硅烷偶联剂遇水都会水解,只是水解速度快慢的问题,KH-550 氨丙基三乙氧基硅烷 遇水就会水解 不需要催化剂,氨基碱性有自催化作用。KH-570 疏水性好,水解速度慢,所以文献资料会提到用酸或者碱来做催化剂,碱性条件下硅烷水解后不稳定,一般建议采用酸,一般 甲酸,乙酸都可以。我们还要求水解加入醇(主要是工业酒精:乙醇),并不是所谓的醇解,而醇是起到助溶的作用和保证硅烷水解后溶液的稳定性。 硅烷的醇水溶液的稳定性要比硅烷的水溶液好的多!每个厂家对自己产品质量的把握和控制也有所不同,目前主要是对硅烷偶联剂的含量进行色谱分析,但是硅烷还有一个指标,也就是水解百分比,这个指标可以直接影响硅烷水解的,也影响着硅烷的有效活性和偶联效果。
甲烷不水解。硅烷水解产生沉淀和气体。
稳定性避免强氧化剂,强碱,卤素。标准状态下气体密度为,液体的相对密度为(-185℃)。蒸气压11mmHg(1mmHg=)(-160℃)、102mmHg(-140℃)、470mmHg(-120℃)。红外光谱波长2191cm-1、914cm-1。在室温时为气体状态,在储存过程中,数月之内无显著分解。因为甲硅烷几乎不溶于润滑脂,可以储存在瓶塞涂有润滑脂的容器内。硅烷的化学性质比烷烃活泼得多,极易被氧化。在与空气接触时可发生自燃。25℃以下与氮不起作用,室温下与烃类化合物不起反应。与氧反应异常激烈,即使在-180℃温度下也会猛烈反应。硅烷与氟氯烃类灭火剂会发生激烈反应,所以不能用这类灭火剂灭火。爆炸极限为~98%。制备在反应瓶和加料漏斗里分别装入 LiAlH4于70mL乙醚中的溶液和 SiCl4于50mL乙醚中的图硅烷的制备装置溶液。在整个合成过程中,把冷浴和指型冷却管分别保持在-15~-20℃和℃。将仪器抽空后,乙醚开始回流,此时必须要注意避免过多的骤沸。然后,将靠近反应装置的U形管接收器冷却到-95℃(用甲苯冻膏),其余四个接收器冷却到-196℃(液氮)。在搅拌下,用15min将SiCl4+乙醚溶液加入到LiAlH4悬浮液中。为了避免乙醚剧烈回流,使甲硅烷连续地以中等速度分出。调节反应器和真空管路之间的玻璃活塞便可以容易地控制反应速度。将SiCl4加完后,继续搅拌15~20min,以保证反应完全。在此期间,将反应器和真空系统切断以免乙醚逃逸过多。当甲硅烷从真空系统排净之后,将空气通入反应器,拆开真空系统。应用用于集成电路制造、太阳能电池、涂膜反射玻璃等。硅烷气:点击查看图片硅烷气硅烷气是太阳能电池生产过程中不可或缺的材料,因为它是将硅分子附着于电池表面的最有效方式。在高于400℃的环境下,硅烷气分解成气态硅和氢气。氢气燃烧后,剩下的就是纯硅了。此外,硅烷气可以说是无处不在。除了光伏产业外,还有很多制造工厂需要用到硅烷气,如平板显示器、半导体、甚至镀膜玻璃生产厂。注意事项危害辨识最重要危害与效应:眼接触:硅烷会刺激眼睛。硅烷分解产生无定型二氧化硅。眼睛接触无定型二氧化硅颗粒会引起刺激。吸入:1.吸入高浓度的硅烷会引起头痛、恶心、头晕并刺激上呼吸道。2.硅烷会刺激呼吸系统及粘膜。过度吸入硅烷会引起肺炎和肾病,这是由于存在结晶二氧化硅的原因。3.暴露于高浓度气体中还会由于自燃而造成热灼伤。摄入:摄入不可能成为接触硅烷的途径。皮肤接触:硅烷会刺激皮肤。硅烷分解产生无定型二氧化硅 。皮肤接触无定型二氧化硅颗粒会引起刺激。慢性:侵入途径:症状:如今不清楚长期暴露于硅烷中对健康的进一步影响。损害器官:未建立过度暴露造成的病情恶化 :有皮肤和呼吸道疾病的人暴露在硅烷及其分解物中会加重病情。致癌性:未被 NTP、OSHA及IARC列为致癌物。急救措施不同暴露途径之急救方法:热灼伤:由于硅烷泄漏引起人员灼伤时应由受过培训的人员进行急救,并立即寻求医疗处理。眼睛接触:立即用水冲洗最少15分钟,水流不要太快,同时翻开眼睑。使受难者为“O”形眼,立即寻求眼科处理。吸入:将患者尽快移到空气清新处。如有必要由受过培训的人员进行输氧或人工呼吸。皮肤接触:1.用大量的水冲洗最少15分钟。脱掉已暴露在硅烷中或被污染的衣服,小心不要接触到眼睛。
甲烷不水解。硅烷水解产生沉淀和气体。
稳定性避免强氧化剂,强碱,卤素。标准状态下气体密度为,液体的相对密度为(-185℃)。蒸气压11mmHg(1mmHg=)(-160℃)、102mmHg(-140℃)、470mmHg(-120℃)。红外光谱波长2191cm-1、914cm-1。在室温时为气体状态,在储存过程中,数月之内无显著分解。因为甲硅烷几乎不溶于润滑脂,可以储存在瓶塞涂有润滑脂的容器内。硅烷的化学性质比烷烃活泼得多,极易被氧化。在与空气接触时可发生自燃。25℃以下与氮不起作用,室温下与烃类化合物不起反应。与氧反应异常激烈,即使在-180℃温度下也会猛烈反应。硅烷与氟氯烃类灭火剂会发生激烈反应,所以不能用这类灭火剂灭火。爆炸极限为~98%。制备在反应瓶和加料漏斗里分别装入 LiAlH4于70mL乙醚中的溶液和 SiCl4于50mL乙醚中的图硅烷的制备装置溶液。在整个合成过程中,把冷浴和指型冷却管分别保持在-15~-20℃和℃。将仪器抽空后,乙醚开始回流,此时必须要注意避免过多的骤沸。然后,将靠近反应装置的U形管接收器冷却到-95℃(用甲苯冻膏),其余四个接收器冷却到-196℃(液氮)。在搅拌下,用15min将SiCl4+乙醚溶液加入到LiAlH4悬浮液中。为了避免乙醚剧烈回流,使甲硅烷连续地以中等速度分出。调节反应器和真空管路之间的玻璃活塞便可以容易地控制反应速度。将SiCl4加完后,继续搅拌15~20min,以保证反应完全。在此期间,将反应器和真空系统切断以免乙醚逃逸过多。当甲硅烷从真空系统排净之后,将空气通入反应器,拆开真空系统。应用用于集成电路制造、太阳能电池、涂膜反射玻璃等。硅烷气:点击查看图片硅烷气硅烷气是太阳能电池生产过程中不可或缺的材料,因为它是将硅分子附着于电池表面的最有效方式。在高于400℃的环境下,硅烷气分解成气态硅和氢气。氢气燃烧后,剩下的就是纯硅了。此外,硅烷气可以说是无处不在。除了光伏产业外,还有很多制造工厂需要用到硅烷气,如平板显示器、半导体、甚至镀膜玻璃生产厂。注意事项危害辨识最重要危害与效应:眼接触:硅烷会刺激眼睛。硅烷分解产生无定型二氧化硅。眼睛接触无定型二氧化硅颗粒会引起刺激。吸入:1.吸入高浓度的硅烷会引起头痛、恶心、头晕并刺激上呼吸道。2.硅烷会刺激呼吸系统及粘膜。过度吸入硅烷会引起肺炎和肾病,这是由于存在结晶二氧化硅的原因。3.暴露于高浓度气体中还会由于自燃而造成热灼伤。摄入:摄入不可能成为接触硅烷的途径。皮肤接触:硅烷会刺激皮肤。硅烷分解产生无定型二氧化硅 。皮肤接触无定型二氧化硅颗粒会引起刺激。慢性:侵入途径:症状:如今不清楚长期暴露于硅烷中对健康的进一步影响。损害器官:未建立过度暴露造成的病情恶化 :有皮肤和呼吸道疾病的人暴露在硅烷及其分解物中会加重病情。致癌性:未被 NTP、OSHA及IARC列为致癌物。急救措施不同暴露途径之急救方法:热灼伤:由于硅烷泄漏引起人员灼伤时应由受过培训的人员进行急救,并立即寻求医疗处理。眼睛接触:立即用水冲洗最少15分钟,水流不要太快,同时翻开眼睑。使受难者为“O”形眼,立即寻求眼科处理。吸入:将患者尽快移到空气清新处。如有必要由受过培训的人员进行输氧或人工呼吸。皮肤接触:1.用大量的水冲洗最少15分钟。脱掉已暴露在硅烷中或被污染的衣服,小心不要接触到眼睛。
1、硅烷偶联剂在水中的溶解度不同的硅烷偶联剂极性不同在水中的溶解性也有较大区别,溶解度较大的硅烷偶联剂由于在水中溶解的较多,与水分充分接触,所以水解速度会相对较快。为达此目的,在硅烷偶联剂溶解于水中时加以充分的搅拌就显得十分必要和重要。2、硅烷偶联剂在水中的浓度同一般的化学反应一样,反应物的浓度越大,化学反应的速度就越快。所以,较高的硅烷偶联剂会加快水解反应的速度,当然,这也会造成水解产物自聚速度的加快。3、硅烷偶联剂水溶液的pH硅烷偶联剂在水溶液的pH等于7即中性时水解反应的速度最慢,而酸或碱对于硅烷偶联剂的水解反应都具有明显的催化加速作用,所以一般非氨基硅烷水解都要用酸将溶液的pH值调节至3~5后再滴加硅烷偶联剂;而氨基硅烷的水溶液本来就有较强碱性,所以氨基硅烷一般直接滴加而无需用酸调节水溶液的pH值。4、温度同一般的化学反应一样,硅烷偶联剂水解反应的速度与温度的高低有着正相关关系,即温度越高,速度越快。所以,在夏季和冬季,由于环境温度的变化也会对硅烷偶联剂水解反应的速度有影响。5、醇类助溶剂同般的化学反应一样,若在反应物中添加一些生成物,则生成物的存在会减缓化学反应的速度,化学反应存在部分可逆。若在溶液中添加一些醇类溶剂,如乙醇等,会减缓硅烷偶联剂水解反应速度。
孙晗森1贺承祖2
(1.中联煤层气有限责任公司 北京 100011;2.成都理工大学 成都 610059)
作者简介:孙晗森,1973年生,男,浙江义乌入;1998年毕业于成都理工大学石油系,获工学硕士;中联煤层气有限责任公司,高级工程师,从事油气藏数值模拟和增产改造技术研究;地址:北京安外大街甲88号,邮编:100011;E-mail:hssun 。
攻关项目:国家科技部“十五”科技攻关项目部分成果。
摘要 氮气泡沫压裂工艺技术特别适用于低压、低渗和水敏性地层(煤层)的压裂改造。研究表明,泡沫压裂液中作为稳泡剂的高分子聚合物和某些作为起泡剂的表面活性剂均可能损害煤储层,影响压裂效果。本文提出一种新的粘弹性表面活性剂泡沫压裂液。通过室内实验研究及现场应用试验,优选出的氮气泡沫压裂液具有性能好,施工后无需破胶即可排液,对煤层损害小的优点;现场应用后可达到明显的增产效果。
关键词 煤储层 氮气泡沫 压裂液 表面活性剂 现场应用
Study and Experiment on Nitrogen Foam Stimulation Technology for CBM
Sun Hansen,He Chenzhu
( United Coalbed Methane Corp.,Ltd,Beijing 100011; University of Technology,chengdu 610059)
Abstract:Nitrogen foam stimulation technology particularly applies to stimulation operations of coal seams with low pressure,low permeability and water researches indicate that macromolecular polymers as steady agent of bubble and certain surface-active agents as generating agent of bubble in foam fracture liquid may damage coal reservoir and produce negative effects on new type of nitrogen foam fracture liquid called visco-elastic surface-active agent was introduced in this optimized nitrogen foal fracture liquid through indoor study and field application test not only has good physical performance and virtues of low damage to coal seams,but also can produce liquid without glue-broken agent after stimulation application of this type of nitrogen foam fracture liquid in the practical operations of CBM fields showed very obvious stimulation results.
Keywords:coal reservoir;nitrogen foam;fracture liquid;surface-active agent;site application
前言
煤层具有致密、低压、低渗的特点,必须经过压裂之后才能获得有工业价值的产量[1]。压裂液的种类很多,其中以泡沫压裂液因其含液量小,易排,对储层损害小,认为较适合煤层[2,3]。研究表明,泡沫压裂液中作为稳泡剂的高分子聚合物和某些作为起泡剂的表面活性剂均可能损害煤储层,影响压裂效果。
氮气泡沫压裂工艺是20世纪70年代以来发展起来的一项压裂工艺技术。主要适用范围是低压、低渗和强水敏性储集层。在低渗油层压裂改造和煤层气压裂增产中,氮气泡沫压裂工艺在美国应用已经相当普遍,在黑勇士盆地的煤层气开采井中,大多数的施工井都采用氮气泡沫压裂工艺;而国内由于受到压裂设备、技术工艺和成本等方面因素的影响,制约了氮气泡沫压裂工艺的发展。
泡沫压裂液从工艺和添加剂的更新换代上看,主要发展经历了三代。入们将仅用表面活性剂水溶液生的泡沫压裂液叫做第一代泡沫压裂液;将加有聚合物和交联聚合物的泡沫压裂液分别叫做第二和第三代泡沫压裂液[3]。第二和第三代泡沫压裂液虽然比第一代泡沫压裂液的稳定性高,但由于引入聚合物,存在低温井破胶不完全以及破胶后对地层的损害问题[5],部分丧失了泡沫压裂液低损害性的优点。
本文提出一种新的粘弹性表面活性剂泡沫压裂液。通过室内试验及研究,优选出的氮气泡沫压裂液具有性能好,施工后无需破胶即可排液,对煤层损害小的优点。
1 实验条件和方法
试剂及材料
粘弹性表面活性剂:研制产品。氯化钾、过硫酸铵、碳酸盐型阴离子表面活性剂、季铵盐型阳离子表面活性剂、非离子表面活性剂,均为化学试剂。羟丙基瓜胶:工业品。煤样:潘河先导性试验区无烟煤。
实验方法[5,6]
泡沫基液的性质
用毛管粘度计测量粘度,用滴重法测量表面张力,用改进的Bickerman法测量在煤样上的接触角。
泡沫的结构和性质
用高速搅拌法(≥100转/min,2min)起泡。在显微镜下观察泡沫的结构,测量泡沫的体积,计算泡沫质量(气体体积/泡沫体积)。测量液体析出一半的时间,确定泡沫的半衰期。用六速粘度计测量泡沫的流变性。测量砂粒在泡沫中的沉降速度,评价携砂能力。在失水仪测量泡沫的滤失速度。
2 泡沫压裂液性能
氮气泡沫压裂液的结构
研究者[3]根据等球体最紧密堆积时,球体所占空间体积为 这一几何原理,认为泡沫质量≤时泡沫中的气泡为球形,泡沫质量> 时被挤压为五角十二面体。我们的观察表明,该粘弹性表面活性剂水溶液所形成的泡沫,在质量高达 时气泡仍为球形,显微相片如图1所示。仅在泡沫质量大于 时才被挤压为五角十二面体形。由该图可以看出:泡沫中气泡大小分布比较均匀,大多在~之间,由于小气泡可填充在大气泡之间的空隙中,所以这种泡沫在质量远大于时气泡仍可保持球形。
图1 泡沫显微照片
图2 粘弹性表面活性剂溶液中蠕状胶束网络示意图
稳定性
泡沫形成时气液界面增加,气液界面能随之增加。因为高能态均有自发转变为低能态的趋势,所以泡沫属于热力学不稳定体系,只能靠动力学因素维持有限的生存时间。由于气液相密度相差大,液膜中的液体会在重力下流失使液膜变薄,液膜薄到一定程度后易在外力扰动下破裂而使泡沫消失。表面活性剂在气液界面上形成定向吸附层,既可通过降低界面张力使泡沫容易生成,又可靠这种吸附层的粘弹性,使液膜不易破裂,增加泡沫的稳定性[14]。
本文提出的粘弹性表面活性剂溶于水后,可形成类似于聚合物的蠕虫状胶束结构(见图2)[14,15]。这种胶束在较低浓度时,不会明显增加水的粘度(<5mPa·s),但可吸附在气水界面,形成比单独表面活性剂要强得多的吸附层,增加泡沫的稳定性,使氮气泡沫的半衰期均长达1~2h。这种粘弹性表面活性剂形成的泡沫压裂液主要靠增加吸附层的强度,而不是靠增加水的本体粘度来增加泡沫的稳定性,不存在需要破胶以及对储层损害问题,从而比第二代和第三代泡沫压裂液优越。
流变性
实验表明,氮气在该粘弹性表面活性剂水溶液中形成的泡沫压裂液为假塑性流体,氮气n=,K=·s,泡沫压裂液的流变曲线如图3所示。
图3 泡沫压裂液的流变曲线
泡沫流动时气泡之间滑动,气泡还可能变形,需要克服的阻力比基液流动要大,故粘度比基液大。泡沫流动时,随着切力的增加,结构逐渐拆散,阻力减小,表现为剪切稀释性质。泡沫压裂液粘度高,有助于携砂,剪切稀释性有助于减少管输阻力。
携砂能力
压裂液的携砂能力取决于砂粒在其中的沉降速度,文献认为[15],沉降速度小于时最佳,介于~5cm/min 可以接受,大于5cm/min时不可接受。该泡沫压裂液基液的粘度(约为4~5mPa·s)高于清水和活性水压裂液(约为1mPa·s),低于聚合物压裂液(>40mPa·s);实验表明,40目砂粒在该粘弹性表面活性剂泡沫中未见沉降,说明携砂能力良好。
泡沫压裂液良好的携砂能力,宏观而言归因于泡沫高的粘度,微观而言归因于4~10倍于气泡大小的砂粒欲在其中下沉,必需将途中气泡推开和使之变形,而砂粒的重力不足以克服这些阻力,故其沉降速度很小,甚至趋近于零。将30mL(视体积)60 目(粒径)的砂粒放入100mL基液中,在氮气中高速搅拌2min后,将生成的泡沫倾入量筒中静置下来,观察水和砂粒的沉降速度。研究结果表明,在有砂粒存在时泡沫的半衰期缩短约为原来的5/6,并且砂粒的沉降速度约为水沉降速度的80%。前者可能是由于砂粒下沉时的作用力促使液膜破裂;后者说明失水后的泡沫虽然骨架尚在,但已无悬砂能力。这与破胶后水基或油基压裂液的行为有些相似。
降滤失性
压裂液滤失于裂缝壁会引起传递压力损失,故压裂需要降滤失性。压裂液的滤失速度V同时间t有如下关系:
中国煤层气勘探开发利用技术进展:2006年煤层气学术研讨会论文集
式中C称为滤失系数。该泡沫压裂液的 ,与聚合物凝胶压裂液的数值相近。泡沫压裂液滤失时无瞬时失水现象,它是靠高粘度降滤失,而不是靠形成滤饼降滤失。
3 现场应用
在室内研究的基础上,将氮气泡沫压裂技术应用于现场实践。本次现场试验的设计要求是:施工排量控制在 ~;氮气泵注排量达到 600m3/min;氮比大于340m3/m3SPACE;泡沫质量在60%~75%。2005年12月,在潘河先导性试验区完成了2口井的氮气泡沫压裂施工。经过一段时间的排采证实,氮气泡沫压裂施工的 P H1和PH1-006井与周边采用活性水加砂压裂完成的煤层气井比较,主要有以下几点优越性:
(1)加速排液。压裂后返排速度快,产气速度快,氮气泡沫压裂井平均排液完成后开始产气,并可以在井口点火。
(2)氮气泡沫压裂液粘度高,有较好的携砂能力,可以有效控制裂缝形态的发育,降低压裂液在多裂缝发育的煤层中的滤失性。
(3)氮气泡沫压裂施工中,用液量少,对煤层污染较小。
(4)在地质情况基本相同的条件下,通过对周围井的产量对比分析发现,氮气泡沫压裂井的增产效果非常显著。
由上所示,产量与含气量变化图(见图 4、5)可见,PH1 井含气量在 12m3/t,PH1-006井约为16m3/t。通过排采分析发现,氮气泡沫压裂井的产量比周边水力压裂井增加在3倍以上(见图6、7)。
图4 PH1-006井周围井产量与含气量变化图
图5 PH1井周围井产量与含气量变化图
图例说明:★PH1006为氮气泡沫压裂井,其余为活性水加砂压裂井; —产气量(m3/d)
图6 PH1井与周边井的产量对比图
图7 PH1-006井与周边井的产量对比图
4 结论
本文提出的粘弹性表面活性剂溶于水后,可形成类似于聚合物的蠕虫状胶束结构。这种胶束在较低浓度时,不会明显增加水的粘度(<5mPa·s),但可吸附在气水界面,形成比单独表面活性剂要强得多的吸附层,增加泡沫的稳定性,使半衰期长达1~2h。
该泡沫压裂液的切速为170s-1时的表观粘度远大于50mPa·s,压裂液具有良好的悬砂能力。
这种粘弹性表面活性剂形成的泡沫压裂液主要靠增加吸附层的强度,而不是靠增加水的本体粘度来增加泡沫的稳定性,不存在需要破胶以及对储层损害问题,比第二代和第三代泡沫压裂液具有优越性。
通过在煤层气井中的现场应用,氮气泡沫压裂井的增产效果非常显著。通过排采分析发现,氮气泡沫压裂井的产量增加在常规水力压裂井产量的3倍以上。
在国家“十五”攻关项目资助下,开始进行了氮气泡沫压裂技术的研究,并在潘河示范项目中进行了工业试验,实践表明,该项技术具有巨大的推广应用前景。
参考文献
[1]Zebrowitz B stimulation are optimized in Alabama (4):61~72
[2]Blauer D fracturing shows success in gas/oil (31):57~60
[3]Watkins C B New crosslinked foamed fracturing
[4]贺承祖,华明琪.2003.压裂液对储层的损害及其抑制方法.钻井与完井液,20(1):49~53
[5]贺承祖,华明琪.1995.油气藏物理化学.成都:成都电子科技大学出版杜
[6]贺承祖,华明琪.1996.水锁效应研究.钻井与完井液,13(6):13~15
[7]Van Science and pab company
[8]Righmire C methane resource AAPG,32(17):1~13
[9]贺承祖,华明琪.2005.低渗砂岩气藏岩石的孔隙结构与物性特征.新疆石油地质.26(3)280~284
[10]Conway M G R fluid Leakoff and damage mechanism in coalbed methane reservoirs Rock Mountain Resional Meeting/low permeability Reservoirs symposium and Exhibition:245~260
[11]赵庆波等著.1999.煤层气地质与勘探技术.北京:石油工业出版杜
[12]肖进新,赵振国编著.2003.表面活性剂应用原理.北京:化学工业出版杜
[13]Adamson A chemistry of
[14]Magid L surfactant-polyelectrolyte (21):4064~4074
[15]Economides K education services USA
查到以下内容,如果需要的话请留邮箱。1 不污染环境的生物泡沫塑料 ,塑料科技, 2001 查看全文 2 氧化沟污泥膨胀和生物泡沫的控制及应用研究 ,戴兴春、谢冰、黄民生、张玉梅、田泽辉,环境科学与技术, 2007 查看全文 3 MSBR系统诺卡氏菌生物泡沫的防治对策 ,杜英豪、崔文亮、钟志蓉,中国给水排水, 2007 查看全文 4 鲁岗污水处理厂A2/O工艺生物泡沫发生与控制 ,赵福欣、张万泽、武旭辉,给水排水, 2006 查看全文 5 生物泡沫玻璃的制备及性能研究 ,余曼丽、穆松,武汉理工大学学报, 2006 查看全文 6 活性污泥污水处理厂生物泡沫产生机理及控制 ,谢冰、徐亚同,净水技术, 2006 查看全文 7 污水处理厂生物泡沫的影响与控制 ,雒满意,工业用水与废水, 2005 查看全文 8 活性污泥法的生物泡沫形成和控制 ,李探微、韦苏、吕阳泉、彭永臻、陈志根,中国给水排水, 2001 查看全文 9 巴西开发成功生物泡沫塑料 ,化学工业与工程技术, 2001 查看全文 10 生物泡沫塑料在巴西问世 ,聚氯乙烯, 2001 查看全文 11 曝气池中生物泡沫的产生和控制 ,黄旭勇、赵保全,甘肃科技, 1999 查看全文
摘要:投加水处理药剂是水处理中一种常用的方法。本文以絮凝剂,杀生剂为主,介绍了它们的发展现状,使用的局限性,分析了各种主要药剂的应用前景。1、前言水处理剂是工业用水、生活用水、废水处理过程中必需的化学药剂,通过使用这些化学药剂,可使水达到一定的质量要求。它的主要作用是控制水垢和污泥的形成、减少泡沫、减少与水接触的材料腐蚀、除去水中的悬浮固体和有毒物质、除臭脱色、软化水质等。目前由于世界各国用水量急剧增加,同时各种环保法规(水净化法)相继制定,而且要求日益严格,所以对于各类高效的水处理药剂增长很快。在我国,与日益严峻的水资源危机矛盾的是水处理药剂的生产能力很低,质量也得不到保证,所以加快我国水处理药剂这一环保材料产业的发展迫在眉睫。水处理药剂包括絮凝剂、缓蚀剂、阻垢剂、杀生剂、分散剂、清洗剂、预膜剂、消泡剂、脱色剂、螯合剂、除氧剂及离子交换树脂等。本文将对絮凝剂和杀生剂作系统地介绍。2、絮凝剂絮凝技术的关键是絮凝剂的选择。絮凝剂可分为无机、有机和微生物絮凝剂。、无机絮凝剂无机低分子絮凝剂有氯化铝、硫酸铝、硫酸铁、氯化铁等。其聚集速度慢,形成的絮状物小,腐蚀性强,在水处理过程中存在较大的问题,而逐渐被无机高分子絮凝剂所取代。无机高分子絮凝剂是在传统铝盐、铁盐的基础上发展起来的一种新型的水处理剂,价格较低廉,净水效果好。聚合氯化铝(PAC)的混凝性能好,生成的矾花大,投药量少,效率高,沉降快,适合水质范围较宽。主要用于饮用水和工业给水的净化。同时还能用于去除水中所含的铁、锰、铬、铅等重金属,以及氟化物和水中含油等,故可用于处理多种工业废水。聚合氯化铝铁(PAFC)是一种新型的无机高分子净水剂,产品中铝铁二者的配比是可调的,以适应不同水质的需求,已分别在石化、钢铁、煤炭工业等废水的净化处理中得到应用。结果表明,该药剂质优、价廉,是一种新型、高效、稳定的净水剂,具有广泛的应用前景。有人通过实验比较得出PAFC的净水效果稍好于PAC,但PAFC加药成本比PAC少得多。聚合硫酸铁具有良好的絮凝和吸附作用,广泛应用于原水,饮用水、自来水、工业用水、工业废水及生活污水的处理。聚合硫酸铝(PAS)是一种使用最广的混凝剂,主要用于饮用水和工业用水的净化处理。聚硅酸盐是在聚硅酸及传统的铝盐、铁盐基础上发展起来的。高度聚合的硅酸与金属离子一起可产生良好的混凝效果。通过把金属离子的电中和能力和聚硅酸的吸附架桥能力结合在一起,使复合产物具有较强的电中和与吸附架桥作用,达到更好的净水效果。它们的絮凝脱稳性能远超过聚硅酸和聚金属离子,同聚硅酸相比,不但提高了稳定性,且增加了电中和能力;同聚金属离子相比,则增强了粘结架桥性能。以聚合硅酸硫酸铝(PASS)、聚硅氯化铝(PASC)和硅铁复合无机高分子絮凝剂为代表的复合无机高分子絮凝剂,成功应用在给水、工业废水以及城市污水的各种流程中,现已成为主流絮凝剂。但是,无机高分子絮凝剂的相对分子质量和粒度以及絮凝架桥能力仍比有机絮凝剂差很多,且存在对进一步水解反应的不稳定性问题。有机高分子絮凝剂与无机絮凝剂相比,合成有机高分子絮凝剂用量少,絮凝速度快,受共存盐类、介质pH及环境温度影响小,生成污泥量也少;而且有机高分子絮凝剂分子可带—COO、—NH—、SO3、—OH等亲电基团,可具链状、环状等多种结构,利于污染物进入絮体,脱色性好。一般有机絮凝剂的色度去除较无机絮凝剂高20%左右.目前应用较为广泛的是聚丙烯酰胺类。它能适应多种絮凝对象,用量少,效率高,生成的泥渣少,后处理容易。常与其它无机絮凝剂复配,如与氯化铝的复配使用。但合成高分子絮凝剂其单体或水解、降解产物常常有毒,如聚丙烯酰胺(PAM)的单体,有神经毒性和致畸、致癌、致突变的“三致”效应。微生物絮凝剂微生物絮凝剂是利用生物技术,从微生物或其分泌物提取、纯化而获得的一种安全、高效、能自然降解的新型水处理剂,至今发现具有絮凝性的微生物已超过17种,包括霉菌、细菌、放线菌和酵母菌等。它分为:(1)直接利用微生物细胞的絮凝剂,如某些细菌、霉菌、放线菌和酵母,他们大量存在于土壤、活性污泥和沉积物中;(2)利用微生物细胞壁提取物的絮凝剂,如酵母细胞壁的葡聚糖、甘露聚糖、蛋白质和N-乙酰葡萄糖胺等成分;(3)利用微生物细胞代谢产物的絮凝剂,微生物细胞分泌到细胞外的代谢产物是细胞的荚膜和粘液质,除水外,其主要成分为多糖及少量多肽、蛋白质、脂类及其复合物。其中多糖在某种程度上可用做絮凝剂。迄今为止,发现的絮凝效果最好的微生物絮凝剂是红平诺卡氏菌NOC-1。可用于畜产废水处理,膨胀污泥的沉降及纸浆废水(黑液)颜料废水等有色废水的脱色,效果显著。虽然,对微生物絮凝剂的研究屡有报道,但大多处于实验室研究阶段,未走向工业应用。我国这方面的起步较晚,目前的研究仅限于菌种筛选。成都生物研究所分离筛选初步获得6株微生物絮凝剂产生菌,用其发酵离心上清液对造纸黑液,皮革废水,偶氮染料废水,硫化染料废水,电镀废水,彩印制板废水,石油化工废水,造币废水及蓝黑水,碳素墨水等进行的絮凝试验表明,废水固液分离效果良好,COD去除率55%—98%,悬浮物,色度、浊度去除率90%以上。上海大学环境科学系在污水处理厂的回流污泥及底泥中分离,筛选出3株絮凝剂产生菌.该菌株所产培养液可使土壤悬液浊度去除率达99%以上,使碱性染料废水COD去除率为70%左右,色度去除为92%左右。目前,絮凝剂正向价廉实用、无毒高效的方向发展。有机高分子絮凝剂将逐渐取代目前被广泛使用的无机絮凝剂,另一方面,微生物絮凝剂具有使用稳定性、安全性、高效性及低耗性。是当今最具发展前途的絮凝之一。所以,未来的发展不仅要开发新型廉价高效的微生物絮凝剂,还要研究微生物絮凝剂与其他絮凝剂的配合使用。已有试验表明,二者配合使用,可以互补, 不仅可以提高絮凝效率,而且还可降低投加量。3、杀生剂杀生剂是在循环冷却水系统中,用以杀死微生物(菌藻)以阻止其大量繁殖致使冷却水系统中的金属设备发生腐蚀及事故,影响正常运行的水处理药剂。根据杀生机制分为氧化性杀生剂和非氧化性杀生剂。氧化性杀生剂氯气是一种强氧化性杀生剂,其杀菌力强,价格低廉,使用较简单,是当今应用最广泛的杀生剂之一。但不适于碱性水处理。另外,它可能与水中有机物生成致癌物三卤甲烷,因而限制了它的应用。于是溴类、臭氧、二氧化氯相继为人们所重视。溴类杀生剂主要有溴化钠、溴化海因、活性溴、溴化丙酰胺等。溴化丙酰胺是近年来开发出的一类氧化性杀生剂,其中2,2-二溴-3-氮川丙酰胺是一种非常有效的广谱杀生剂。随着冷却水pH值和温度的升高,它的半衰期迅速变短,对环境污染小。臭氧具有十分优良的杀菌活性,剥离粘泥作用较强,同时还兼具缓蚀阻垢作用,用它处理循环冷却水,其浓缩倍数可达30~50。但由于成本较高,目前还未被广泛采用。二氧化氯对细胞壁有较强的吸引和穿透能力,它对冷却水中存在的主要危害菌种如异养菌、铁细菌、硫酸盐还原菌等都有很好的杀灭作用。它的特点是用量少、高效、快速、药效持续时间长。如2mg/L的二氧化氯作用30s后就能杀死近100%的微生物;在pH为,活菌数达71万个/ml的水中投加的二氧化氯作用12h后,对异养菌的杀菌率保持在99%以上。另外,它能不受pH的影响,不与水中氨、有机胺类及酚类反应;不仅能杀死微生物,而且能分解残留的细胞结构,具有杀孢子和杀病毒的作用;适用于碱性水处理,对环境没有威胁。在我国,以前由于它的不稳定性限制了其推广应用。近年来,一些厂家已先后批量生产稳定性二氧化氯,南京某公司还推出了化学法二氧化氯发生器,其设计独特,操作简便,安全可靠。用二氧化氯取代氯气作为工业循环冷却水的杀生剂具有很多的优越性,特别是对于合成氨厂,化工厂和炼油厂的冷却水系统,由于系统中有机物和氨的含量高,需氯量大,pH值偏碱性,用二氧化氯取代氯气可以取得更好的经济、环境效益。非氧化性杀生剂非氧化性杀生剂种类较多,应用较早的氯酚类因毒性大,易污染水体,渐渐被弃之不用。有机胺类使用也极少。二硫氰基甲烷是使用较早的有机硫化物杀生剂。对于抑制藻类、真菌和细菌,尤其是硫酸盐还原菌十分有效。但不适宜在碱性冷却水系统中使用。异噻唑啉酮是一类较新的有机硫化物杀生剂。该类杀生剂是通过断开细菌和藻类蛋白质的键而起杀生作用的,浓度为时,即能有效地抑制冷却水系统中的藻类、真菌和细菌,具有广谱高效、作用时间长(的加入量,使用5周后仍有效)、低毒、pH使用范围广、配伍性混溶性好、不起泡沫,并能阻止粘泥生成等优点。国外已广泛应用于冷却水处理中。季铵盐杀生剂因其成本低,毒性小,且兼具缓蚀性。故得到广泛的应用,但使用中还存在易产生抗药性、费用增加,起泡,加重腐蚀等问题。鉴于此,新合成的十六烷基辛基二甲基溴化铵(168)和十六烷基癸基二甲基溴化铵(1610)两种双烷基季铵盐,改变了季铵盐的表面活性和分子稳定性,它产生的泡沫少,杀生活性也得以提高。戊二醛具有高效广谱的杀菌灭藻作用,对生物粘泥也有一定的剥离作用。美国联合碳化物公司生产了系列戊二醛水处理杀生剂A515、A525、A530等,试验证明,A515对异养菌等具有明显的杀生作用,且药效持续时间长,72h后杀菌率仍有90%以上;它适用于碱性水处理,与磷系药剂具有良好的配伍性。武汉某公司近年推出戊二醛系列用于循环冷却水系统,效果明显。在对冷却水的推荐使用浓度下,戊二醛几乎没有毒性,它的水溶液本身会发生生物降解。随着社会环保意识的加强,戊二醛类杀生剂将大有发展前途。开发新型杀生剂,要考虑价格、毒性,使用安全性,贮存稳定性、微生物耐药性等因素外,还应考虑杀生剂的复配间的协同效应,复配在一起,既能增强杀生能力,又能降低加药量。4、水处理药剂的发展方向专用水处理药剂的开发为了满足不同废水系统(如造纸废水、印染废水、食品加工废水等)的需要,专用性强,针对某一类化学物质的品种的研制与开发势在必行。多功能水处理药剂的开发多功能水处理剂是水处理药剂研究的一个重要方面,这类新型水处理技术的出现,将开拓水处理剂的生产和应用范围,对化学法处理工业水的发展有重大的促进作用。这方面的研究主要有:缓蚀-阻垢剂、絮凝-缓蚀剂、絮凝-杀菌剂、絮凝-杀菌-缓蚀剂、絮凝-缓蚀-阻垢剂等。绿色水处理药剂的发展水处理药剂绿色化发展中,无毒、无害、易生物降解都是方向。最典型的绿色水处理药剂是近年来国内外开发的分散阻垢剂聚天冬氨酸(PASP)。PASP是合成的一种生物高分子。有良好的生物相溶性和可生物降解性。毒理学的研究揭示出聚天冬氨酸(PASP)无毒、无敏感或无突变的效果。高性价比的水处理药剂的开发目前高性能的药剂价格普遍偏高,可通过寻找价廉易得的原料研制出高性能产品,也可通过加强对复配技术的研究,即添加廉价辅助剂,减少药剂的实际用量,同时保持净水效能而达降低成本的目的。
关键词:超高分子 量聚乙烯 工程塑料1 引言UHMWPE是一种线型结构的具有优异综合性能的热塑性工程塑料。世界上最早由美国Allied Chemical公司于1957年实现工业化,此后德国Hoechst公司、美国Hercules公司、日本三井石油化学公司等也投入工业化生产。我国上海高桥化工厂于1964年最早研制成功并投入工业生产,70年代后期又有广州塑料厂和北京助剂二厂投入生产。限于当时条件,产物分子量约150万左右,随着工艺技术的进步,目前北京助剂二厂的产品分子量可达100万~300万以上。UHMWPE的发展十分迅速,80年代以前,世界平均年增长率为,进入80年代以后,增长率高达15%~20%。而我国的平均年增长率在30%以上。1978年世界消耗量为12,000~12,500吨,而到1990年世界需求量约5万吨,其中美国占70%。UHMWPE平均分子量约35万~800万,因分子量高而具有其它塑料无可比拟的优异的耐冲击、耐磨损、自润滑性、耐化学腐蚀等性能。而且,UHMWPE耐低温性能优异,在-40℃时仍具有较高的冲击强度,甚至可在-269℃下使用。UHMWPE优异的物理机械性能使它广泛应用于机械、运输、纺织、造纸、矿业、农业、化工及体育运动器械等领域,其中以大型包装容器和管道的应用最为广泛。另外,由于UHMWPE优异的生理惰性,已作为心脏瓣膜、矫形外科零件、人工关节等在临床医学上使用。2 UHMWPE的成型加工由于UHMWPE熔融状态的粘度高达108Pa*s,流动性极差,其熔体指数几乎为零,所以很难用一般的机械加工方法进行加工。近年来,UHMWPE的加工技术得到了迅速发展,通过对普通加工设备的改造,已使UHMWPE由最初的压制-烧结成型发展为挤出、吹塑和注射成型以及其它特殊方法的成型。 一般加工技术(1)压制烧结压制烧结是UHMWPE最原始的加工方法。此法生产效率颇低,易发生氧化和降解。为了提高生产效率,可采用直接电加热法〔1〕;另外,Werner和Pfleiderer公司开发了一种超高速熔结加工法〔2〕,采用叶片式混合机,叶片旋转的最大速度可达150m/s,使物料仅在几秒内就可升至加工温度。(2)挤出成型挤出成型设备主要有柱塞挤出机、单螺杆挤出机和双螺杆挤出机。双螺杆挤出多采用同向旋转双螺杆挤出机。60年代大都采用柱塞式挤出机,70年代中期,日、美、西德等先后开发了单螺杆挤出工艺。日本三井石油化学公司最早于1974年取得了圆棒挤出技术的成功。北京化工大学于1994年底研制出Φ45型UHMWPE专用单螺杆挤出机,并于1997年取得了Φ65型单螺杆挤出管材工业化生产线的成功。(3)注塑成型日本三井石油化工公司于1974年开发了注塑成型工艺,并于1976年实现了商业化,之后又开发了往复式螺杆注塑成型技术。1985年美国Hoechst公司也实现了UHMWPE的螺杆注塑成型工艺。北京塑料研究所1983年对国产XS-ZY-125A型注射机进行了改造,成功地注射出啤酒罐装生产线用UHMWPE托轮、水泵用轴套,1985年又成功地注射出医用人工关节等。(4)吹塑成型UHMWPE加工时,当物料从口模挤出后,因弹性恢复而产生一定的回缩,并且几乎不发生下垂现象,故为中空容器,特别是大型容器,如油箱、大桶的吹塑创造了有利的条件。UHMWPE吹塑成型还可导致纵横方向强度均衡的高性能薄膜,从而解决了HDPE薄膜长期以来存在的纵横方向强度不一致,容易造成纵向破坏的问题。 特殊加工技术 冻胶纺丝以冻胶纺丝—超拉伸技术制备高强度、高模量聚乙烯纤维是70年代末出现的一种新颖纺丝方法。荷兰DSM公司最早于1979年申请专利,随后美国Allied公司、日本与荷兰联合建立的Toyobo-DSM公司、日本Mitsui公司都实现了工业化生产。中国纺织大学化纤所从1985年开始该项目的研究,逐步形成了自己的技术,制得了高性能的UHMWPE纤维〔3〕。UHMWPE冻胶纺丝过程简述如下:溶解UHMWPE于适当的溶剂中,制成半稀溶液,经喷丝孔挤出,然后以空气或水骤冷纺丝溶液,将其凝固成冻胶原丝。在冻胶原丝中,几乎所有的溶剂被包含其中,因此UHMWPE大分子链的解缠状态被很好地保持下来,而且溶液温度的下降,导致冻胶体中UHMWPE折叠链片晶的形成。这样,通过超倍热拉伸冻胶原丝可使大分子链充分取向和高度结晶,进而使呈折叠链的大分子转变为伸直链,从而制得高强度、高模量纤维。UHMWPE纤维是当今世界上第三代特种纤维,强度高达,比强度是化纤中最高的,又具有较好的耐磨、耐冲击、耐腐蚀、耐光等优良性能。它可直接制成绳索、缆绳、渔网和各种织物:防弹背心和衣服、防切割手套等,其中防弹衣的防弹效果优于芳纶。国际上已将UHMWPE纤维织成不同纤度的绳索,取代了传统的钢缆绳和合成纤维绳等。UHMWPE纤维的复合材料在军事上已用作装甲兵器的壳体、雷达的防护外壳罩、头盔等;体育用品上已制成弓弦、雪橇和滑水板等。 润滑挤出(注射)润滑挤出(注射)成型技术是在挤出(注射)物料与模壁之间形成一层润滑层,从而降低物料各点间的剪切速率差异,减小产品的变形,同时能够实现在低温、低能耗条件下提高高粘度聚合物的挤出(注射)速度。产生润滑层的方法主要有两种:自润滑和共润滑。(1)自润滑挤出(注射)UHMWPE的自润滑挤出(注射)是在其中添加适量的外部润滑剂,以降低聚合物分子与金属模壁间的摩擦与剪切,提高物料流动的均匀性及脱模效果和挤出质量。外部润滑剂主要有高级脂肪酸、复合脂、有机硅树脂、石腊及其它低分子量树脂等。挤出(注射)加工前,首先将润滑剂同其它加工助剂一起混入物料中,生产时,物料中的润滑剂渗出,形成润滑层,实现自润滑挤出(注射)。有专利报道〔4〕:将70份石蜡油、30份UHMWPE和1份氧相二氧化硅(高度分散的硅胶)混合造粒,在190℃的温度下就可实现顺利挤出(注射)。(2)共润滑挤出(注射)UHMWPE的共润滑挤出(注射)有两种情况,一是采用缝隙法〔5、6〕将润滑剂压入到模具中,使其在模腔内表面和熔融物料间形成润滑层;二是与低粘度树脂共混,使其作为产物的一部分(详见)。如:生产UHMWPE薄板时,由定量泵向模腔内输送SH200有机硅油作润滑剂,所得产品外观质量有明显提高,特别是由于挤出变形小,增加了拉伸强度。 辊压成型〔1〕辊压成型是一种固态加工方法,即在UHMWPE的熔点以下对其施加一很大的压力,通过粒子形变,有效地将粒子与粒子融合。主要设备是一带有螺槽的旋转轮和一带有舌槽的弓形滑块,舌槽与螺槽垂直。在加工过程中有效地利用了物料与器壁之间的摩擦力,产生的压力足够使UHMWPE粒子发生形变。在机座末端装有加热支台,经过模口挤出物料。如将此项辊压装置与挤压机联用,可使加工过程连续化。 热处理后压制成型〔8〕把UHMWPE树脂粉末在140℃~275℃之间进行1min~30min的短期加热,发现UHMWPE的某些物理性能出人意料地大大改善。用热处理过的UHMWPE粉料压制出的制品和未热处理过的UHMPWE制品相比较,前者具有更好的物理性能和透明性,制品表面的光滑程度和低温机械性能大大提高了。 射频加工〔9〕采用射频加工UHMWPE是一种崭新的加工方法,它是将UHMWPE粉末和介电损耗高的炭黑粉末均匀混合在一起,用射频辐照,产生的热可使UHMWPE粉末表面发生软化,从而使其能在一定压力下固结。用这种方法可在数分钟内模压出很厚的大型部件,其加工效率比目前UHMWPE常规模压加工高许多倍。 凝胶挤出法制备多孔膜〔10〕将UHMWPE溶解在挥发溶剂中,连续挤出,然后经一个热可逆凝胶/结晶过程,使其成为一种湿润的凝胶膜,蒸除溶剂使膜干燥。由于已形成的骨架结构限制了凝胶的收缩,在干燥过程中产生微孔,经双轴拉伸达到最大空隙率而不破坏完整的多孔结构。这种材料可用作防水、通氧织物和耐化学品服装,也可用作超滤/微量过滤膜、复合薄膜和蓄电池隔板等。与其它方法相比,由此法制备的多孔UHMWPE膜具有最佳的孔径、强度和厚度等综合性能。3 UHMWPE的改性 物理机械性能的改进与其它工程塑料相比,UHMWPE具有表面硬度和热变形温度低、弯曲强度以及蠕变性能较差等缺点。这是由于UHMWPE的分子结构和分子聚集形态造成的,可通过填充和交联的方法加以改善。 填充改性采用玻璃微珠、玻璃纤维、云母、滑石粉、二氧化硅、三氧化二铝、二硫化钼、炭黑等对UHMWPE进行填充改性,可使表面硬度、刚度、蠕变性、弯曲强度、热变形温度得以较好地改善。用偶联剂处理后,效果更加明显。如填充处理后的玻璃微珠,可使热变形温度提高30℃。玻璃微珠、玻璃纤维、云母、滑石粉等可提高硬度、刚度和耐温性;二硫化钼、硅油和专用蜡可降低摩擦因数,从而进一步提高自润滑性;炭黑或金属粉可提高抗静电性和导电性以及传热性等。但是,填料改性后冲击强度略有下降,若将含量控制在40%以内,UHMWPE仍有相当高的冲击强度。 交联交联是为了改善形态稳定性、耐蠕变性及环境应力开裂性。通过交联,UHMWPE的结晶度下降,被掩盖的韧性复又表现出来。交联可分为化学交联和辐射交联。化学交联是在UHMWPE中加入适当的交联剂后,在熔融过程中发生交联。辐射交联是采用电子射线或γ射线直接对UHMWPE制品进行照射使分子发生交联。UHMWPE的化学交联又分为过氧化物交联和偶联剂交联。(1)过氧化物交联过氧化物交联工艺分为混炼、成型和交联三步。混炼时将UHMWPE与过氧化物熔融共混,UHMWPE在过氧化物作用下产生自由基,自由基偶合而产生交联。这一步要保证温度不要太高,以免树脂完全交联。经过混炼后得到交联度很低的可继续交联型UHMWPE,在比混炼更高的温度下成型为制件,再进行交联处理。UHMWPE经过氧化物交联后在结构上与热塑性塑料、热固性塑料和硫化橡胶都不同,它有体型结构却不是完全交联,因此在性能上兼有三者的特点,即同时具有热可塑性和优良的硬度、韧性以及耐应力开裂等性能。国外曾报道用2,5-二甲基-2,5双过氧化叔丁基己炔-3作交联剂〔11〕,但国内很难找到。清华大学用廉价易得的过氧化二异丙苯(DCP)作为交联剂进行了研究〔12〕,结果发现:DCP用量小于1%时,可使冲击强度比纯UHMWPE提高15%~20%,特别是DCP用量为时,冲击强度可提高48%。随DCP用量的增加,热变形温度提高,可用于水暖系统的耐热管道。(2)偶联剂交联UHMWPE主要使用两种硅烷偶联剂:乙烯基硅氧烷和烯丙基硅氧烷,常用的有乙烯基三甲氧基硅烷和乙烯基三乙氧基硅烷。偶联剂一般要靠过氧化物引发,常用的是DCP,催化剂一般采用有机锡衍生物。硅烷交联UHMWPE的成型过程首先是使过氧化物受热分解为化学活性很高的游离基,这些游离基夺取聚合物分子中的氢原子使聚合物主链变为活性游离基,然后与硅烷产生接枝反应,接枝后的UHMWPE在水及硅醇缩合催化剂的作用下发生水解缩合,形成交联键即得硅烷交联UHMWPE。(3)辐射交联在一定剂量电子射线或γ射线作用下,UHMWPE分子结构中的一部分主链或侧链可能被射线切断,产生一定数量的游离基,这些游离基彼此结合形成交联链,使UHMWPE的线型分子结构转变为网状大分子结构。经一定剂量辐照后,UHMWPE的蠕变性、浸油性和硬度等物理性能得到一定程度的改善。用γ射线对人造UHMWPE关节进行辐射,在消毒的同时使其发生交联,可增强人造关节的硬度和亲水性,并且使耐蠕变性得以提高〔13〕,从而延长其使用寿命。有研究〔14〕表明,将辐照与PTFE接枝相结合,也可改善UHMWPE的磨损和蠕变行为。这种材料具有组织容忍性,适于体内移植。 加工性能的改进UHMWPE树脂的分子链较长,易受剪切力作用发生断裂,或受热发生降解。因此,较低的加工温度,较短的加工时间和降低对它的剪切是非常必要的。为了解决UHMWPE的加工问题,除对普通成型机械进行特殊设计外,还可对树脂配方进行改进:与其它树脂共混或加入流动改性剂,使之能在普通挤出机和注塑机上成型加工,这就是中介绍的润滑挤出(注射)。 共混改性共混法改善UHMWPE的熔体流动性是最有效、最简便和最实用的途径。目前,这方面的技术多见于专利文献。共混所用的第二组份主要是指低熔点、低粘度树脂,有LDPE、HDPE、PP、聚酯等,其中使用较多的是中分子量PE(分子量40万~60万)和低分子量PE(分子量<40万)。当共混体系被加热到熔点以上时,UHMWPE树脂就会悬浮在第二组份树脂的液相中,形成可挤出、可注射的悬浮体物料。(1)与低、中分子量PE共混UHMWPE与分子量低的LDPE(分子量1,000~20,000,以5,000~12,000为最佳)共混可使其成型加工性获得显著改善,但同时会使拉伸强度、挠曲弹性等力学性能有所下降。HDPE也能显著改善UHMWPE的加工流动性,但也会引起冲击强度、耐摩擦等性能的下降。为使UHMWPE共混体系的力学性能维持在一较高水平,一个有效的补偿办法是加入PE成核剂,如苯甲酸、苯甲酸盐、硬脂酸盐、己二酸盐等,可以借PE结晶度的提高,球晶尺寸的微细均化而起到强化作用,从而有效阻止机械性能的下降。有专利〔15〕指出,在UHMWPE/HDPE共混体系中加入很少量的细小的成核剂硅灰石(其粒径尺寸范围5nm~50nm,表面积100m2/g~400m2/g),可很好地补偿机械性能的降低。(2)共混形态UHMWPE的化学结构虽然与其它品种的PE相近,但在一般的熔混设备和条件下,它们的共混物都难以形成均匀的形态,这可能与组份之间粘度相差悬殊有关。采用普通单螺杆混炼得到的UHMWPE/LDPE共混物,两组份各自结晶,不能形成共晶,UHMWPE基本上以填料形式分散于LDPE基体中。熔体长时间处理和使用双辊炼塑机混炼,两组份之间作用有所加强,性能亦有进一步的改善,不过仍不能形成共晶的形态。Vadhar发现〔16〕,当采用两步共混法,即先在高温下将UHMWPE熔融,再降到较低温度下加入LLDPE进行共混,可获得形成共晶的共混物。Vadher用溶液共混法也得到了能形成共晶的UHMWPE/LLDPE共混物。(3)共混物的力学强度对于未加成核剂的UHMWPE/PE体系,其在冷却过程中会形成较大的球晶,球晶之间存在着明显的界面,而在这些界面上存在着由分子链排布不同引起的内应力,由此会导致裂纹的产生,所以与基体聚合物相比,共混物的拉伸强度常常有所下降。当受到外力冲击时裂纹会很快地沿球晶界面发展而导致最后的破碎,因此又引起冲击强度的下降。 流动改进剂改性流动改进剂促进了长链分子的解缠,并在大分子之间起润滑作用,改变了大分子链间的能量传递,从而使得链段位移变得容易,改善了聚合物的流动性。用于UHMWPE的流动改进剂主要是指脂肪族碳氢化合物及其衍生物。其中脂肪族碳氢化合物有:碳原子数在22以上的n-链烷烃及以其作主成分的低级烷烃混合物;石油分裂精制得到的石蜡等。其衍生物是指末端含有脂肪族烃基、内部含有1个或1个以上(最好为1个或2个)羧基、羟基、酯基、羰基、氮基甲酰基、巯基等官能团;碳原子数大于8(最好为12~50)并且分子量为130~2000(以200~800为最佳)的脂肪酸、脂肪醇、脂肪酸酯、脂肪醛、脂肪酮、脂肪族酰胺、脂肪硫醇等。举例来说,脂肪酸有:癸酸、月桂酸、肉豆蔻酸、棕榈酸、硬酯酸、油酸等。北京化工大学制备了一种有效的流动剂(MS2)〔17〕,添加少量(~)就能显著改善UHMWPE的流动性,使其熔点下降达10℃之多,能在普通注塑机上注塑成型,而且拉伸强度仅有少许降低。另外,用苯乙烯及其衍生物改性UHMWPE,除可改善加工性能使制品易于挤出外,还可保持UHMWPE优良的耐摩擦性和耐化学腐蚀性〔18〕;1,1-二苯基乙炔〔19〕、苯乙烯衍生物〔20〕、四氢化萘〔21〕皆可使UHMWPE获得优良的加工性能,同时使材料具有较高的冲击强度和耐磨损性。 液晶高分子原位复合材料液晶高分子原位复合材料是指热致液晶高分子(TLCP)与热塑性树脂的共混物,这种共混物在熔融加工过程中,由于TLCP分子结构的刚直性,在力场作用下可自发地沿流动方向取向,产生明显的剪切变稀行为,并在基体树脂中原位就地形成具有取向结构的增强相,即就地成纤,从而起到增强热塑性树脂和改善加工流动性的作用。清华大学赵安赤等采用原位复合技术,对UHMWPE加工性能的改进取得了明显的效果〔22〕。用TLCP对UHMWPE进行改性,不仅提高了加工时的流动性,采用通常的热塑加工工艺及通用设备就能方便地进行加工,而且可保持较高的拉伸强度和冲击强度,耐磨性也有较大提高。 聚合填充型复合材料高分子合成中的聚合填充工艺是一种新型的聚合方法,它是把填料进行处理,使其粒子表面形成活性中心,在聚合过程中让乙烯、丙烯等烯烃类单体在填料粒子表面聚合,形成紧密包裹粒子的树脂,最后得到具有独特性能的复合材料。它除具有掺混型复合材料性能外,还有自己本身的特性:首先是不必熔融聚乙烯树脂,可保持填料的形状,制备粉状或纤维状的复合材料;其次,该复合材料不受填料/树脂组成比的限制,一般可任意设定填料的含量;另外,所得复合材料是均匀的组合物,不受填料比重、形状的限制。与热熔融共混材料相比,由聚合填充工艺制备的UHMWPE复合材料中,填料粒子分散良好,且粒子与聚合物基体的界面结合也较好。这就使得复合材料的拉伸强度、冲击强度与UHMWPE相差不大,却远远好于共混型材料,尤其是在高填充情况下,对比更加明显,复合材料的硬度、弯曲强度,尤其是弯曲模量比纯UHMWPE提高许多,尤其适用作轴承、轴座等受力零部件。而且复合材料的热力学性能也有较好的改善:维卡软化点提高近30℃,热变形温度提高近20℃,线膨胀系数下降20%以上。因此,此材料可用于温度较高的场合,并适于制造轴承、轴套、齿轮等精密度要求高的机械零件。采用聚合填充技术还可通过向聚合体系中通入氢或其它链转移剂,控制UHMWPE分子量大小,使得树脂易加工〔23〕。美国专利〔24〕用具有酸中性表面的填料:水化氧化铝、二氧化硅、水不溶性硅酸盐、碳酸钙、碱式碳酸铝钠、羟基硅灰石和磷酸钙制成了高模量的均相聚合填充UHMWPE复合材料。另有专利〔25〕指出,在60℃,且有催化剂存在的条件下,使UHMWPE在庚烷中干燥的 氧化铝表面聚合,可得到高模量的均相复合材料。齐鲁石化公司研究院分别用硅藻土、高岭土作为填料合成了UHMWPE复合材料〔26〕。 UHMWPE的自增强〔27、28〕在UHMWPE基体中加入UHMWPE纤维,由于基体和纤维具有相同的化学特征,因此化学相容性好,两组份的界面结合力强,从而可获得机械性能优良的复合材料。UHMWPE纤维的加入可使UHMWPE的拉伸强度和模量、冲击强度、耐蠕变性大大提高。与纯 UHMWPE相比,在UHMWPE中加入体积含量为60%的UHMWPE纤维,可使最大应力和模量分别提高160%和60%。这种自增强的UHMWPE材料尤其适用于生物医学上承重的场合,而用于人造关节的整体替换是近年来才倍受关注的,UHMWPE自增强材料的低体积磨损率可提高人造关节的使用寿命。4 UHMWPE的合金化UHMWPE除可与塑料形成合金来改善其加工性能外(见和),还可获得其它性能。其中,以PP/UHMWPE合金最为突出。通常聚合物的增韧是在树脂中引入柔性链段形成复合物(如橡塑共混物),其增韧机理为“多重银纹化机理”。而在PP/UHMWPE体系,UHMWPE对PP有明显的增韧作用,这是“多重裂纹”理论所无法解释的。国内最早于1993年报道采用UHMWPE增韧PP取得成功,当UHMWPE的含量为15%时,共混物的缺口冲击强度比纯PP提高2倍以上〔29〕。最近又有报道,UHMWPE与含乙烯链段的共聚型PP共混,在UHMWPE的含量为25%时,其冲击强度比PP提高一倍多〔30〕。以上现象的解释是“网络增韧机理”〔31〕。PP/UHMWPE共混体系的亚微观相态为双连续相,UHMWPE分子与长链的PP分子共同构成一种共混网络,其余PP构成一个PP网络,二者交织成为一种“线性互穿网络”。其中共混网络在材料中起到骨架作用,为材料提供机械强度,受到外力冲击时,它会发生较大形变以吸收外界能量,起到增韧的作用;形成的网络越完整,密度越大,则增韧效果越好。为了保证“线性互穿网络”结构的形成,必须使UHMWPE以准分子水平分散在PP基体中,这就对共混方式提出了较高的要求。北京化工大学有研究发现:四螺杆挤出机能将UHMWPE均匀地分散在PP基体中,而双螺杆挤出机的共混效果却不佳。EPDM能对PP/UHMWPE合金起到增容的作用。由于EPDM具备的两种主要链节分别与PP和UHMWPE相同,因而与两种材料都有比较好的亲合力,共混时容易分散在两相界面上。EPDM对复合共晶起到插入、分割和细化的作用,这对提高材料的韧性是有益的,能大幅度地提高缺口冲击强度。另外,UHMWPE也可与橡胶形成合金,获得比纯橡胶优良的机械性能,如耐摩擦性、拉伸强度和断裂伸长率等。其中,橡胶是在混合过程中于UHMWPE的软化点以上进行硫化的。5 UHMWPE的复合化UHMWPE可与各种橡胶(或橡塑合金)硫化复合制成改性PE片材,这些片材可进一步与金属板材制成复合材料。除此之外,UHMWPE还可复合在塑料表面以提高耐冲击性能。在UHMWPE软化点以上的温度条件下,将含有硫化剂的未硫化橡胶片材与UHMWPE片材压制在一起,可制得剥离强度较高的层合制品,与不含硫化剂的情况相比,其剥离强度可提高数十倍。用这种方法同样可使未硫化橡胶与塑料的合金(如EPDM/PA6、EPDM/PP、SBR/PE)和UHMWPE片材牢固地粘接在一起。参考文献:〔1〕 钟玉荣,卢鑫华.塑料〔J〕,1991,20(1):30〔2〕 孙大文.塑料加工应用〔J〕,1983(5):1〔3〕 杨年慈.合成纤维工业〔J〕,1991,14(2):48〔4〕 JP 63,161,075〔P〕〔5〕 .〔J〕,1981,27(1):8
硅油通常指的是在室温下保持液体状态的线型聚硅氧烷产品。一般分为甲基硅油和改性硅油两类。最常用的硅油一甲基硅油,也称为普通硅油,其有机基团全部为甲基,甲基硅油具有良好的化学稳定性、绝缘性,疏水性能好。它是由二甲基二氯硅烷加水水解制得初缩聚环体,环体经裂解、精馏制得低环体,然后把环体、封头剂、催化剂放在一起调聚就可得到各种不同聚合度的混合物,经减压蒸馏除去低沸物就可制得硅油。以某些有机基团代替甲基硅油里的部分甲基基团,以改进硅油的某种性能和适应各种不同的用途。近年来,有机改性硅油得到迅速发展,出现了许多具有特种性能的有机改性硅油,比如:烷基改性硅油、聚醚改性硅油、环氧改性硅油、氨基改性硅油等。
其他改性硅油,改性硅油外,还有很多其他种类的硅油,如聚二有机硅氧烷一聚醚嵌段共聚改性硅油、烷基与聚醚共改性硅油、烷基醚聚醚硅油、环氧基聚醚硅油、an基聚醚嵌段硅油、_甘油醚基硅油、磷酸酷基硅油、糖基聚醚硅油、甜菜碱基硅油等。这些硅油具有不同的官能团,因此具有特别的性能,但是由于需求较少,市场占有量少。硅油的分类具体分为:氨基硅油、环氧改性硅油、羧基改性硅油、醇基改性硅油、酚基改性硅油、巯基改性硅油、丙烯酰氧基及甲基丙烯酰氧基改性硅油、甲基长链烷基硅油、甲基三氟丙基硅油、聚醚改性硅油.
关键是看用于哪个方面的改性硅油,现在改性硅油应用非常广泛,如果是用在纤维处理整理等方面可以去找下汉科精化。
最常用的硅油,有机基团全部为甲基,就是咱们平常说的甲基硅油。有机基团也可以采用其它有机基团替代部分甲基基团,来改进硅油的某种性能和适用各种不同的用途。常见的其它基团有氢、乙基、苯基、氯苯基、三氟丙基等。近年来,有机改性硅油得到迅速发展,出现了许多具有特种硅油按化学结构来分有甲基硅油、乙基硅油、苯基硅油、甲基含氢硅油、甲基苯基硅油、甲基氯苯基硅油、甲基乙氧基硅油、甲基三氟丙基硅油、甲基乙烯基硅油、甲基羟基硅油、乙基含氢硅油、羟基含氢硅油、含氰硅油等;从用途来分,则有阻尼硅油、扩散泵硅油、液压油、绝缘油、热传递油、刹车油等。
化学结构可分为有甲基硅油、乙基硅油、苯基硅油、甲基含氢硅油、甲基苯基硅油、甲基氯苯基硅油、甲基乙氧基硅油、甲基三氟丙基硅油、甲 基乙烯基硅油、甲基羟基硅油、乙基含氢硅油、羟基含氢硅油、含氰硅油等;从用途来分,则有阻尼硅油、扩散泵硅油、液压油、绝缘油、热传递油、刹车油等。
氨基改性硅油是侧链或端基中含有氨基的聚二甲基硅氧烷,又被称为氨基硅油。此类硅油是专门用于纺织品柔软整理剂的基本成份。由于其具有很好的吸附性、相容性,当氨基硅油被适当的表面活性剂乳化成微乳液,用于织物整理可以增加纤维材料的柔软性,因而被作为织物柔软整理剂使用,适用于各种纺织品的后整理,氨基硅油还可以用于化妆品添加剂、涂料添加剂、树脂改性剂及光亮剂等领域。2氧基改性硅油聚二甲基硅氧烷的侧链或端基中含有环氧基的一类硅油被称为环氧基改性硅油。使用此类改性硅油可以提高织物的弹性,如果将此类硅油与聚醚改性硅油配合使用,后整理的织物柔软性更好,还具有抗皱、耐洗等特性,与氨基改性硅油调配使用,可使织物具有较好的手感。聚醚改性硅油
侧链或端基中含有聚醚基团(聚氧乙烯基、聚氧丙烯基、脂肪醇聚氧乙烯聚氧丙烯醚基)的聚二甲基硅氧烷被称为聚醚改性硅油,其可以改善织物后整理的吸湿性能。由于聚醚基团具有亲水性,所以聚醚硅油的亲水性增加,分子中同时具有疏水基团和亲水基团,以至于此类硅油表现出较好的水溶性,使用过程中不会出现破乳、漂油等问题。其次,聚醚基的引入还使被整理纤维或织物的吸湿性、抗静电性、易去污性增加,所以聚醚硅油在衣物柔软剂、化妆品、洗发用品中使用较多。聚醚硅油的另一主要用途,是作为表面活性剂用于聚氨酷泡沫的稳定剂,也称作匀泡剂,调整聚氨醋泡沫塑料的气泡降。聚醚硅油是氨基硅油柔软剂开发之前用量最大、效果最好的一类活性有机硅柔软剂。
浅谈土石坝防渗变形的处理措施论文
土石坝在我国水利工程施工中由来已久,它的主要材料是由本地的土料、石材以及土石混合材料构成,经过有序的碾压、回填等方式筑成的挡水大坝。由于使用的材料不同,土石坝可以分为以下几种:石坝、土坝以及土石混合材料铸成的混合型大坝。随着我国经济的发展,水利工程的发展也有了较大的进步,由于受到各方面环境条件的限制,在一些情况下,因为土石坝的渗漏问题,如果不及时处理,有可能会对人们生命财产安全造成严重危害,所以,必须采取有力措施,防止土石坝渗漏。
1土石坝渗透变形的含义及危害
土石坝由于长期在水中受到浸泡和冲刷,周围土体在渗透作用下发生浮动变形,当土体的质量小于浮容重时,土石坝的土石就会逐渐被带走,从而使土石坝发生变形。刚开始的大坝渗透能力不会造成土石流失,但是,如果不及时治理,日积月累,成年累月的冲刷,就会发生较大的土石坝滑坡或重大事故。
要根据土石坝出现渗透变形各个部分的实际情况进行分析,如果大坝下游坝坡的边缘,发生的危害就大,如果在大坝的坝基里面发生涵洞,就会出现建筑物下陷,有时候还会出现塌陷等严重后果。
2土石坝渗透变形的成因
土石坝渗透变形有以下几种形式:泥土受到冲刷后发生流失、管涌以及接触性流土。因为泥土的颗粒的大小不同以及渗透程度的不同使土石坝发生渗流变形,主要是因为:(1)坝基的不透水层没有和土石坝下面的截水槽相连,对于不稳定的地基没有很好的.处理,都会使坝基出现渗流,如果任其发展,就会使坝基变形或出现空洞甚至溃坝。(2)因为选用的土石材料在力学方面没有认真思考,在建成土石坝工程时进行储存水源时,对浸润线的设置不合理,以至于土石坝的渗漏流出的水流从下游的坝坡斜面流出,使下游坝坡极不稳定。(3)在进行输出水的涵洞和施行工程施工中,使用的浆液不均匀、混凝土比例配合没有按照一定的标准,周围的黏土夯实不严密,有时候在回填时不结实,也会使土石坝出现涵洞,从而引起渗透变形发生。(4)土石坝渗流的出现一般在大坝的坝心墙和斜面墙等处非常容易出现裂缝或者发生管涌,以至于引发坝体渗漏变形,破坏非常严重的有可能会出现坝体坍塌或者崩坝。(5)对水文地质条件和工程及其基础防渗处理不重视,误以为土石坝不需要高标准的基础,造成基础漏水,导致土石坝变形。
3土石坝渗透变形的形式
我国的许多地区,特别是南方,使土石坝渗漏并发生变形的原因主要有机械作用及化学作用,由于土石的这些作用,使坝体的某些部分发生破坏。依据土石坝的土质的不同以及涂料的质量的差别、防止渗漏和排除渗流的方法不同、水流的基本条件的不同,土石坝渗流存在以下四种情况:
流土
由于土石坝渗流时泥土颗粒因为渗流逐渐加大,出现被带走,并且坝体表层出现隆起或者冲出现象,这种渗流经常在土粒粗细比较均匀的黏性土壤和黏性不大的土体中出现。因渗流而发生土体断裂、凸起和掉落。
管涌
管涌经常出现在土石坝下方的地基和下游坝坡表层出现渗流的流出的地方。非黏性土壤的微小土粒在泥土小石块的渗透影响下,持续的从孔洞中被冲出,当土壤中的微小颗粒到了某一速度时,泥土颗粒就被冲刷走,如果时间过长,坝体中的土壤颗粒被冲走的越来越多,空洞就会越来越大,这样,土石坝的内部结构就会发生很大的改变,土石坝由于渗透发生变形。
接触流土
由于土石坝在相互相邻的土层中的接触面,会发生渗透系数较小的土层向较大的土层渗入,这种接触性流动的土壤,对土石坝危害极大。
接触冲刷
接触冲刷对土石坝的损坏程度,直接影响着土石坝经久耐用的年限。在坝体渗流经过地基相接触的地方,以及和建筑物等接触系数有很大差别的土层相接触的时候,小的土石颗粒就会被冲刷流走。
土石坝渗透变形的形式在接触冲刷中会较为单纯,在一些特殊情况下,有可能出现两种或两种以上的情况,依据各不相同的渗透坡降情况、位置的差别、该地方的土料状况等进行具体情况进行具体分析,进而制定出有效的保护措施。
4治理土石坝防渗变形的措施
水平防渗
水平防渗的方法非常简便易行,一般采取人力把黏土进行填埋或者使用自然的黏土进行填筑,这种方法非常简便,也能够因地制宜,花费时间短,施工作业面很大、造价低廉,不需要任何的设备和器材。但是在施工过程中要认真依照设计图纸和有关要求,使土石坝的稳定性得到有效的控制,但如果渗透量加大,在土石坝基部有可能还会出现坡降现象。因此,必须通过防渗的方式实施水平盖铺,与下游的减小压力,增加排水量的工程实施有机地联系在一起。
垂直防渗
在坝基透水层较薄并且隔水层厚度不大的前提下,应该使用垂直防渗的方法,并用封闭式防渗帷幕进行施工,从而使所有由于渗透变形的情况得到了彻底治理,这样从根本上解决了土石坝的坝体和坝基的渗漏。通常用的防渗方法有以下三个方面:
高压喷射灌浆防渗。依据施工设计要求,在受到破坏的坝体周围用钻机实施钻孔,然后把高压喷射管放入钻孔中,对钻孔内的土体使用高压水流冲刷,破坏里面的土体结构,然后冲入水泥浆液,并且和周围土体充分混合、渗透、搅拌,然后逐渐提起喷嘴,待浆液凝固后,根据设计要求,确定好喷浆后的混凝土深度和厚度,从而与坝基紧密凝结在一起,很好地发挥防渗变形的优势。
建造混凝土防渗墙。为了使土石坝更加坚固,增强它的抗冲刷能力,可在土石坝坝体或土体的透水层和覆盖层中建立槽型孔,同时使用高压水泵把水泥浆液压入槽型孔内部,使孔内的残渣等物质被冲出孔外,接着再用直升套管向槽孔内部压入混凝土,连续不断的混凝土墙就这样形成了,充分发挥阻止防渗变形的作用。
土工膜防渗。使用土工膜防渗,能够使渗透半径加大,坡降变小、渗漏量变低,但是不能使渗流全部阻断,并且此种防渗方法对坝体渗漏有一定作用,对多种渗漏的防治效果不大。
通过一系列防渗措施的实施,必须根据实际情况认真分析,防渗施工技术的提高是进一步加强土石坝稳定性的关键因素。因此,只有建立一支专业化、能力强、技术过硬、有丰富经验的施工技术队伍,才能保证工程质量。同时,还必须有足够的土石坝防渗施工基金作保障,并能及时修缮、维护,一旦发现问题迅速处理,使管理和综合利用有机结合起来,并且要积极学习一些国外防渗补漏的先进技术和经验,使土石坝防渗变形工程有新的突破。
1概述坝基岩体内部存在各种型式的软弱结构面,当这些结构面的产状有利于其上的建筑物滑动时,往往成为安全的控制因素。我国已建的葛洲坝、安康、大化、三峡、万家寨、百色、沙坡头以及在建的向家坝、金安桥、武都等大中型水利工程,都存在坝基深层抗滑稳定问题,国外所发生的重力坝沿坝基软弱结构面破坏的例子也不少见。因此,重力坝深层抗滑稳定分析是重力坝设计中较为重要的内容。近代坝工技术发展至今,国内外许多学者与工程技术人员在坝基深层抗滑稳定计算方法、安全系数取值、软弱结构面物理力学指标取值等领域开展了大量的试验与理论研究,取得了较为丰硕的成果。但因坝基深层抗滑稳定是一个系统而复杂的问题,目前还没有统一规范的解决办法,业内的观点也不太统一,如长江三峡工程左岸厂房1~5号坝段深层抗滑稳定分析研究过程中,集中了国内各著名的科研机构和高等院校历经数年,并聘请著名专家进行咨询,但研究结果和意见仍不十分一致。本文就实际运用中争议较大的稳定分析方法、抗剪公式的适用性、数值计算分析方法及其安全控制标准等方面进行简要的讨论,供设计者参考。2分析方法早期坝基深层抗滑稳定分析主要采用刚体极限平衡法及物理模型法,形成了一套较为成熟的理论及安全判断标准,并沿用至今。随着微型计算机软、硬件技术的发展,数值分析方法也得到了很大发展,针对不同的工程特点开发出了很多计算软件,为分析深层抗滑中软弱面的应力和变形创造了条件。20世纪末期,可靠度分析方法逐渐被引进到水利电力行业中。目前有关各种方法的理论文献较多,本文主要对各种方法的特点及适用性进行分析。当坝基岩体内存在软弱面时,应主要采用传统的刚体极限平衡法核算坝基的深层抗滑稳定性。刚体极限平衡法是将滑移的各块岩体视为刚体,考虑滑移体上力的平衡,根据滑移面上的静力平衡条件对滑动块体的安全度作笼统的整体分析。刚体极限平衡法应用非常广泛,具有很多优点:概念清楚、计算简便、工作量小、易于掌握、可用于任何规模的工程、工程应用实例多,而且有比较成熟的与之配套的设计准则。当坝基岩体内存在软弱面时,对特别重要且地质条件复杂的坝基应辅以数值分析方法分析坝基的深层抗滑稳定性,进行综合评定,其成果可作为坝基处理方案选择的依据。数值分析方法可以考虑材料的各种性质,能较精确地计算出坝体和坝基内各点的应力和变形,可模拟复杂的地质构造,探求坝体和坝基的破坏机理;还可以了解破坏区的分布、范围,找出最危险的部位,分析其严重程度及各种加固措施的作用。当重力坝坝基中对深层抗滑稳定起控制性作用的结构面、岩层层面等与大坝轴线的交角较大时,坝基滑移模式将具有明显的三维效应,此时为合理确定坝基抗滑稳定安全系数,应采用三维刚体极限平衡法进行坝基的抗滑稳定分析。3抗剪公式的适用性及安全控制标准3. 1适用性常用的抗滑稳定安全系数计算公式有两种:抗剪断强度公式和抗剪强度公式。早期重力坝3. 0的允许安全系数是建立在节理岩体的“抗剪断”强度指标基础上的。这一指标中包含了极大的凝聚力,滑面一定不是由100%连通的结构面构成的。如果将“抗剪断”(剪摩)公式应用到层面、软弱夹层、断层这一类连通率为100%的结构面上,对这些凝聚力较低的结构面,仍然按3. 0的允许安全系数要求,就可能导致在复核深层抗滑稳定时遇到困难。为了验算抗剪断公式和抗剪公式的适用性及相应安全系数标准,利用三峡、武都、银盘、亭子口、万家寨等工程的地质参数,根据坝基软弱结构面的滑移模式,在相同荷载及滑移模式下分别采用抗剪断公式和抗剪公式进行对比分析,结果如表1所示。表1已建工程坝基软弱结构面抗滑稳定安全系数从表1中可以看出:当滑动面的凝聚力c′值较低时,两种公式计算得到的安全系数k′和k相差不大,如葛洲坝、高坝洲、武都, k大于1. 0,而k′远小于3. 0。随着滑动面的凝聚力c′值的增加,安全系数k′和k差别逐步加大,如三峡、亭子口、向家坝等工程,抗剪断安全系数k′为3. 0左右时,抗剪安全系数只有1. 0左右,三峡还小于1. 0。因此,在分析重力坝深层抗滑稳定时,对于不同的地质条件,应采用不同的计算公式。坝基潜在滑移面由硬性结构面和岩桥组成时,按抗剪断公式进行抗滑稳定计算较合适;当坝基中存在着连续分布的软弱结构面(单滑面或双滑面均为软弱结构面) ,且结构面强度参数较低,可采用抗剪公式计算。3. 2安全控制标准目前水利行业《混凝土重力坝设计规范》( SL319 - 2005)条文说明中对按抗剪公式计算的安全系数选取进行了特别说明。对坝基岩体内存在软弱结构面、缓倾角裂隙时,应首先按抗剪断强度公式进行坝基深层抗滑稳定分析,如采取工程措施后仍不能满足规范要求时,可按抗剪强度公式,计算坝基深层抗滑稳定安全系数,其指标应经论证后确定,论证时可参考表2所示的安全系数。表2坝基深层抗滑稳定安全系数(按抗剪强度)对于双滑面、多滑面等情况,由于垂直分裂面是假定的, φ值通常取为0,用等K法计算,应有一定安全裕度。但对于单滑面,没有上述安全裕度,其安全系数取值尤须慎重。在已建工程中,坝基存在软弱结构面的情况较为普遍,采用抗剪断公式计算不能满足规范要求而采用抗剪公式计算的实例也较多,因规范未提出确定的安全系数标准,各工程根据自身地质条件及工程重要性提出了各自的安全系数要求,见表3。表3国内若干已建工程坝基软弱结构面抗滑稳定设计参数指标在收集的资料中,根据葛洲坝等11个工程自身地质条件及工程重要性提出了相应的安全系数要求,其设计安全系数为1. 1~1. 4,加固后的安全系数在1. 2左右,实践证明上述设计安全系数标准有较大安全储备。因此,在抗剪断公式不能满足要求时,可采用抗剪公式进行计算,安全系数标准可按表4选取。一般情况下取安全系数的上限,如果采用多种加固措施以后仍不能满足上限要求,经过论证后可以取安全系数的下限。表4推荐坝基深层抗滑稳定安全系数(按抗剪强度)4数值计算分析方法及其安全控制标准目前,连续介质数值分析方法在坝基深层抗滑稳定分析中已得到广泛应用。在岩土工程领域, ABAQUS与FLAC数值计算软件应用最为广泛,拥有的本构模型非常丰富,在进行非线性计算时具有较大的优势,在重力坝深层抗滑稳定计算分析中,推荐采用这两种计算软件。数值方法计算的稳定安全系数有多种定义,包括超载系数、强度储备系数、抗滑富裕系数等,通过研究,认为强度储备系数能够反映岩体材料强度的不确定性和可能的弱化效应,能较为客观地揭示坝基的渐进破坏过程与失稳机理。因此,进行数值分析计算时,推荐采用强度储备安全系数作为坝基抗滑稳定安全系数。本文分别采用FLAC3D和ABAQUS软件对葛洲坝二江泄水闸进行了数值模拟,采用不同的极限状态准则求解其强度储备系数。计算结果见表5。表5葛洲坝二江泄水闸安全系数计算结果由表5可知,两种软件的计算结果较为一致,具有一定的可比性。相同计算条件下两计算软件求得的位移与应力结果差别较小,而得到的强度储备系数相近。采用位移突变准则的结果最小,不收敛准则的结果最大,位移突变准则与塑性区贯通准则得到的结果相近。采用塑性区贯通准则得到的安全系数是偏于安全的,采用不收敛准则得到的安全系数为上限值。由此可见,强度储备系数法得到的安全系数依赖于坝基临界失稳状态的判据,而不同地质条件的坝基,其失稳判别标准难以统一规定,建议采用两种或两种以上判据来综合确定坝基抗滑安全系数。5结语(1) 重力坝深层抗滑稳定分析主要有刚体极限平衡法、数值分析法等,各方法都存在各自的优缺点,单靠其中一种方法,难以合理地分析和解决复杂地质条件下坝基深层抗滑稳定安全问题,应采用不同的方法进行分析,相互补充、验证,综合评定坝基的稳定安全。(2) 坝基潜在滑移面由硬性结构面和岩桥组成时,按抗剪断公式进行抗滑稳定计算较合适;当坝基中存在着连续分布的软弱结构面(单滑面或双滑面均为软弱结构面) ,且结构面强度参数较低,采用抗剪断公式难以满足要求时,可采用抗剪公式计算。(3) 采用数值分析方法时,推荐采用强度储备安全系数作为坝基抗滑稳定安全系数,其值依赖于坝基临界失稳状态的判据,建议采用两种或两种以上判据来综合确定坝基抗滑安全系数。