应该是先求导吧
若得到ac-b^2=0,还不能得到是否有极值的结论。
先求导,然后使导函数等于零,求出x值,接着确定定义域,画表格。最后找出极值。
注意:极值是把导函数中的x值代入原函数。
求解函数的极值:
寻求函数整个定义域上的最大值和最小值是数学优化的目标。如果函数在闭合区间上是连续的,则通过极值定理存在整个定义域上的最大值和最小值。
此外,整个定义域上最大值(或最小值)必须是域内部的局部最大值(或最小值),或必须位于域的边界上。
一元函数求极限的方法有:等价无穷小代换; 洛必达法则; 无穷小和有界函数的乘积仍为无穷小; 连续函数的极限值等于其函数值。
极限的定义:在数与数集之间,如果存在一个数使得这个数的所有有限次幂都小于或等于它自身,则称这个数为该数集的极限。
扩展资料:
一元函数的定义域
1. 一元函数是指只有自变量的连续变化过程而没有因变量变化的连续变化过程的集合。例如直线上的点p1、p2、...、pn称为点1至点n关于直线l的一个端点组成的集合体——线段l1,l2,...,lm称为线段1的长度段L1,L2。
2. 点1至点n之间的长度关系是线段长度关系的特殊情况之一,因此我们说线段的长度关系中包含了点1至点和N的距离之间的关系——也就是包含了点1-N的距离的关系。
3. 在平面直角坐标系中画一条水平线M1(m),将水平线上的所有点在M1(m)上标出后连成一条射线S1。设S1=s0,S2=s1,S3=s2......Sn=s3,则M1(m)叫做点到线的距离单位A1。
求f(x,y)=x³+2xy-y³+2的极值解:令∂f/∂x=3x²+2y=0.............①再令∂f/∂y=2x-3y²=0..................②由②得x=(3/2)y²;代入①式得 (27/4)y^4+2y=y[(27/4)y³+2]=0故得:y₁=0;y₂=-2/3;相应地,x₁=0;x₂=2/3;即有两个驻点:M(0,0);N(-2/3,2/3)。再求两驻点处的二阶导数:A=∂²f/∂x²=6x; B=∂²f/∂x∂y=2; C=∂²f/∂y²=-6y;M(0,0): A=0;B=2;C=0;B²-AC=4>0,故M不是极值点;N(-2/3,2/3): A=-4<0; B=2; C=-4; B²-AC=4-16=-12<0;故N是极大点。极大值f(x,y)=f(-2/3,2/3)=(-2/3)³+2(-2/3)(2/3)-(2/3)³+2=-16/27-8/9+2=14/27
首先你要说下研究函数极值的意义:在很多工程实际中,我们经常需要做一些优化。当然,本人是学飞行器设计的,举个简单的例子:飞机的升力主要由机翼提供,那么机翼的截面到底设计成什么形状,或者机翼的平面投影设计成什么形状,其升力可以达到最大,甚至在保证升力的同时还不能让阻力太大,所以这些都涉及到一个最优的问题。(当然,楼主可以就具体工程实际给出例子),再比如,就拿天气预报来说吧,通过实验测得很多气象数据,那么我们怎么处理这些数据,或者说用什么方法处理这些数据,才能达到预测结果最为准确呢,这其实也是一个广义上的极值问题。还有就是经济学的投资问题,我们知道现在国家搞什么高铁、高速公路的,都是浩大的工程,动不动就几百亿的,如何合理布局(要考虑建设成本、怎么选定线路、建成之后为国民经济带来的效益、运营费用、会不会对环境有影响,那么污染治理费也要考虑),才能让这些公共基础建设的利远大于弊。。。。一般实际问题都是一个或者一组多元函数,那么研究清楚这些问题,对我们的工程实际将有莫大的裨益,对节省能源等等问题都有好处
函数的零点等价于对应方程的根,计算方法主要是解方程。对区间上的可导函数而言,函数的极值点是导函数的变号零点,这时极值点的计算方法是先求导,再求导函数的零点,再讨论零点两侧的导数符号,最后结论。所以要经历求导运算,解方程,解不等式等。对于区间上的不可导函数而言,函数的极值可能存在,因而极值点存在。往往用初等方法。需讨论。例如y=|x|,因为y=|x|≥0,当且仅当x=0时,y min=0.所以极值点x=0.亲,以上是提供,供参考。您可以发散一下,并举些具体例子。必要时把零点和极值点的定义加进去。
求f(x,y)=x³+2xy-y³+2的极值,解:令∂f/∂x=3x²+2y=0.............①再令∂f/∂y=2x-3y²=0..................②由②得x=(3/2)y²;代入①式得 (27/4)y^4+2y=y[(27/4)y³+2]=0,故得:y₁=0;y₂=-2/3;相应地,x₁=0;x₂=2/3;即有两个驻点:M(0,0);N(-2/3,2/3)。
再求两驻点处的二阶导数:A=∂²f/∂x²=6x; B=∂²f/∂x∂y=2; C=∂²f/∂y²=-6y;M(0,0): A=0;B=2;C=0;B²-AC=4>0,故M不是极值点;N(-2/3,2/3): A=-4<0; B=2; C=-4; B²-AC=4-16=-12<0;故N是极大点。极大值f(x,y)=f(-2/3,2/3)=(-2/3)³+2(-2/3)(2/3)-(2/3)³+2=-16/27-8/9+2=14/27
扩展资料
人们常常说的函数y=f(x),是因变量与一个自变量之间的关系,即因变量的值只依赖于一个自变量,称为一元函数。
但在许多实际问题中往往需要研究因变量与几个自变量之间的关系,即因变量的值依赖于几个自变量。
例如,某种商品的市场需求量不仅仅与其市场价格有关,而且与消费者的收入以及这种商品的其它代用品的价格等因素有关,即决定该商品需求量的因素不止一个而是多个。要全面研究这类问题,就需要引入多元函数的概念。
参考资料来源:百度百科-多元函数
沿不同曲线趋于时极限如果不同的话那么极限是不存在的,这个是证明多元函数极限不存在的方法极限是微积分学的基础,导数、积分等概念都是在极限的基础上建立起来的.从极限理论出发产生的极限方法,是数学分析的最基本的方法.更好地理解极限思想,掌握极限理论,应用极限方法是学习微积分的关键.一元函数的极限及求法,在各种高等数学教材中都有详细的讨论.除了常用的定义、运算法则、连续性方法,本文给出了六种适用性较强的二元函数极限计算方法,希望对初学者有一定帮助.一、变量替换(转化为一元函数计算)例1lim(x,y)→(0,0)1-cos(x2+y2)x2+y2.解令t=x2+y2,则当(x,y)→(0,0)时,t→0,所以lim(x,y)→(0,0)1-cos(x2+y2)x2+y2=limt→01-costt=limt→0t22t=limt→0t2=0.二、利用无穷小替换例2lim(x,y)→(0,0)sin(x3+y3)x+y.解因为当(x,y)→(0,0)时,x3+y3→0,所以sin(x3+y3)~x3+y3,于是lim(x,y)→(0,0)sin(x3+y3)x+y=lim(x,y)→(0,0)x3+y3x+y=lim(x,y)→(0,0)(x2-xy.
1. 全极限存在,两个累次极限都可以不存在。2. 全极限存在,若其中一个累次极限存在,则全极限等于该累次极限,注意:另一个可以不存在。3. 全极限存在,若两个累次极限都存在,则三者相等。4. 两个累次极限都存在,全极限也可以不存在。
多元函数的极限一般是利用一元函数求极限的方法、换元或者迫敛准则等来求:
例如:
(x,y)->(0,0) sin(x²+y²) / (x²+y²) 令 u = x²+y²= lim(u->0) sinu / u = 1
(x,y) = x²y / (x²+y²)
∵ | x²y | / (x²+y²) ≤ (1/2) |x|
lim(x,y)->(0,0) |x| = 0
∴ lim(x,y)->(0,0) x²y / (x²+y²) = 0
记住limh趋于0[f(x+h,y)-f(x,y]/h得到的就是f'x
同理limh趋于0[f(x,y+h)-f(x,y]/h得到的就是f'y
显然这里就是-2f'x=6以及1/3f'y=2/3
扩展资料:
函数极限在区间(a-ε,a+ε)之外至多只有N个(有限个)点;所有其他的点 (无限个)都落在该邻域之内。
对于任意给定的ε>0,存在某一个正数δ,对于D上任意一点P0,只要P在P0的δ邻域与D的交集内,就有|f(P0)-f(P)|<ε,则称f关于集合D一致连续。
一致连续比连续的条件要苛刻很多。
设函数z=f(x,y)在点P0(x0,y0)的某邻域内有定义,对这个邻域中的点P(x,y)=(x0+△x,y0+△y),若函数f在P0点处的增量△z可表示为:
△z=f(x0+△x,y+△y)-f(x0,y0)=A△x+B△y+o(ρ),其中A,B是仅与P0有关的常数,ρ=〔(△x)^2+(△y)^2〕^(ρ)是较ρ高阶无穷小量,即当ρ趋于零是o(ρ)/ρ趋于零。则称f在P0点可微。
以 的极限为例,f(x) 在点 以A为极限的定义是: 对于任意给定的正数ε(无论它多么小),总存在正数 ,使得当x满足不等式 时,对应的函数值f(x)都满足不等式: ,那么常数A就叫做函数f(x)当 x→x。时的极限。
函数的零点等价于对应方程的根,计算方法主要是解方程。对区间上的可导函数而言,函数的极值点是导函数的变号零点,这时极值点的计算方法是先求导,再求导函数的零点,再讨论零点两侧的导数符号,最后结论。所以要经历求导运算,解方程,解不等式等。对于区间上的不可导函数而言,函数的极值可能存在,因而极值点存在。往往用初等方法。需讨论。例如y=|x|,因为y=|x|≥0,当且仅当x=0时,y min=0.所以极值点x=0.亲,以上是提供,供参考。您可以发散一下,并举些具体例子。必要时把零点和极值点的定义加进去。
还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法
我知道能函授问题明白道理
二元函数连续是要求函数从“四面八方”逼近一点时均存在极限且极限值相同。这里的这个极限,设是沿直线y=kx逼近(0,0),则为lim(kx²)/(x²+y²)=lim(kx²)/[(k²+1)x²]=k/(k²+1),这个极限值和k有关,即当k取不同...
还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法
多元函数的极限一般是利用一元函数求极限的方法、换元或者迫敛准则等来求:
例如:
(x,y)->(0,0) sin(x²+y²) / (x²+y²) 令 u = x²+y²= lim(u->0) sinu / u = 1
(x,y) = x²y / (x²+y²)
∵ | x²y | / (x²+y²) ≤ (1/2) |x|
lim(x,y)->(0,0) |x| = 0
∴ lim(x,y)->(0,0) x²y / (x²+y²) = 0
记住limh趋于0[f(x+h,y)-f(x,y]/h得到的就是f'x
同理limh趋于0[f(x,y+h)-f(x,y]/h得到的就是f'y
显然这里就是-2f'x=6以及1/3f'y=2/3
扩展资料:
函数极限在区间(a-ε,a+ε)之外至多只有N个(有限个)点;所有其他的点 (无限个)都落在该邻域之内。
对于任意给定的ε>0,存在某一个正数δ,对于D上任意一点P0,只要P在P0的δ邻域与D的交集内,就有|f(P0)-f(P)|<ε,则称f关于集合D一致连续。
一致连续比连续的条件要苛刻很多。
设函数z=f(x,y)在点P0(x0,y0)的某邻域内有定义,对这个邻域中的点P(x,y)=(x0+△x,y0+△y),若函数f在P0点处的增量△z可表示为:
△z=f(x0+△x,y+△y)-f(x0,y0)=A△x+B△y+o(ρ),其中A,B是仅与P0有关的常数,ρ=〔(△x)^2+(△y)^2〕^(ρ)是较ρ高阶无穷小量,即当ρ趋于零是o(ρ)/ρ趋于零。则称f在P0点可微。
以 的极限为例,f(x) 在点 以A为极限的定义是: 对于任意给定的正数ε(无论它多么小),总存在正数 ,使得当x满足不等式 时,对应的函数值f(x)都满足不等式: ,那么常数A就叫做函数f(x)当 x→x。时的极限。