四年级的奥数课上,有一个学习专题是“年龄问题”。课后老师出了一道思考题给我们,我苦思冥想了好久,都没有解出答案。我又仔细地研究了有关“年龄问题”和“逆推问题”的解题思路,终于茅塞顿开,有了答案。题目是这样的:三个兄弟分别收到了奶奶给他们寄来的苹果。每人收到的苹果个数是他们三年前的岁数。三弟是个聪明的孩子,他向两个哥哥提出了一个交换苹果的建议:他说:“我只要留一半苹果,还有一半送给你们对方;然后要二哥也留一半,把另一半让我和大哥平分;最后也要大哥留下一半,把另一半让我和二哥平分。”两个哥哥没有怀疑这建议有什么不妥当的地方,都同意三弟的要求。结果大家的苹果数都变成相等了,每人各分到8只苹果。问:三兄弟每个人的年龄是多少岁?我的解题思路是这样的,从最终的结果向前推断,即:最终的交换结果是每人得到了8个苹果,所以大哥在分出自己的苹果前是16只苹果,而二哥和三弟各有4只苹果。二哥在分出自己的苹果前有8只苹果,大哥有14只苹果,三弟有2只苹果。由此可知,三弟在分出苹果前有4只苹果,二哥有7只苹果,大哥有13只苹果。最后一定要注意题目中“每人收到的苹果个数是他们三年前的岁数”这句话,再分别加上3,所以现在三弟是7岁,二哥是10岁,大哥是16岁。怎么样,数学中的趣味还是很多的吧!
跟五年级一样
五年级论文 至于吗 我毕业论文还愁呢 老了啊
Web数据挖掘技术探析论文
在日复一日的学习、工作生活中,大家或多或少都会接触过论文吧,论文对于所有教育工作者,对于人类整体认识的提高有着重要的意义。那么你知道一篇好的论文该怎么写吗?以下是我收集整理的Web数据挖掘技术探析论文,供大家参考借鉴,希望可以帮助到有需要的朋友。
引言
当前,随着网络技术的发展和数据库技术的迅猛发展,有效推动了商务活动由传统活动向电子商务变革。电子商务就是利用计算机和网络技术以及远程通信技术,实现整个商务活动的电子化、数字化和网络化。基于Internet的电子商务快速发展,使现代企业积累了大量的数据,这些数据不仅能给企业带来更多有用信息,同时还使其他现代企业管理者能够及时准确的搜集到大量的数据。访问客户提供更多更优质的服务,成为电子商务成败的关键因素,因而受到现代电子商务经营者的高度关注,这也对计算机web数据技术提出了新的要求,Web数据挖掘技术应运而生。它是一种能够从网上获取大量数据,并能有效地提取有用信息供企业决策者分析参考,以便科学合理制定和调整营销策略,为客户提供动态、个性化、高效率服务的全新技术。目前,它已成为电子商务活动中不可或缺的重要载体。
计算机web数据挖掘概述
1.计算机web数据挖掘的由来
计算机Web数据挖掘是一个在Web资源上将对自己有用的数据信息进行筛选的过程。Web数据挖掘是把传统的数据挖掘思想和方法移植到Web应用中,即从现有的Web文档和活动中挑选自己感兴趣且有用的模式或者隐藏的数据信息。计算机Web数据挖掘可以在多领域中展示其作用,目前已被广泛应用于数据库技术、信息获取技术、统计学、人工智能中的机器学习和神经网络等多个方面,其中对商务活动的变革起到重大的推动作用方面最为明显。
2.计算机Web数据挖掘含义及特征
(1)Web数据挖掘的含义
Web数据挖掘是指数据挖掘技术在Web环境下的应用,是一项数据挖掘技术与WWW技术相结合产生的新技术,综合运用到了计算机语言、Internet、人工智能、统计学、信息学等多个领域的技术。具体说,就是通过充分利用网络(Internet),挖掘用户访问日志文件、商品信息、搜索信息、购销信息以及网络用户登记信息等内容,从中找出隐性的、潜在有用的和有价值的信息,最后再用于企业管理和商业决策。
(2)Web数据挖掘的特点
计算机Web数据挖掘技术具有以下特点:一是用户不用提供主观的评价信息;二是用户“访问模式动态获取”不会过时;三是可以处理大规模的数据量,并且使用方便;四是与传统数据库和数据仓库相比,Web是一个巨大、分布广泛、全球性的信息服务中心。
(3)计算机web数据挖掘技术的类别
web数据挖掘技术共有三类:第一类是Web使用记录挖掘。就是通过网络对Web日志记录进行挖掘,查找用户访问Web页面的模式及潜在客户等信息,以此提高其站点所有服务的竞争力。第二类是Web内容挖掘。既是指从Web文档中抽取知识的过程。第三类是Web结构挖掘。就是通过对Web上大量文档集合的内容进行小结、聚类、关联分析的方式,从Web文档的组织结构和链接关系中预测相关信息和知识。
计算机web数据挖掘技术与电子商务的关系
借助计算机技术和网络技术的日臻成熟,电子商务正以其快速、便捷的特点受到越来越多的企业和个人的关注。随着电子商务企业业务规模的不断扩大,电子商务企业的商品和客户数量也随之迅速增加,电子商务企业以此获得了大量的数据,这些数据正成为了电子商务企业客户管理和销售管理的重要信息。为了更好地开发和利用这些数据资源,以便给企业和客户带来更多的便利和实惠,各种数据挖掘技术也逐渐被应用到电子商务网站中。目前,基于数据挖掘(特别是web数据挖掘)技术构建的电子商务推荐系统正成为电子商务推荐系统发展的一种趋势。
计算机web数据挖掘在电子商务中的具体应用
(1)电子商务中的web数据挖掘的过程
在电子商务中,web数据挖掘的过程主要有以下三个阶段:既是数据准备阶段、数据挖掘操作阶段、结果表达和解释阶段。如果在结果表达阶段中,分析结果不能让电子商务企业的决策者满意,就需要重复上述过程,直到满意为止。
(2)Web数据挖掘技术在电子商务中的应用
目前,电子商务在企业中得到广泛应用,极大地促进了电子商务网站的兴起,经过分析一定时期内站点上的用户的访问信息,便可发现该商务站点上潜在的客户群体、相关页面、聚类客户等数据信息,企业信息系统因此会获得大量的数据,如此多的数据使Web数据挖掘有了丰富的数据基础,使它在各种商业领域有着更加重要的.实用价值。因而,电子商务必将是未来Web数据挖掘的主攻方向。Web数据挖掘技术在电子商务中的应用主要包含以下几方面:
一是寻找潜在客户。电子商务活动中,企业的销售商可以利用分类技术在Internet上找到潜在客户,通过挖掘Web日志记录等信息资源,对访问者进行分类,寻找访问客户共同的特征和规律,然后从已经存在的分类中找到潜在的客户。
二是留住访问客户。电子商务企业通过商务网站可以充分挖掘客户浏览访问时留下的信息,了解客户的浏览行为,然后根据客户不同的爱好和要求,及时做出让访问客户满意的页面推荐和专属性产品,以此来不断提高网站访问的满意度,最大限度延长客户驻留的时间,实现留住老客户发掘新客户的目的。
三是提供营销策略参考。通过Web数据挖掘,电子商务企业销售商能够通过挖掘商品访问情况和销售情况,同时结合市场的变化情况,通过聚类分析的方法,推导出客户访问的规律,不同的消费需求以及消费产品的生命周期等情况,为决策提供及时而准确的信息参考,以便决策者能够适时做出商品销售策略调整,优化商品营销。
四是完善商务网站设计。电子商务网站站点设计者能够利用关联规则,来了解客户的行为记录和反馈情况,并以此作为改进网站的依据,不断对网站的组织结构进行优化来方便客户访问,不断提高网站的点击率。
结语
本文对Web数据挖掘技术进行了综述,讲述了其在电子商务中广泛应用。可以看出,随着计算机技术和数据库技术快速发展,计算机Web数据技术的应用将更加广泛,Web数据挖掘也将成为非常重要的研究领域,研究前景巨大、意义深远。目前,我国的Web数据应用还处于探索和起步阶段,还有许多问题值得深入研究。
摘要: 该文通过介绍电子商务及数据挖掘基本知识,分别从几个方面分析了电子商务中WEB数据挖掘技术的应用。
关键词: 电子商务;数据挖掘;应用
1概述
电子商务是指企业或个人以网络为载体,应用电子手段,利用现代信息技术进行商务数据交换和开展商务业务的活动。随着互联网的迅速发展,电子商务比传统商务具有更明显的优势,由于电子商务具有方便、灵活、快捷的特点,使它已逐渐成为人们生活中不可缺少的活动。目前电子商务平台网站多,行业竞争强,为了获得更多的客户资源,电子商务网站必须加强客户关系管理、改善经营理念、提升售后服务。数据挖掘是从数据集中识别出隐含的、潜在有用的、有效的,新颖的、能够被理解的信息和知识的过程。由数据集合做出归纳推理,从中挖掘并进行商业预判,能够帮助电子商务企业决策层依据预判,对市场策略调整,将企业风险降低,从而做出正确的决策,企业利润将最大化。随着电子商务的应用日益广泛,电子商务活动中会产生大量有用的数据,如何能够数据挖掘出数据的参考价值?研究客户的兴趣和爱好,对客户分门别类,将客户心仪的商品分别推荐给相关客户。因此,如何在电子商务平台上进行数据挖掘成为研究的热点问题。
2数据挖掘技术概述
数据挖掘(DataMining),也称数据库中的知识发现(KnowledgeDiscoveryinDatabase,KDD)。数据挖掘一般是指从海量数据中应用算法查找出隐藏的、未知的信息的过程。数据挖掘是一个在大数据资源中利用分析工具发现模型与数据之间关系的一个过程,数据挖掘对决策者寻找数据间潜在的某种关联,发现隐藏的因素起着关键作用。这些模式是有潜在价值的、并能够被理解的。数据挖掘将人工智能、机器学习、数据库、统计、可视化、信息检索、并行计算等多个领域的理论与技术融合在一起的一门多学科交叉学问,这些学科也对数据挖掘提供了很大的技术支撑。
3Web数据挖掘特点
Web数据挖掘就是数据挖掘在Web中的应用。Web数据挖掘的目的是从万维网的网页的内容、超链接的结构及使用日志记录中找到有价值的数据或信息。依据挖掘过程中使用的数据类别,Web数据挖掘任务可分为:Web内容挖掘、Web结构挖掘、Web使用记录挖掘。
1)Web内容挖掘指从网页中提取文字、图片或其他组成网页内容的信息,挖掘对象通常包含文本、图形、音视频、多媒体以及其他各种类型数据。
2)Web结构挖掘是对Web页面之间的结构进行挖掘,挖掘描述内容是如何组织的,从Web的超链接结构中寻找Web结构和页面结构中的有价值模式。例如从这些链接中,我们可以找出哪些是重要的网页,依据网页的主题,进行自动的聚类和分类,为了不同的目的从网页中根据模式获取有用的信息,从而提高检索的质量及效率。
3)Web使用记录挖掘是根据对服务器上用户访问时的访问记录进行挖掘的方法。Web使用挖掘将日志数据映射为关系表并采用相应的数据挖掘技术来访问日志数据,对用户点击事件的搜集和分析发现用户导航行为。它用来提取关于客户如何浏览和使用访问网页的链接信息。如访问了哪些页面?在每个页面中所停留的时间?下一步点击了什么?在什么样的路线下退出浏览的?这些都是Web使用记录挖掘所关心要解决的问题。
4电子商务中Web挖掘中技术的应用分析
1)电子商务中序列模式分析的应用
序列模式数据挖掘就是要挖掘基于时间或其他序列的模式。如在一套按时间顺序排列的会话或事务中一个项目有存在跟在另一个项目后面。通过这个方法,WEB销售商可以预测未来的访问模式,以帮助针对特定用户组进行广告排放设置。发现序列模式容易使客户的行为被电子商务的组织者预测,当用户浏览站点时,尽可能地迎合每个用户的浏览习惯并根据用户感兴趣的内容不断调整网页,尽可能地使每个用户满意。使用序列模式分析挖掘日志,可以发现客户的访问序列模式。在万维网使用记录挖掘应用中,序列模式挖掘可以用于捕捉用户路径之中常用的导航路径。当用户访问电子商务网站时,网站管理员能够搜索出这个访问者的对该网站的访问序列模式,将访问者感兴趣但尚未浏览的页面推荐给他。序列模式分析还能分析出商品购买的前后顺序,从而向客户提出推荐。例如在搜索引擎是发出查询请求、浏览网页信息等,会弹出与这些信息相关的广告。例如购买了打印机的用户,一般不久就会购买如打印纸、硒鼓等打印耗材。优秀的推荐系统将为客户建立一个专属商店,由每个客户的特征来调整网站的内容。也能由挖掘出的一些序列模式分析网站及产品促销的效果。
2)电子商务中关联规则的应用
关联规则是揭示数据之间隐含的相互关系,关联分析的任务是发现事物间的关联规则或相关程序。关联规则挖掘的目标是在数据项目中找出每一个数据信息的内在关系。关联规则挖掘就是要搜索出用户在服务器上访问的内容、页面、文件之间的联系,从而改进电子商务网站设计。可以更好在组织站点,减少用户过滤网站信息的负担,哪些商品顾客会可能在一次购物时同时购买?关联规则技术能够通过购物篮中的不同商品之间的联系,分析顾客的购物习惯。例如购买牛奶的顾客90%会同时还购买面包,这就是一条关联规则,如果商店或电子商务网站将这两种商品放在一起销售,将会提高它们的销量。关联规则挖掘目标是利用工具分析出顾客购买商品间的联系,也即典型购物篮数据分析应用。关联规则是发现同类事件中不同项目的相关性,例如手机加充电宝,鼠标加鼠标垫等购买习惯就属于关联分析。关联规则挖掘技术可以用相应算法找出关联规则,例如在上述例子中,商家可以依据商品间的关联改进商品的摆放,如果顾客购买了手机则将充电宝放入推荐的商品中,如果一些商品被同时购买的概率较大,说明这些商品存在关联性,商家可以将这些有关联的商品链接放在一起推荐给客户,有利于商品的销售,商家也根据关联有效搭配进货,提升商品管理水平。如买了灯具的顾客,多半还会购买开关插座,因此,一般会将灯具与开关插座等物品放在一个区域供顾客选购。依据分析找出顾客所需要的商品的关联规则,由挖掘分析结果向顾客推荐所需商品,也即向顾客提出可能会感兴趣的商品推荐,将会大大提高商品的销售量。
3)电子商务中路径分析技术的应用
路径分析技术通过对Web服务器的日志文件中客户访问站点的访问次数的分析,用来发现Web站点中最经常访问的路径来调整站点结构,从而帮助使用用户以最快的速度找到其所需要的产品或是信息。例如在用户访问某网站时,如果有很多用户不感兴趣的页面存在,就会影响用户的网页浏览速度,从而降低用户的浏览兴趣,同时也会使整个站点的维护成本提高。而利用路径分析技术能够全面地掌握网站各个页面之间的关联以及超链接之间的联系,通过分析得出访问频率最高的页面,从而改进网站结构及页面的设计。
4)电子商务中分类分析的应用
分类技术在根据各种预定义规则进行用户建模的Web分析应用中扮演着很重要的角色。例如,给出一组用户事务,可以计算每个用户在某个期间内购买记录总和。基于这些数据,可以建立一个分类模型,将用户分成有购买倾向和没有购买倾向两类,考虑的特征如用户统计属性以及他们的导航活动。分类技术既可以用于预测哪些购买客户对于哪类促销手段感兴趣,也可以预测和划分顾客类别。在电子商务中通过分类分析,可以得知各类客户的兴趣爱好和商品购买意向,因而发现一些潜在的购买客户,从而为每一类客户提供个性化的网络服务及开展针对性的商务活动。通过分类定位模型辅助决策人员定位他们的最佳客户和潜在客户,提高客户满意度及忠诚度,最大化客户收益率,以降低成本,增加收入。
5)电子商务中聚类分析的应用
聚类技术可以将具有相同特征的数据项聚成一类。聚类分析是对数据库中相关数据进行对比并找出各数据之间的关系,将不同性质特征的数据进行分类。聚类分析的目标是在相似的基础上收集数据来分类。根据具有相同或相似的顾客购买行为和顾客特征,利用聚类分析技术将市场有效地细分,细分后应可每类市场都制定有针对性的市场营销策略。聚类分别有页面聚类和用户聚类两种。用户聚类是为了建立拥有相同浏览模式的用户分组,可以在电子中商务中进行市场划分或给具有相似兴趣的用户提供个性化的Web内容,更多在用户分组上基于用户统计属性(如年龄、性别、收入等)的分析可以发现有价值的商业智能。在电子商务中将市场进行细化的区分就是运用聚类分析技术。聚类分析可根据顾客的购买行为来划分不同顾客特征的不同顾客群,通过聚类具有类似浏览行为的客户,让市场人员对顾客进行类别细分,能够给顾客提供更人性化的贴心服务。比如通过聚类技术分析,发现一些顾客喜欢访问有关汽车配件网页内容,就可以动态改变站点内容,让网络自动地给这些顾客聚类发送有关汽车配件的新产品信息或邮件。分类和聚类往往是相互作用的。在电子商务中通过聚类行为或习性相似的顾客,给顾客提供更满意的服务。技术人员在分析中先用聚类分析将要分析的数据进行聚类细分,然后用分类分析对数据集合进行分类标记,再将该标记重新进行分类,一直如此循环两种分析方法得到相对满意的结果。
5结语
随着互联网的飞速发展,大数据分析应用越来越广。商业贸易中电子商务所占比例越来越大,使用web挖掘技术对商业海量数据进行挖掘处理,分析客户购买喜好、跟踪市场变化,调整销售策略,对决策者做出有效决策及提高企业的市场竞争力有重要意义。
参考文献:
[1]庞英智.Web数据挖掘技术在电子商务中的应用[J].情报科学,2011,29(2):235-240.
[2]马宗亚,张会彦.Web数据挖掘技术在电子商务中的应用研究[J].现代经济信息,2014(6):23-24.
[3]徐剑彬.Web数据挖掘技术在电子商务中的应用[J].时代金融,2013(4):
[4]周世东.Web数据挖掘在电子商务中的应用研究[D].北京交通大学,2008.
[5]段红英.Web数据挖掘技术在电子商务中的应用[J].陇东学院学报,2009(3):32-34.
数据挖掘的算法及技术的应用的研究论文
摘要: 数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。任何有数据管理和知识发现需求的地方都可以借助数据挖掘技术来解决问题。本文对数据挖掘的算法以及数据挖掘技术的应用展开研究, 论文对数据挖掘技术的应用做了有益的研究。
关键词: 数据挖掘; 技术; 应用;
引言: 数据挖掘技术是人们长期对数据库技术进行研究和开发的结果。起初各种商业数据是存储在计算机的数据库中的, 然后发展到可对数据库进行查询和访问, 进而发展到对数据库的即时遍历。数据挖掘使数据库技术进入了一个更高级的阶段, 它不仅能对过去的数据进行查询和遍历, 并且能够找出过去数据之间的潜在联系, 从而促进信息的传递。
一、数据挖掘概述
数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。
二、数据挖掘的基本过程
(1) 数据选择:选择与目标相关的数据进行数据挖掘。根据不同的数据挖掘目标, 对数据进行处理, 不仅可以排除不必要的数据干扰, 还可以极大地提高数据挖掘的效率。 (2) 数据预处理:主要进行数据清理、数据集成和变换、数据归约、离散化和概念分层生成。 (3) 模式发现:从数据中发现用户感兴趣的模式的过程.是知识发现的主要的处理过程。 (4) 模式评估:通过某种度量得出真正代表知识的模式。一般来说企业进行数据挖掘主要遵循以下流程——准备数据, 即收集数据并进行积累, 此时企业就需要知道其所需要的是什么样的数据, 并通过分类、编辑、清洗、预处理得到客观明确的目标数据。数据挖掘这是最为关键的步骤, 主要是针对预处理后的数据进行进一步的挖掘, 取得更加客观准确的数据, 方能引入决策之中, 不同的企业可能采取的数据挖掘技术不同, 但在当前来看暂时脱离不了上述的挖掘方法。当然随着技术的进步, 大数据必定会进一步成为企业的立身之本, 在当前已经在很多领域得以应用。如市场营销, 这是数据挖掘应用最早的领域, 旨在挖掘用户消费习惯, 分析用户消费特征进而进行精准营销。就以令人深恶痛绝的弹窗广告来说, 当消费者有网购习惯并在网络上搜索喜爱的产品, 当再一次进行搜索时, 就会弹出很多针对消费者消费习惯的商品。
三、数据挖掘方法
1、聚集发现。
聚集是把整个数据库分成不同的群组。它的目的是要群与群之间差别很明显.而同一个群之间的数据尽量相似.聚集在电子商务上的典型应用是帮助市场分析人员从客户基本库中发现不同的客户群, 并且用购买模式来刻画不同客户群的特征。此外聚类分析可以作为其它算法 (如特征和分类等) 的预处理步骤, 这些算法再在生成的簇上进行处理。与分类不同, 在开始聚集之前你不知道要把数据分成几组, 也不知道怎么分 (依照哪几个变量) .因此在聚集之后要有一个对业务很熟悉的人来解释这样分群的意义。很多情况下一次聚集你得到的分群对你的业务来说可能并不好, 这时你需要删除或增加变量以影响分群的方式, 经过几次反复之后才能最终得到一个理想的结果.聚类方法主要有两类, 包括统计方法和神经网络方法.自组织神经网络方法和K-均值是比较常用的`聚集算法。
2、决策树。
这在解决归类与预测上能力极强, 通过一系列的问题组成法则并表达出来, 然后经过不断询问问题导出所需的结果。典型的决策树顶端是一个树根, 底部拥有许多树叶, 记录分解成不同的子集, 每个子集可能包含一个简单法则。
四、数据挖掘的应用领域
市场营销
市场销售数据采掘在销售业上的应用可分为两类:数据库销售和篮子数据分析。前者的任务是通过交互式查询、数据分割和模型预测等方法来选择潜在的顾客以便向它们推销产品, 而不是像以前那样盲目地选择顾客推销;后者的任务是分析市场销售数据以识别顾客的购买行为模式, 从而帮助确定商店货架的布局排放以促销某些商品。
金融投资
典型的金融分析领域有投资评估和股票交易市场预测, 分析方法一般采用模型预测法。这方面的系统有Fidelity Stock Selector, LBS Capital Management。前者的任务是使用神经网络模型选择投资, 后者则使用了专家系统、神经网络和基因算法技术辅助管理多达6亿美元的有价证券。
结论:数据挖掘是一种新兴的智能信息处理技术。随着相关信息技术的迅猛发展, 数据挖掘的应用领域不断地拓宽和深入, 特别是在电信、军事、生物工程和商业智能等方面的应用将成为新的研究热点。同时, 数据挖掘应用也面临着许多技术上的挑战, 如何对复杂类型的数据进行挖掘, 数据挖掘与数据库、数据仓库和Web技术等技术的集成问题, 以及数据挖掘的可视化和数据质量等问题都有待于进一步研究和探索。
参考文献
[1]孟强, 李海晨.Web数据挖掘技术及应用研究[J].电脑与信息技术, 2017, 25 (1) :59-62.
[2]高海峰.智能交通系统中数据挖掘技术的应用研究[J].数字技术与应用, 2016 (5) :108-108.
你要先看看你单位都有什么要求的。具体有什么安排在看你需要发表那一方面的文章 希望采纳哟
数学领域中的一些著名悖论及其产生背景
论文的题目是论文的眼睛 ,是一篇文章成功的关键。下面我将为你推荐关于数学专业毕业论文题目参考的内容,希望能够帮到你!
1. 圆锥曲线的性质及推广应用
2. 经济问题中的概率统计模型及应用
3. 通过逻辑趣题学推理
4. 直觉思维的训练和培养
5. 用高等数学知识解初等数学题
6. 浅谈数学中的变形技巧
7. 浅谈平均值不等式的应用
8. 浅谈高中立体几何的入门学习
9. 数形结合思想
10. 关于连通性的两个习题
11. 从赌博和概率到抽奖陷阱中的数学
12. 情感在数学教学中的作用
13. 因材施教因性施教
14. 关于抽象函数的若干问题
15. 创新教育背景下的数学教学
16. 实数基本理论的一些探讨
17. 论数学教学中的心理环境
18. 以数学教学为例谈谈课堂提问的设计原则
1. 网络优化
2. 泰勒公式及其应用
3. 浅谈中学数学中的反证法
4. 数学选择题的利和弊
5. 浅谈计算机辅助数学教学
6. 论研究性学习
7. 浅谈发展数学思维的学习方法
8. 关于整系数多项式有理根的几个定理及求解方法
9. 数学教学中课堂提问的误区与对策
10. 中学数学教学中的创造性思维的培养
11. 浅谈数学教学中的“问题情境”
12. 市场经济中的蛛网模型
13. 中学数学教学设计前期分析的研究
14. 数学课堂差异教学
15. 一种函数方程的解法
16. 积分中值定理的再讨论
17. 二阶变系数齐次微分方程的求解问题
18. 毕业设计课题(论文主题等)
19. 浅谈线性变换的对角化问题
1. 浅谈奥数竟赛的利与弊
2. 浅谈中学数学中数形结合的思想
3. 浅谈中学数学中不等式的教学
4. 中数教学研究
5. XXX课程网上教学系统分析与设计
6. 数学CAI课件开发研究
7. 中等职业学校数学教学改革研究与探讨
8. 中等职业学校数学教学设计研究
9. 中等职业学校中外数学教学的比较研究
10. 中等职业学校数学教材研究
11. 关于数学学科案例教学法的探讨
12. 中外著名数学家学术思想探讨
13. 试论数学美
14. 数学中的研究性学习
15. 数字危机
16. 中学数学中的化归方法
17. 高斯分布的启示
这个概念经常在机器学习的文章中看到,但由于接触不久,所以一直都是一知半解,没有好好了解过。 首先从字面上理解,“协同”需要一个“集体“,“过滤”就应该是晒选的意思,那么协同过滤总的来说就是通过“集体”来“筛选”,以评分推荐系统为例子,这里的“协同”我个人理解就是集合”众多人的评价”,这里的“评价”,就是“对集体都接触过的事物进行打分”,这样大概就能通过一些共同的事物反应出用户不同的”价值观“,然后通过这样的价值观来”筛选“出价值观高度相似的人,再相互推荐共同都喜爱的东西。那么这样的推荐就很有可能是大家都需要的。 经过资料洗礼过后,得知cf现在的两大方向,一种是以记忆为基础(Memory-base),另一种是基于模型(Model-based Collaborative Filtering)。 普及的比较多的前者,它基于关注的目标,又分为基于用户的协同过滤和基于项目的协同过滤,上面举的一个简单的评分推荐系统的例子就可以说是基于用户的协同过滤,它是通过用户对共同物品的“主观价值”来筛选相似用户,再互补评分高的商品,从而达到推荐商品的目的;那么基于项目的意思就是通过这个用户集体对商品集的评价,在物品的角度上去寻找相似度高的物品,达到推荐商品的效果。虽然针对的目标不通,但以我个人理解,大体上都是依赖这个用户集营造的“价值观”,只不过区别在于,基于用户的CF是“关心”各个用户的“主观价值”上的“区别”,而基于项目的CF则是要基于这整个用户集对项目集的“普世价值观”,来甄别出“物品”上的差异。不知道这么比喻恰不恰当哈,“普世”我这边理解就是“大多数”,是一种整体趋势的意思。价值观比较“抽象”的话,再直接点这里的“价值观”就相当于物理中的“参考系”。 但是以上两种方法在面对,不是每个用户对大多数商品都做出过评价(数据稀疏)时就无能为力,所以基于这个问题就引导出了基于模型(Model-based )的CF,我在最近的论文中接触到的就是一个“矩阵分解”的协同过滤,它能够基于现有的数据得到一个模型,再用此模型进行推荐。那么是如何做到的呢?接下来看看矩阵分解。 假设我先在有一个关于用户对音乐评分的矩阵如下图: 只有上述的数据是很难使用户相互推荐音乐的,因为可以看出用户本身听过的歌就不够多,那么如何使数据更加“饱满”呢?这时正是需要矩阵分解的时候,矩阵分解算法的数学理论基础是矩阵的行列变换。行列变换中又有以下规则,我们知道矩阵A进行行变换相当于A左乘一个矩阵,矩阵A进行列变换等价于矩阵A右乘一个矩阵,因此矩阵A可以表示为A=PEQ=PQ(E是标准阵)。 形象的表示如下图: 矩阵分解的目的就是把一个稀疏的用户评分矩阵分解成用户因子矩阵和项目因子矩阵相乘的形式R=U(转置)*I,我们的目的就是最后再让两个因子矩阵反乘回去得到饱满的用户评分矩阵。那么这个用户,项目因子是个什么东西呢?我们接着上面的音乐评分的形式说,一首歌可能包含多种音乐风格,我们可以量化风格,体现各种风格在一首歌中的比重,那么这里的“潜在因子”我们就可以当作“音乐风格”,K个因子就可以看作K种风格。譬如下图: 可以说,这些因子就是我们的模型中的重要参数,个人理解分解出来的这两个因子矩阵就可以说是基于模型的CF中的,“模型”的了,其实我觉得可以类比线性模型中的参数,我们的回归模型最终重要的不就是公式中的各项参数吗,这两个因子矩阵其实就是我们这个模型中的重要参数,参数知道了模型也就求出来了。如果不了解线性模型可以参考吴恩达大大的机器学习课程,里面介绍的很详细,不像我这边一知半哈。 那么这些个值具体是怎么得出来的呢?过程和求线性回归也很像,接下来就是相关的简单推倒,首先,我们假设,真实的用户评分和我们预测评分的差遵循高斯分布 R用是评分矩阵 U是用户因子矩阵,V是项目因子矩阵 接下来就是极大似然估计,使,在现有数据下概率最大化 类比求线性模型,就能够了解思想很相似,所以应该同样是运用了似然估计的思想,要使值最大,式子两边同时取对数,可以看到,如果要使概率最大,那么公式的第一项就要最小,是不是想到了什么,没错接下来就可以看到最小二乘法的式子。 线性模型我们遇到这个情况一般怎么做,没错,就是梯度下降。首先求偏导数最后就是梯度下降的矩阵因子更新公式: 接下来迭代到自己设置的阈值收敛就能得到局部最优解了。 下面是我根据上述矩阵分解的思想随机的模拟实践,可以自行感受一下准度,可能写搓了点~ 注释:以上诸多图片材料来自网上多篇博客文章 还有方便实用sklearn的中文API文档
随机环境中经济增长模型研究广义生产函数假设下的经济增长模型分析考虑市场预期的供求关系模型基于Matlab的离散事件模拟用风险预算进行资产配置有向图上的PAR贯序模拟系统单圈图的一般Randic指标的极值问题模糊数学在公平评奖问题中的应用模糊矩阵在环境评估中的初步应用模糊评判在电脑中的初步应用数学家的数学思想Riemann积分定义的网收敛表述微积分思想在不等式证明中的应用用有限的尺度标量无限的过程-略论极限ε语言在微积分及现代数学中的位置及意义微积分思想在几何问题中的应用齐次平衡法求KdV-Burgers方程的Backlund变换Painleve分析法判定MKdV-Burgers方程的可积性直接法求KdV-Burgers方程的对称及精确解行波求解KdV-Burgers方程因子有向图的矩阵刻划简单图上的lit-only sigma-game半正则图及其线图的特征多项式与谱分数有向图的代数表示WWW网络的拓扑分析作者合作网络等的拓扑分析古诺模型价格歧视用数学软件做计算微分方程的计算器用数学软件做矩阵计算的计算器弹簧-质点系统的反问题用线性代数理论做隐含语义搜索对矩阵若当标准型理论中变换阵求法的探讨对矩阵分解理论的探讨对矩阵不等式理论的探讨(1)对矩阵不等式理论的探讨(2)函数连续性概念及其在现代数学理论中的延伸从有限维空间到无限维空间Banach空间中脉冲泛函微分方程解的存在性高阶脉冲微分方程的振动性具有积分边界条件的分数阶微分方程解的存在唯一性分数阶微分方程的正则摄动一个形态形成模型的摄动解一个免疫系统常微分方程模型的渐近解前列腺肿瘤连续性激素抑制治疗的数学模型前列腺肿瘤间歇性激素抑制治疗的数学模型病毒动力学数学模型肿瘤浸润数学模型耗散热方程初边值问题解的正则性耗散波方程初边值问题解的正则性耗散Schrodinger方程初边值问题解的正则性非线性发展方程解得稳定性消费需求的鲁棒调节生产函数的计量分析企业的成本形态分析的研究分数阶Logistic方程的数值计算分数阶捕食与被捕食模型的数值计算AIDS传播模型的全局性分析HIV感染模型的全局性分析风险度量方法的比较及其应用具有区间值损益的未定权益定价分析模糊规划及其在金融分析中的应用长依赖型金融市场股票价格与长相依性分数布朗运动下的外汇期权定价不确定性与资产定价加油站点的分布与出租车行业的关系
■ 雅可比正交相似变换,适用于实对称矩阵求特征值,且计算结果很准确;当用于非对称矩阵时收敛效果并不好。■ QR正交相似变换,一般认为对任意中小型矩阵都可求特征值,实际上最适合非对称矩阵,计算结果准确。对称矩阵用QR正交相似变换时,收敛效果反而不理想。
摘 要本文详细介绍了多变量预测控制算法及其在环境试验设备控制中的应用。由于环境试验设备的温度和湿度控制系统具有较大的时间滞后,而且系统间存在比较严重的耦合现象,用常规的PID控制不能取得满意的控制效果。针对这种系统,本文采用了多变量预测控制算法对其进行了控制仿真。预测控制算法是一种基于系统输入输出描述的控制算法,其三项基本原理是预测模型、滚动优化、反馈校正。它选择单位阶跃响应作为它的“预测模型”。这种算法除了能简化建模过程外,还可以通过选择合适的设计参数,获得较好的控制效果和解耦效果。本文先对环境试验设备作了简介,对控制中存在的问题进行了说明;而后对多变量预测控制算法进行了详细的推导,包括多变量自衡系统预测制算法和多变量非自衡系统预测控制算法;然后给出了系统的建模过程及相应的系统模型,在此基础上采用多变量预测控制算法对环境试验设备进行了控制仿真,并对仿真效果进行了比较。仿真结果表明,对于和环境试验设备的温度湿度控制系统具有类似特性的多变量系统,应用多变量预测控制算法进行控制能够取得比常规PID控制更加令人满意的效果。关键词:多变量系统;预测控制;环境试验设备【中文摘要共100—300个字,关键词3—7个词中文摘要和关键词占一页】【英文全部用Times New Roman字体】Abstract 【三号字体,加粗,居中上下空一行】【正文小四号字体,行距为固定值20磅】In this paper, multivariable predictive control algorithm and its application to the control of the environmental test device are introduced particularly. The temperature and humidity control system of the environmental test device is characterized as long time delay and severe coupling. Therefore, the routine PID control effect is unsatisfactory. In this case, the simulation of the temperature and humidity control of the environmental test device based on multivariable predictive control algorithm is control algorithm is one of control algorithm based on description of system’s input-output. Its three basic principles are predictive model, rolling optimization and feedback correction. It chooses unit step response as its predictive model, so that the modeling process is simplified. In addition, good control and decoupling effects could be possessed by means of selection suitable this paper, the environmental test device is introduced briefly and the existing problems are showed. Then multivariable predictive control algorithm is presented particularly, including multivariable auto-balance system predictive control algorithm and multivariable auto-unbalance system predictive control algorithm. Next, system modeling process and corresponding system model are proposed. Further, the multivariable predictive control algorithm is applied to the temperature and humidity control system of the environmental test device. Finally, the simulation results are of the simulation show that multivariable predictive control algorithm could be used in those multivariable system like the temperature and humidity control system of the environmental test device and the control result would be more satisfactory than that of the routine PID : Multivariable system; Predictive control; Environmental test device【英文摘要和关键词应该是中文摘要和关键词的翻译英文摘要和关键词占一页】【目录范例,word自动生成】目 录第一章 绪 论 引言 数字图像技术的应用与发展 问题的提出 论文各章节的安排 4第二章 数字图像处理方法与研究 灰度直方图 定义 直方图的性质和用途 几何变换 空间变换 灰度级插值 几何运算的应用 空间滤波增强 空间滤波原理 拉普拉斯算子 中值滤波 图像分割处理 直方图门限化的二值分割 直方图的最佳门限分割 区域生长 16第三章 图像处理软件设计 图像处理软件开发工具的选择 BMP图像格式的结构 软件开发工具的选择 EAN-13码简介 EAN-13条码的结构 条码的编码方法 系统界面设计 22第四章 条码图像测试 条码图像处理的主要方法 条码图像测试结果 25第五章 总结与展望 28参考文献 29当先验概率相等,即 时,则()恰为二者均值。以上分析可知,只要 和 已知以及 和 为正态,容易计算其最佳门限值T。实际密度函数的参数常用拟合法来求出 参数的估值。如最小均方误差拟合估计来会计 参量,并使拟合的均方误差为最小。例如,设想理想分布的密度为正态 ,实际图像直方图为 ,用离散方式其拟合误差为()式中N为直方图横坐标。通常这种拟合求密度函数的几个参数很难解,只能用计算机求数值解,但若 为正态分布时只需求均值和标准差二参数即可。 区域生长区域生长是一种典型的串行区域分割技术,在人工智能领域的计算机视觉研究中是一种非常重要的图像分割方法,其主要思想是将事先选中的种子点周围符合某种相似性判断的像素点集合起来以构成区域。在具体处理时,是从把一幅图像分成许多小区域开始的,这些初始小区域一般是小的邻域,甚至是单个的像素点。然后通过定义适当的区域内部隶属规则而对周围像素进行检验,对于那些符合前述隶属规则的像素点就将其合并在内,否则将其据弃,经过若干次迭代最终可形成待分割的区域。在此提到的“内部隶属规则”可根据图像的灰度特性、纹理特性以及颜色特性等多种因素来作出决断。从这段文字可以看出,区域生长成功与否的关键在于选择合适的内部隶属规则(生长准则)。对于基于图像灰度特性的生长准则,可以用下面的流程对其区域生长过程进行表述,如图所示。图 2. 6 区域生长流程图第三章 图像处理软件设计 图像处理软件开发工具的选择 BMP图像格式的结构数字图像存储的格式有很多种,如BMP、GIF、JPEG、TIFF等,数字图像处理中最常用的当属BMP,本课题采集到的图片也是用BMP格式存储的,要对这种格式的图片进行处理,那么首先就要了解它的文件结构。(1)BMP文件格式简介BMP(Bitmap-File)图形文件是Windows采用的图形文件格式在Windows环境下运行的所有图象处理软件都支持BMP图像文件格式。Windows系统内部各图像绘制操作都是以BMP为基础的。Windows 以前的BMP位图文件格式与显示设备有关,因此把这种BMP图像文件格式称为设备相关位图DDB(device-dependent bitmap)文件格式。Windows 以后的BMP图像文件与显示设备无关,因此把这种BMP图像文件格式称为设备无关位图DIB(device-independent bitmap)格式,目的是为了让Windows能够在任何类型的显示设备上显示所存储的图像。BMP位图文件默认的文件扩展名是BMP或者bmp(有时它也会以.DIB或.RLE作扩展名)。(2)BMP文件构成BMP文件由位图文件头(bitmap-file header)、位图信息头(bitmap-information header)、颜色信息(color table)和图形数据四部分组成。它具有如表所示的形式。表 3. 1 BMP位图结构位图文件的组成 结构名称 符号位图文件头(bitmap-file header) BITMAPFILEHEADER bmfh位图信息头(bitmap-information header) BITMAPINFOHEADER bmih颜色信息(color table) RGBQUAD aColors[]图形数据 BYTE aBitmapBits[] 软件开发工具的选择(1)Win32 APIMicrosoft Win32 API(Application Programming Interface)是Windows的应用编程接口,包括窗口信息、窗口管理函数、图形设备接口函数、系统服务函数、应用程序资源等。Win32 API是Microsoft 32位Windows操作系统的基础,所有32位Windows应用程序都运行在Win32 API之上,其功能是由系统的动态链接库提供的。(2)Visual C++Visual C++是Microsoft公司出品的可视化编程产品,具有面向对象开发,与Windows API紧密结合以及丰富的技术资源和强大的辅助工具。Visual C++自诞生以来,一直是Windows环境下最主要的应用开发系统之一,Visual C++不仅是C++语言的集成开发环境,而且与Win32紧密相连,所以利用Visual C++可以完成各种各样的应用程序的开发,从底层软件直到上层直接面向用户的软件。Visual C++是一个很好的可视化编程环境,它界面友好,便于程序员操作。Visual C++可以充分利用MFC的优势。在MFC中具有许多的基本库类,特别是MFC中的一些,利用它们可以编写出各种各样的Windows应用程序,并可节省大量重复性的工作时间,缩短应用程序的开发周期。使用MFC的基本类库,在开发应用程序时会起到事半功倍的效果。Visual C++具有以下这些特点:简单性:Visual C++中提供了MFC类库、ATL模板类以及AppWizard、ClassWizard等一系列的Wizard工具用于帮助用户快速的建立自己的应用程序,大大简化了应用程序的设计。使用这些技术,可以使开发者编写很少的代码或不需编写代码就可以开发一个Windows应用程序。灵活性:Visual C++提供的开发环境可以使开发者根据自己的需要设计应用程序的界面和功能,而且,Visual C++提供了丰富的类库和方法,可以使开发者根据自己的应用特点进行选择。可扩展性:Visual C++提供了OLE技术和ActiveX技术,这种技术可以增强应用程序的能力。使用OLE技术和ActiveX技术可以使开发者利用Visual C++中提供的各种组件、控件以及第三方开发者提供的组件来创建自己的程序,从而实现应用程序的组件化。使用这种技术可以使应用程序具有良好的可扩展性。(3)MFCMFC(Microsoft Foundation Class)是Microsoft公司用C++语言开发的一套基础类库。直接利用Win32 API进行编程是比较复杂的,且Win32 API不是面向对象的。MFC封装了Win32 API的大部分内容,并提供了一个应用程序框架用于简化和标准化Windows程序的设计。MFC是Visual C++的重要组成部分,并且以最理想的方式与其集成为一体。主要包括以下各部分:Win32 API的封装、应用程序框架、OLE支持、数据库支持、通用类等。 EAN-13码简介人们日常见到的印刷在商品包装上的条码,自本世纪70年代初期问世以来,很快得到了普及并广泛应用到工业、商业、国防、交通运输、金融、医疗卫生、邮电及办公室自动化等领域。条码按照不同的分类方法,不同的编码规则可以分成许多种,现在已知的世界上正在使用的条码就有250种之多。本章以EAN条码中的标准版EAN-13为例说明基于数字图像处理技术,对EAN条码图像识别的软件开发方法。EAN码是国际物品编码协会在全球推广应用的商品条码,是定长的纯数字型条码,它表示的字符集为数字0~9。由前缀码、厂商识别代码、商品项目代码和校验码组成。前缀码是国际EAN组织标识各会员组织的代码,我国为690~695;厂商识别代码是EAN会员组织在EAN前缀码的基础上分配给厂商的代码;商品项目代码由厂商自行编码;校验码上为了校验前面12位或7位代码的正确性。 EAN-13条码的结构EAN-13码是按照“模块组合法”进行编码的。它的符号结构由八大部分组成:左侧空白区、 起始符、左侧数据符、中间分隔符、右侧数据符、校验符、终止符及右侧空白区,见表。尺寸: × ;条码: ;起始符/分隔符/终止符: ;放大系数取值范围是~;间隔为。表 3. 2 EAN-13码结构左侧空白区 起始符 左侧数据符 中间间隔符 右侧数据符 校验符 终止符右侧空白区9个模块 3个模块 42个模块 5个模块 35个模块 7个模块 3个模块 9个模块EAN-13码所表示的代码由13位数字组成,其结构如下:结构一:X13X12X11X10X9X8X7X6X5X4X3X2X1其中:X13~X11为表示国家或地区代码的前缀码;X10~X7为制造厂商代码;X6~X2为商品的代码;X1为校验码。结构二:X13X12X11X10X9X8X7X6X5X4X3X2X1其中:X13~X11为表示国家或地区代码的前缀码;X10~X6为制造厂商代码;X5~X2为商品的代码;X1为校验码。在我国,当X13X12X11为690、691时其代码结构同结构一;当X13X12X11为692时其代码结构为同结构二。EAN条码的编码规则,见表:起始符:101;中间分隔符:01010;终止符:101。A、B、C中的“0”和“1”分别表示具有一个模块宽度的“空”和“条”。表 3. 3 EAN条码的编码规则数据符 左侧数据符 右侧数据符A B C0 0001101 0100111 11100101 0011001 0110011 11001102 0010011 0011011 11011003 011101 0100001 10000104 0100011 0011101 10111005 0110001 0111001 10011106 0101111 000101 10100007 0111011 0010001 10001008 0110111 0001001 10010009 0001011 0010111 条码的编码方法条码的编码方法是指条码中条空的编码规则以及二进制的逻辑表示的设置。众所周知,计算机设备只能识读二进制数据(数据只有“0”和“1”两种逻辑表示),条码符号作为一种为计算机信息处理而提供的光电扫描信息图形符号,也应满足计算机二进制的要求。条码的编码方法就是通过设计条码中条与空的排列组合来表示不同的二进制数据。一般来说,条码的编码有两种:模块组合和宽度调节法。模块组合法是指条码符号中,条与空是由标准宽度的模块组合而成。一个标准宽度的条表示二进制的“1”而一个标准的空模块表示二进制的“0”。商品条码模块的标准宽度是 ,它的一个字符由两个条和两个空构成,每一个条或空由1~4个标准宽度模块组成。宽度调节法是指条码中,条与空的宽窄设置不同,用宽单元表示二进制的“1” ,而用窄单元表示二进制的“0”,宽窄单元之比一般控制在2~3之间。 系统界面设计本文图像处理软件基本功能包括读取图像、保存图像、对图像进行处理等。图所示为本图像处理软件的界面。图 3. 1 软件主界面软件设计流程图如图所示。图 3. 2 程序设计流程图第四章 条码图像测试 条码图像处理的主要方法(1)256色位图转换成灰度图运用点处理中的灰度处理为实现数字图像的阈值变换提供前提条件。要将256色位图转变为灰度图,首先必须计算每种颜色对应的灰度值。灰度与RGB颜色的对应关系如下:Y= ()这样,按照上式我们可以方便地将256色调色板转换成为灰度调色板。由于灰度图调色板一般是按照灰度逐渐上升循序排列的,因此我们还必须将图像每个像素值(即调色板颜色的索引值)进行调整。实际编程中只要定义一个颜色值到灰度值的映射表bMap[256](长为256的一维数组,保存256色调色板中各个颜色对应的灰度值),将每个像素值p(即原256色调色板中颜色索引值)替换成bMap[p]。(2)灰度的阈值变换利用点运算中的阈值变换理论将灰度图像变为二值图像,为图像分析做准备工作。灰度的阈值变换可以将一幅灰度图像转变为黑白二值图像。它的操作是先由用户指定一个阈值,如果图像中某像素的灰度值小于该阈值,则将该像素的灰度值设置为0,否则灰度值设置为255。(3)中值滤波运用变换域法中的空域滤波法对图像进行降噪处理。中值滤波是一种非线性的信号处理方法,与其对应的滤波器当然也是一种非线性的滤波器。中值滤波一般采用一个含有奇数个点的滑动窗口,将窗口中各点灰度值的中值来替代指定点(一般是窗口的中心点)的灰度值。对于奇数个元素,中值是指按大小排序后,中间的数值,对于偶数个元素,中值是指排序后中间两个元素灰度值的平均值。(4)垂直投影利用图像分析中的垂直投影法实现对二值图像的重建,为条码识别提供前提条件。垂直投影是利用投影法对黑白二值图像进行变换。变换后的图像中黑色线条的高度代表了该列上黑色点的个数。(5)几何运算几何运算可以改变图像中各物体之间的空间关系。几何运算的一个重要应用是消除摄像机导致的数字图像的几何畸变。当需要从数字图像中得到定量的空间测量数据时,几何校正被证明是十分重要的。另外,一些图像系统使用非矩形的像素坐标。在用普通的显示设备观察这些图像时,必须先对它们进行校直,也就是说,将其转换为矩形像素坐标。 条码图像测试结果本软件的处理对象为EAN-13码的256色BMP位图,应用数字图像处理技术中的灰度处理、阈值分割、空域滤波、区域生长、投影等方法,对有噪声的条码图像进行了相应处理,其结果如下:图4. 1 原始条码图 图4. 2 灰度窗口变换图4. 3 原条码直方图 图4. 4 灰度窗口变换直方图图4. 5灰度直方图规定化界面 图4. 6灰度直方图规定化直方图图4. 7 中值滤波的界面图4. 8 区域生长 图4. 9 阈值面积消除图4. 10 垂直投影从以上处理结果可以看出,对原始条码图像进行灰度变换、中值滤波、二值化以及小面积阈值消除后得到条码的投影图像,下一步就可以通过图像模式识别的方法将条码读取出来,该部分工作还有待进一步研究。第五章 总结与展望数字图像处理技术起源于20世纪20年代,当时由于受技术手段的限制,使图像处理技术发展缓慢。直到第三代计算机问世以后,数字图像处理才得到迅速的发展并得到普遍应用。今天,已经几乎不存在与数字图像处理无关的技术领域。本论文主要研究了数字图像处理的相关知识,然后通过Visual C++这一编程工具来实现图像处理算法;对文中所提到的各种算法都进行了处理,并得出结论。所做工作如下:(1)运用点处理法中的灰度处理为实现数字图像的阈值变换提供前提条件。(2)运用变换域法中的空域滤波法对图像进行降噪处理。(3)利用点运算中的阈值变换理论将灰度图像变为二值图像,为图像分析做准备工作。(4)利用图像分析中的垂直投影法实现对二值图像的重建,为条码识别提供前提条件。在论文的最后一章,给出了各种算法处理的结果。结果表明通过数字图像处理可以把有噪声的条码处理成无噪声的条码。数字图像处理技术的应用领域多种多样,不仅可以用在像本文的图像处理方面,还可以用于模式识别,还有机器视觉等方面。近年来在形态学和拓扑学基础上发展起来的图像处理方法,使图像处理的领域出现了新的局面,相信在未来图像处理的应用将会更加广泛。参考文献[1] 阮秋琦.数字图像处理学[M].北京:电子工业出版社,2001.[2] 黄贤武,王加俊,李家华.数字图像处理与压缩编码技术[M].成都:科技大学出版社,2000.[3] 容观澳.计算机图像处理[M].北京:清华大学出版社,2000.[4] 胡学钢.数据结构-算法设计指导[M].北京:清华大学出版社,1999.[5] 黄维通.Visual C++面向对象与可视化程序设计[M].北京:清华大学出版社,2001.[6] 夏良正.数字图像处理[M].南京:东南大学出版社,1999.[7] 费振原.条码技术及应用[M].上海:上海科学技术文献出版社,1992.[8] 李金哲.条形码自动识别技术[M].北京:国防工业出版社,1991.[9] 何斌.Visual C++数字图像处理[M].北京:人民邮电出版社,2001.[10] 李长江. C++使用手册[M].北京:电子工业出版社,1995.[11] 席庆,张春林. Visual C++ .实用编程技术[M].北京:中国水利水电出版社,1999.[12] 胡学钢.数据结构-算法设计指导[M].北京:清华大学出版社,1999.[13] Kenneth 著,朱志刚等译.数字图像处理[M].北京:电子工业出版社,1998.[14] Davis. C++ [M].北京:清华大学出版社,1999.[15] Richard C++ 5 Power Toolkit[M].北京:机械工业出版社,1999.
图像处理的很多任务都离不开图像分割。因为图像分割在cv中实在太重要(有用)了,就先把图像分割的常用算法做个总结。 接触机器学习和深度学习时间已经不短了。期间看过各种相关知识但从未总结过。本文过后我会尽可能详细的从工程角度来总结,从传统机器学习算法,传统计算机视觉库算法到深度学习目前常用算法和论文,以及模型在各平台的转化,量化,服务化部署等相关知识总结。 图像分割常用算法大致分为下面几类。由于图像的能量范函,边缘追踪等方法的效果往往只能解决特定问题,效果并不理想,这里不再阐述。当然二值化本身也可以分割一些简单图像的。但是二值化算法较多,我会专门做一个文章来总结。这里不再赘述。 1.基于边缘的图像分割算法: 有利用图像梯度的传统算法算子的sobel,roberts,prewitt,拉普拉斯以及canny等。 这些算法的基本思想都是采用合适的卷积算子,对图像做卷积。从而求出图像对应的梯度图像。(至于为什么通过如图1这样的算子卷积,即可得到图像的梯度图像,请读者复习下卷积和倒数的概念自行推导)由于图像的边缘处往往是图像像素差异较大,梯度较大地方。因此我们通过合适的卷积核得到图像的梯度图像,即得到了图像的边缘图像。至于二阶算子的推导,与一阶类似。优点:传统算子梯度检测,只需要用合适的卷积核做卷积,即可快速得出对应的边缘图像。缺点:图像边缘不一定准确,复杂图像的梯度不仅仅出现在图像边缘,可以能出现在图像内部的色彩和纹理上。 也有基于深度学习方法hed,rcf等。由于这类网络都有同一个比较严重的缺陷,这里只举例hed网络。hed是基于FCN和VGG改进,同时引出6个loss进行优化训练,通过多个层输出不同scale的粒度的边缘,然后通过一个训练权重融合各个层的边缘结果。hed网络结构如下: 可以得到一个比较完整的梯度图像,可参考github的hed实现。优点:图像的梯度细节和边缘完整性,相比传统的边缘算子要好很多。但是hed对于边缘的图像内部的边缘并不能很好的区分。当然我们可以自行更改loss来尝试只拟合外部的图像边缘。但最致命的问题在于,基于vgg的hed的网络表达能力有限,对于图像和背景接近,或者图像和背景部分相融的图片,hed似乎就有点无能为力了。 2.基于区域分割的算法: 区域分割比较常用的如传统的算法结合遗传算法,区域生长算法,区域分裂合并,分水岭算法等。这里传统算法的思路是比较简单易懂的,如果有无法理解的地方,欢迎大家一起讨论学习。这里不再做过多的分析。 基于区域和语意的深度学习分割算法,是目前图像分割成果较多和研究的主要方向。例如FCN系列的全卷积网络,以及经典的医学图像分割常用的unet系列,以及rcnn系列发展下的maskrcnn,以及18年底的PAnet。基于语意的图像分割技术,无疑会成为图像分割技术的主流。 其中,基于深度学习语意的其他相关算法也可以间接或直接的应用到图像分割。如经典的图像matting问题。18年又出现了许多非常优秀的算法和论文。如Deep-Image-Matting,以及效果非常优秀的MIT的 semantic soft segmentation(sss). 基于语意的图像分割效果明显要好于其他的传统算法。我在解决图像分割的问题时,首先尝试用了hed网络。最后的效果并不理想。虽然也参考github,做了hed的一些fine-tune,但是还是上面提到的原因,在我多次尝试后,最终放弃。转而适用FCN系列的网络。但是fcn也无法解决图像和背景相融的问题。图片相融的分割,感觉即需要大的感受野,又需要未相融部分原图像细节,所以单原FCN的网络,很难做出准确的分割。中间还测试过很多其他相关的网络,但都效果不佳。考虑到感受野和原图像细节,尝试了resnet和densenet作为图像特征提取的底层。最终我测试了unet系列的网络: unet的原始模型如图所示。在自己拍照爬虫等手段采集了将近1000张图片。去掉了图片质量太差的,图片内容太过类似的。爬虫最终收集160多张,自己拍照收集200张图片后,又用ps手动p了边缘图像,采用图像增强变换,大约有300*24张图片。原生unet网络的表现比较一般。在将unet普通的卷积层改为resnet后,网络的表达能力明显提升。在将resnet改为resnet101,此时,即使对于部分相融的图像,也能较好的分割了。但是unet的模型体积已经不能接受。 在最后阶段,看到maskrcnn的实例分割。maskrcnn一路由rcnn,fasterrcnn发展过来。于是用maskrcnn来加入自己的训练数据和label图像进行训练。maskrcnn的结果表现并不令人满意,对于边缘的定位,相比于其他算法,略显粗糙。在产品应用中,明显还不合适。 3.基于图的分割算法 基于深度学习的deepgrab,效果表现并不是十分理想。deepgrab的git作者backbone采用了deeplabv2的网络结构。并没有完全安装原论文来做。 论文原地址参考: 整体结构类似于encode和decoder。并没有太仔细的研究,因为基于resent101的结构,在模型体积,速度以及deeplab的分割精度上,都不能满足当前的需求。之前大致总结过计算机视觉的相关知识点,既然目前在讨论移动端模型,那后面就分模块总结下移动端模型的应用落地吧。 由于时间实在有限。这里并没有针对每个算法进行详细的讲解。后续我会从基础的机器学习算法开始总结。
具体指的什么?是原理啊还是编程实现?