近年来,随着美国新经济的疲软,学术界对高技术产业也颇多微辞。有学者认为高技术产业并没有从根本上改变我们的生产方式和经济活动方式,个别学者甚至提出“不管是土豆片还是芯片,能赚钱就是好片”的极端见解,并主张中国应该根据比较优势理论大力发展劳动密集型产业。那么,事实究竟如何?未来的高技术产业究竟将向何处发展?这里不妨从技术—经济范式变迁的角度出发,就这个问题提出几个基本判断。 判断之一,从大的背景来看,以信息技术为代表的高技术产业正在成为一个新的主导产业群,这样一个基本趋势并没有改变。自上世纪80年代以来,世界经济一直处在向新的技术—经济范式转变的过程之中,信息通讯技术在这个过程中扮演了关键的角色,个人计算机和网络是两大核心技术突破。迄今为止,高技术产业所涵盖的信息、生物、新材料、能源、海洋、宇航等六大技术产业部门都已经出现了重大的技术突破,并且正处于大规模商业化应用的过程之中或者正在孕育着大规模的商业化应用。可以预期,在未来的30—50年里,这样一些高技术产业将日益成熟,并成为各国经济发展的新一代主导产业群。 由于高技术产业均为知识密集型产业,而且具有强大的向下兼容能力即改造传统产业的能力,因此,高技术产业的发展导致发达国家的产业结构出现了明显的软化趋势,制造业所占比重越来越低,而服务业特别是知识密集型的金融服务业与高技术服务业所占比重越来越高。在发达国家,服务业所占比重一般都在60%以上,美国和瑞士甚至超过70%。1987—2000年间,美国制造业占GDP的比重下降了个百分点,而金融保险与房地产等服务业部门所占比重却从将近73%提高到77%以上。可以肯定地说,发达国家产业结构的软化趋势将会越来越明显,而且会越来越普遍。 高技术产业发展所带来的另一巨大变化就是国际竞争空前激烈,竞争的战线进一步前移。这主要表现在两个方面:其一,市场竞争的焦点已经不仅仅是最终产品的竞争,而是研究开发方向选择与速度的竞争。谁能够抓住正确的研发方向,并以最快的速度开发出新产品,谁就能够在市场上立于不败之地。正因为此,美国工业界的研发支出在1992—2002年间翻了一番,从950亿美元增加到1900亿美元。其二,研发国际化趋势日益明显。根据美国《工程与技术指标》(2002)的数据,1998年有375家外国公司在美国经营着715家研发机构,其中日本251家,德国107家,英国103家;美国公司1997年在国外建立了186家研发机构,其研发支出在1997—1998年从170亿美元增加到220亿美元;如果再加上美国母公司在国外的150亿美元研发支出的话,这个数字就更为可观了。 判断之二,信息技术产业的未来发展方向是:在近期(半年到一年),信息技术产业仍然需要一段调整期,以消化上世纪90年代在信息技术领域大量投资所形成的生产能力;在中长期,信息技术产业将在既有的大规模信息处理技术的基础上,进一步向网络化、服务化的方向发展,以进一步改善人们的生活质量,使人们的生活更加方便。 据国际半导体工业产能统计协会(SICAS)统计,目前集成电路晶圆的全球生产能力利用率为:1999年第四季度为年四季度平均为年四季度平均为年前三个季度平均为。由此可见,晶圆工业的生产已经走出低谷,超过了2001年上半年的水平。但是,按美国全国电子制造商协会(NEMA)统计,美国电子制造工业设备生产能力利用率在2002年8月、9月、10月分别只有、、,基本维持在接近75%左右的水平上。据此判断,目前的信息技术产业还处于调整过程之中,复苏乏力,但这一过程应该不会持续很长时间。 从中长期的发展趋势来看�由于目前利用硅晶体制造芯片的最新技术已经达到微米,估计在2015年前后硅基芯片技术将达到技术上的极限�而新的芯片材料技术——砷化镓,在技术上还不成熟,因此�未来信息技术产业的发展方向不在信息技术产品的制造方面,而在于如何利用现有的技术进行集成创新。美林公司分析师认为�信息技术产业的赢利点将由目前越来越趋于饱和的硬件部门转向软件、服务以及咨询部门。对于企业来说,现在的问题不是是否应用信息技术,而是如何探索利用信息技术的新的盈利模式;对于普通消费者来说,目前的普遍感觉是信息技术产业中的技术供应已经足够多、足够好了,未来的关键是扩大应用,进一步大众化,摆脱购买—升级的恶性循环。 判断之三,生物技术产业在未来的10—15年左右将有可能替代信息技术成为新的主导产业。2000年提前完成的人类基因组测序工作,使人们对生物技术的发展前景有了新的认识和判断,目前国内外学术界已经在对其他一些复杂物种的基因排序进行测定。因此,生物技术的产业发展前景无疑是非常可观的。从目前情况来看,生物技术产业已经达到了相当的规模。在美国,2001年共有1457家生物技术公司,其中342家是上市公司;这些上市公司按市场价格计算的市场资本总额在2002年5月为2240亿美元;生物技术工业的规模自1992年以来扩大了三倍多,收入从1992年的80亿美元增加到2001年的276亿美元;生物技术工业目前雇佣着万人。根据生物技术工业组织(BIO)的数字,1999年,生物技术产业的直接活动、间接活动和诱致活动就为美国经济贡献了437400个工作岗位和470亿美元的商业收入,联邦、州和地方政府来自生物技术产业的税收估计在100亿美元左右。 但是,另一方面,生物技术又是世界上研究密集程度最高的产业之一,技术创新周期较长。美国生物技术工业在2001年用于研发的支出达到156亿美元;2000年五家最大生物技术公司平均每个雇员的研发支出是89400美元。不仅如此,美国政府也大力支持生物技术研究。在2002财政年度的美国政府亿美元研发支出中,非国防支出为亿美元,其中一半以上投入卫生保健研究,特别是生物技术研究,约占美国政府研发支出总额的。据测算,一种生物技术药品的研发周期为2—10年,此后要经过实验室和动物测试、三期临床试验、美国食品和药品管理局(FDA)评审和进入市场后的检测等,而这又需要6年左右的时间。因此,一种生物技术药品的平均上市时间为8—16年左右。据此判断,即使是目前正在进行临床试验的生物技术药品,进入市场至少还需要5年以上的时间。因此,至少从中短期来看,生物技术还不可能完全替代信息技术产业的主导地位。 判断之四,以纳米技术为代表的新材料技术在未来的20年内还不可能成为新的主导产业。虽然早在1998年美国总统科技顾问尼尔·雷恩曾这样说,“如果有人问我哪一个科学与工程领域最有可能在明天发生技术突破的话,我会告诉他,那就是纳米层次上的科学与工程”,而且美国政府2000年2月发表的“全国纳米技术倡议”即以“导向下一次产业革命”作为它的副标题,但是,在未来的20年内,真正意义上的纳米技术还不可能成为新的主导产业。事实上,各国对于纳米科学技术的研发投资状况也充分说明了纳米科技的研究成果距离实际应用还存在着相当大的差距。1997年,世界各国政府对于纳米技术研究开发的资助总额不足5亿美元。其中,西欧为亿美元,日本为亿美元,美国为亿美元,其他国家或地区共计投资7000万美元左右。2000年美国政府预算中用于纳米技术研究的政府投资只有亿美元,2001年也仅为亿美元。这样的增长幅度虽然惊人,但与美国每年投放在信息技术研发方面的448亿美元、生物技术领域的300多亿美元相比,这点经费投入简直是微不足道的。很显然,如此之小的研发规模不可能支撑起一个主导产业技术的形成与发展。 判断之五,相比之下,航空航天技术产业化的前景可能更为乐观一些。特别是20世纪90年代卫星通信转向数据传输、移动通信和电视直播方向发展以来,通信卫星技术有了突飞猛进的发展。联合国和平利用外层空间委员会统计,到1996年底已经形成了一个年产值770亿美元、年增长率20%以上的新型空间技术开发与应用产业。目前,新型空间技术开发与应用产业规模近1200亿美元,到2005年其规模将超过2000亿美元。如果再加上关联产业如航天保险、全球卫星导航系统应用、地理信息系统应用等,航空航天技术产业的规模还要大一些。美国国家安全空间管理与机构评估委员会2001年发表的一份研究报告声称,国际空间工业2000年的利润已经超过了800亿美元,预计今后10年利润还将增加两倍多;有的学者甚至预计到2010年全球商业性航天活动的收入将达到5000亿—6000亿美元的规模。
航空航天在过去半年中,接连发生了两起重大航天灾难。尽管人们备感痛惜,但这些挫折并不能阻挡人类进军宇宙的步伐。 既然航天活动风险如此之大,为什么人类依然不放弃进军宇宙的梦想呢?人点燃火箭。但是,随着一声巨响,他消失在火焰和烟雾中,人类首次火箭飞行尝试没有成功。 20世纪80年代,改革开放带来了航天技术的春天。1986年,中共中央、国务院批准了《高技术研究发展计划("863"计划)纲要》,把航天技术列为我国高技术研究发展的重点之一。"863"高技术航天领域的专家们对我国航天技术未来的发展进行了深入细致的论证,描绘了我国航天技术发展前景的蓝图,一致认为载人航天是我国继人造卫星工程之后合乎逻辑的下一步发展目标。1992年1月,党中央批准研制载人飞船工程。自此,我国的载人航天工程正式启动。1999年11月20日,我国成功发射了自行研制的第一艘飞船神舟1号,成为世界上第三个发射宇宙飞船的国家。此后,又分别把神舟2、3和4号送上九重天。在1992年开始研制载人飞船之前,我国"863"高技术航天领域的专家们曾为研制哪种运输器这个问题进行了几年的研究,即对从研制飞船起步和越过载人飞船直接发展航天飞机的多种技术方案进行了充分的论证、比较和分析,甚至还激烈地争论过。 2003年10月15日圆了万户的梦,因为在这一天中国人民期待已久的第一艘载人飞船神舟5号顺利升空并安全返回,实现了中华千年飞天的理想。它也打破了美国和苏联.俄罗斯在这一领域的多年垄断格局,成为世界第3个独立自主研制并发射载人航天器的国家,这对世界载人航天事业的发展和振兴中华会起到巨大的推动作用。
航空航天的,是原创的
中国航天技术的发展趋势是:在未来的100年里,中国会成为世界航天技术的顶尖。
2楼的 别乱说啊说个话跟业务员似的,?“乱蒙” 高炉被淘汰你从哪道听途说的?我就是管高炉生产的,现在你就是上海宝钢他也得用高炉,先炼铁在炼钢.LZ 高炉只炼铁不炼钢,高炉将铁矿石中的铁提炼出来,然后将铁水(冷却后为铸铁)运至炼钢车间,炼钢用电炉冶炼,控制铁水的含碳量(就是降低铁水的含碳量钢与铁的主要区别就是含碳量的不同)铁的冶炼方法:现在最普遍的就是高炉炼铁,简单点说就是炉顶装料,炉底出铁,布料的顺序就是一层矿石一层焦炭,然后在出铁口上方会有火管(热风,起到助燃和还原的作用)往高炉内送风(高炉煤气)最后出铁产能:高炉容积越大产能越大,和产能紧密联系的一个参数就是你的高炉利用系数,利用系数越高产能越高,还有降低焦比(焦炭与矿石比例)提高煤比(煤粉与矿石比例)对降低成本效果很明显,总之炼铁工艺那是相当复杂呀。环保:我是济钢的,现在济钢上环保设备上得很厉害,你排放不达标环保局当然不会同意,污染主要就是高炉炼铁的污染,粉尘多,现在济钢对环保设备的投资力度很大,毕竟国企要时刻相应党的号召走党的路线。我看你的分才是0分,没关系我这“不差分”
有以下三点区别:
1、原料不同
电炉炼钢全部用废钢都行,但高炉炼钢铁水要占到90%。
2、能耗不同
电炉炼钢消耗的是电能和氧气,高炉炼钢消耗的是氧气。
3、出钢钢液成分不同
电炉炼钢出钢钢液成分比较稳定,高炉炼钢出钢钢液成分差异较大。
扩展资料
电炉钢多用来生产优质碳素结构钢、工具钢和合金钢。这类钢质量优良、性能均匀。在相同含碳量时,电炉钢的强度和塑性优于平炉钢。电炉钢用相近钢种废钢为主要原料,也有用海绵铁代替部分废钢。通过加入铁合金来调整化学成分、合金元素含量。
以废钢为原料的电炉炼钢,比之高炉转炉法基建投资少,同时由于直接还原的发展,为电炉提供金属化球团代替大部分废钢,因此就大大地推动了电炉炼钢。世界上现有较大型的电炉约1400座,电炉正在向大型、超高功率以及电子计算机自动控制等方面发展,最大电炉容量为400吨。
国外150吨以上的电炉几乎都用于冶炼普通钢,许多国家电炉钢产量的60~80%均为低碳钢。我国由于电力和废钢不足,主要用于冶炼优质钢和合金钢。
参考资料:百度百科——电炉炼钢,百度百科——转炉炼钢
你说的应该是:非高炉炼铁—电炉炼钢流程和高炉—转炉长流程炼钢的区别:非高炉炼铁法,泛指高炉以外,不用焦炭,用煤、燃油、天然气、电为能源基础的一切其它炼铁方法。例如直接还原法,主要是指在冶炼过程中,炉料始终保持固体状态而不熔化,产品为多孔状海绵铁或金属化球团的方法。熔融还原法是用高品位铁精矿粉(经预还原)在高温熔融状态下直接还原冶炼钢铁的一种新工艺,非高炉炼铁—电炉炼钢流程主要原料是废钢、海绵铁。像美国那种发达国家,有大量废钢资源、对钢铁的需求不算很大的比较普遍采用。规模较小,目前还正在发展,是钢铁生产的重要补充。它省去了烧结、焦化流程,在环保上有一定优势,但由于技术的不成熟,能耗上,规模上没有大的进展。以焦炭为能源基础的传统炼铁方法。它与转炉炼钢相配合,是目前生产钢铁的主要方法,高炉炼铁的这种主导地位预计在相当长时期之内不会改变。它的前一道工序烧结、焦化的污染是很严重的。
引言随着现代科学技术的发展和工农业对钢材质量要求的提高,钢厂普遍采用了炉外精炼工艺流程,它已成为现代炼钢工艺中不可缺少的重要环节。由于这种技术可以提高炼钢设备的生产能力,改善钢材质量,降低能耗,减少耐材、能源和铁合金消耗,因此,炉外精炼技术已成为当今世界钢铁冶金发展的方向。对于炉外精炼技术存在的问题及发展方向有必要进行探讨。1 国内外炉外精炼技术的发展历程和现状随着炼钢技术的不断进步,炉外精炼在现代钢铁生产中已经占有重要地位,传统的生产流程(高炉→炼钢炉(电炉或转炉)→铸锭),已逐步被新的流程(高炉→铁水预处理→炼钢炉→炉外精炼→连铸)所代替。已成为国内外大型钢铁企业生产的主要工艺流程,尤其在特殊钢领域,精炼和连铸技术发展得日趋成熟。精炼工序在整个流程中起到至关重要的作用,一方面通过这道工序可以提高钢的纯净度、去除有害夹杂、进行微合金化和夹杂物变性处理;另一方面,精炼又是一个缓冲环节,有利于连铸生产均衡地进行。日本在20世纪70年代为了降低炼钢成本,提高钢的纯净度和质量,率先将炉外精炼技术应用于特殊钢生产中,随后西欧的钢铁企业也加入到推广和使用这项技术的行列中。据资料报道,日本早在1985年精炼率达到年上升到,特殊钢的精炼率达到94%,新建电炉短流程钢厂100%采用炉外精炼技术。80年代连铸技术发展迅速,原有的炼钢炉难以满足连铸的技术要求,更加促进了炉外精炼技术的发展,到1990年为止世界各主要工业国家拥有1000多台(套)炉外精炼设备。我国早在20世纪50年代末,60年代中期就在炼钢生产中采用高碱度合成渣在出钢过程中脱硫冶炼轴承钢、钢包静态脱气等初步精炼技术,但没有精炼的装备。60年代中期至70年代有些特钢企业(大冶、武钢等)引进一批真空精炼设备。80年代我国自行研制开发的精炼设备逐渐投入使用(如LF炉、喷粉、搅拌设备),黑龙江省冶金研究所等单位联合研制开发了喂线机、包芯线机和合金芯线,完善了炉外精炼技术的辅助技术。现在这项技术已经非常成熟,以炉外精炼技术为核心的“三位一体”短流程工艺广泛应用于国内各钢铁企业,取得了很好的效果。初炼(电炉或转炉)→精炼→连铸,成了现代化典型的工艺短流程。2 炉外精炼技术的特点与功能炉外精炼是指在钢包中进行冶炼的过程,是将真空处理、吹氩搅拌、加热控温、喂线喷粉、微合金化等技术以不同形式组合起来,出钢前尽量除去氧化渣,在钢包内重新造还原渣,保持包内还原性气氛。炉外精炼的目的是降低钢中的C、P、S、O、H、N、等元素在钢中的含量,以免产生偏析、白点、大颗粒夹杂物,降低钢的抗拉强度、韧性、疲劳强度、抗裂性等性能。这些工作只有在精炼炉上进行,其特点与功能如下:1)可以改变冶金反应条件。炼钢中脱氧、脱碳、脱气的反应产物为气体,精炼可以在真空条件下进行,有利于反应的正向进行,通常工作压力≥50Pa,适于对钢液脱气。2)可以加快熔池的传质速度。液相传质速度决定冶金反应速度的快慢,精炼过程采用多种搅拌形式(气体搅拌、电磁搅拌、机械搅拌)使系统内的熔体产生流动,加速熔体内传热、传质的过程,达到混合均匀的目的。3)可以增大渣钢反应的面积。各种精炼设备均有搅拌装置,搅拌过程中可以使钢渣乳化,合金、钢渣随气泡上浮过程中发生熔化、熔解、聚合反应,通常1吨钢液的渣钢反应面积为~,当渣量为原来的6%时,钢渣乳化后形成半径为的渣滴,反应界面会增大1000倍。微合金化、变性处理就是利用这个原理提高精炼效果。4)可以在电炉(转炉)和连铸之间起到缓冲作用,精炼炉具有灵活性,使作业时间、温度控制较为协调,与连铸形成更加通畅的生产流程。3 炉外精炼技术在生产中的应用目前得到公认并被广泛应用的炉外精炼方法有:LF法、RH法、VOD法。 LF法(钢包精炼炉法)它是1971年由日本大同钢公司发明的,用电弧加热,包底吹氩搅拌。 工艺优点1)电弧加热热效率高,升温幅度大,控温准确度可达±5℃;2)具备搅拌和合金化的功能,吹氩搅拌易于实现窄范围合金成份控制,提高产品的稳定性;3)设备投资少,精炼成本低,适合生产超低硫钢、超低氧钢。 LF法的生产工艺要点1)加热与控温LF采用电弧加热,热效率高,钢水平均升温1℃耗电~·h,LF升温速度决定于供电比功率(kVA/t),而供电的比功率又决定于钢包耐火材料的熔损指数。因采用埋弧泡沫渣技术,可减少电弧的热辐射损失,提高热效率10%~15%,终点温度的精确度≤±5℃。2)采用白渣精炼工艺。下渣量控制在≤5kg/t,一般采用Al2O3-CaO-SiO2系炉渣,包渣碱度R≥3,以避免炉渣再氧化。吹氩搅拌时避免钢液裸露。3)合金微调与窄成份范围控制。据试验报道,使用合金芯线技术可提高金属回收率,齿轮钢中钛的回收率平均达到,硼的回收率达,钢包喂碳线回收率高达90%,ZG30CrMnMoRE喂稀土线稀土回收率达到68%,高的回收率可实现窄成份控制。 LF法在生产实践中的应用2000年6月,鞍钢第一炼钢厂新建的连铸车间正式投产,精炼设备由两座LF钢包精炼炉,年处理钢水200万t;一座VD钢水真空处理装置,年处理钢水80万t组成。LF炉最大升温速度为4℃,LF炉平均处理周期≤28min;处理效果:平均[H]≤;最低[H]≤。我国现有家重轨生产厂(攀钢、包钢、鞍钢和武钢)生产典型的工艺路线如下:LD→LF→VD→WF→CC,钢包吊到LF处理线的钢包车上后,由人工接通钢包底吹氩的快速接头,根据要求的钢水成分及温度确定物料的投入量(含喂丝)重轨钢含碳量较高,因而增碳显得很重要,转炉出钢时钢水含碳量控制为~(wt),炉后增碳至~(wt),在LF炉处理时再增~(wt)个碳至标准成份的中上限,经VD处理后即可达到钢种成分要求。 RH法(真空循环脱气法)这种方法是1958年西德发明的,其基本原理是利用气泡将钢水不断的提升到真空室内进行脱气、脱碳,然后回流到钢包中。 RH法的优点1)反应速度快。真空脱气周期短,一般10分钟可以完成脱气操作,5分种能完成合金化及温度均匀化,可与转炉配合使用。2)反应效率高。钢水直接在真空室内反应,钢中可达到[H]≤×10-6,[N]≤25×10-6,[C]≤10×10-6,的超纯净钢。3)可进行吹氧脱碳和二次燃烧热补偿,减少精炼过程的温降。 RH法工艺参数1)RH循环量。循环量是指单位时间内通过上升管或下降管的钢水量,单位是t/min。有关资料给出的计算公式为: Q=×·,式中:Q———循环流量,t/min;Du———上升管直径,cm;G———上升管内氩气流量,L/min。2)循环因数。他是指在RH处理过程中通过真空室的钢水与处理量之比,其公式为:μ=w·t/v式中:μ———循环因数,次;w———循环量,t/min;t———循环时间,min;v———钢包容量,t。3)供氧强度与含碳量的关系。向RH内吹氧可以提高脱碳速度,即RH-OB法。当[C]/[O]>时钢包内氧的传质速度决定脱碳速度,其计算公式为:QO2=×Q·[C]式中:QO2———氧气强度,Nm3/min;Q———钢水循环量,t/min;[C]———含碳量,Nm3/t。 RH法在生产实践中的应用日本的山阳钢厂将LF与RH配合生产轴承钢形成EF-LF-RH-CC轴承钢生产线,钢中总氧量达到×10-6。LF-RH法首先利用LF炉将钢水升温,利用LF搅拌和渣精炼功能进行还原精炼,是钢水脱硫和预脱氧,然后将钢水送入RH中进行脱氢和二次脱氧。经过这样处理大大的提高了钢水的清洁度,同时钢水的温度达到连铸需要的温度。宝钢炉外精炼设备有RH-OB、钢包喷粉装置、CAS精炼装置,RH-OB的冶炼效果较理想,脱氢率为50%~70%,脱氮率为20%~40%,一般情况下,经RH-OB处理后[H]≤×10-6,[C]≤30×10-6,去除钢中非金属夹杂物一般能达到70%,钢中总氧量≤25×10-6,而且在RH中合金处理可以提高合金的收得率和控制的精确度,[C]、[Si]、[Mn]的控制精度能达到±,铝的精确度可达到×10-3,取得了较好的炉外精炼效果。 VOD法(真空罐内钢包吹氧除气法) VOD的特点VOD法是1965年西德首先开发应用的,它是将钢包放入真空罐内从顶部的氧枪向钢包内吹氧脱碳,同时从钢包底部向上吹氩搅拌。此方法适合生产超低碳不锈钢,达到保铬去碳的目的,可与转炉配合使用。他的优点是实现了低碳不锈钢冶炼的必要的热力学和动力学的条件-高温、真空、搅拌。 VOD法在生产实践中的应用20世纪90年代初,上海大隆铸锻厂从德国莱宝(leybold)公司进口1台15tVODC的关键设备和技术软件。采用电炉初炼钢水经VODC炉外精炼的工艺方法,精炼了超低碳不锈钢、中低合金钢和碳钢,取得了很好的冶金效果,钢中非金属夹杂物减少,氢含量小于3×10-6氧含量小于×10-6,不锈钢中铬回收率达98%~99%,精炼后的钢具有十分优越的性能。VODC精炼工艺成熟,控制容易,适应中小型钢厂和铸钢厂的多钢种、小吨位精炼生产需要,对发展铸钢行业的精炼生产会起到很大积极作用,具有广阔的发展前景10。抚顺特殊钢有限公司有30tVOD炉,采用EAF+VOD技术精炼不锈钢,可使[H]≤×10-6,T[O]≤×10-6,铬回收率达到,脱硫率,精炼高碳铬轴承钢T[O]≤×10-6 。4 发展炉外精炼技术需解决的问题及发展方向炉外精炼技术已经应用40年,对提高钢的纯净度、精确控制成分含量及细化组织结构等方面都起了重要作用,使冶炼成本大幅降低,同时提高了钢的品质和性能。但在发展的过程中也出现了一些问题,有待于解决,使这项技术更加完美。1)实现炉外精炼工艺的智能化控制,根据来料钢水的各种技术参数,利用信息技术,制定最佳的精炼工艺方案,并通过计算机控制各精炼工序。精炼工位配备快速分析设备,实现数据网络化,减少热停等待时间。2)炉外处理设备将实现“多功能化”。在水钢精炼设备中将渣洗精炼、真空冶金、搅拌工艺以及加热控温功能全部组合起来,实现精炼,以满足超纯净钢生产的社会需求。3)开发高纯度、高密度、高强度的优质碱性耐火材料,以适应不同精炼炉的需要,注重产品质量的稳定性。耐火材料的使用条件应尽可能与炉渣相适应,最大限度地降低侵蚀速度。要根据精炼设备的实际情况形成不同层次的配套材料,研究开发保温和修补技术,提高炉衬的使用寿命。4)减少精炼过程的污染排放,精炼过程会产生大量废气,其中含SO2、Pb、金属氧化物、悬浮颗粒等,在真空脱气冷却水中含有固态悬浮物、Pb、Zn等,这些污染物须经企业内部的相关处理,把污染程度降低到符合排放标准后再排放,加强环境保护意识。5 结束语炉外精炼技术是一项提高产品质量,降低生产成本的先进技术,是现代化炼钢工艺不可缺少的重要环节,具有化学成分及温度的精确控制、夹杂物排除、顶渣还原脱S、Ca处理、夹杂物形态控制、去除H、O、C、S等杂质、真空脱气等冶金功能。只有强化每项功能的作用,才能发挥炉外精炼的优势,生产出高品质纯净钢种。
你自己写吧,就是找一找资料,题目新颖些,开头要使人想要继续看下去,如果你认为我讲的还不够完整的话,你可以看看(科技小论文)这个百度百科,这里头有给你说明,希望能帮助到你,谢谢,争取中考加分哦~~~~~~~~~~~~·
新华社北京9月25日电(记者 贾永、徐壮志)2008年9月25日21时10分,长征二号F运载火箭载着神舟七号载人飞船,载着中华民族冲击太空新高度的梦想,飞上太空。这是神舟飞船第七次飞入太空,也是中国人第三次登上太空。继杨利伟实现中华民族飞天梦想,费俊龙和聂海胜进入轨道舱开展空间科学实验之后,今天,翟志刚、刘伯明、景海鹏三位中国航天员的金秋之行,肩负着全新的历史性使命——按照计划,他们将在此次太空飞行中,实现出舱行走。中国人,将首次在太空中留下自己的足迹——这一看不见的足迹,必将作为最难忘的前进步伐,永载中华民族的记忆之中。梦想有多远,前行的步伐就能迈多远。从1992年启动载人航天工程到1999年神舟一号试验飞船起飞,从神舟五号一人一天飞行到神舟六号两人多天飞行,在实现了一系列从梦想到现实的突破之后——中国载人航天,又一次迈到了一个重大的跨越关口。实现太空行走,对于世界上任何一个航天大国,都是历史性的一步。正是航天员出舱维修,使科学家们至今仍能享受1990年4月发射的哈勃太空望远镜提供的宝贵资源,而设计寿命5年的“和平号空间站”超期服役10年,开展科学试验16500余项的奇迹,更是与航天员不断的出舱维修密不可分……实现太空行走,在任何国家的载人航天历程中都是具有里程碑式的突破:它意味着航天员可以自主出舱来维修价值高昂的航天器,建设和组装空间站。现在正在建设的国际空间站,就需要航天员在太空的参与。而人类“重返月球”和更远的深空探测中,航天员空间行走更是必不可少。航天员出舱活动,技术难度高、风险性大,无论技术攻关、产品研制、航天员训练,还是任务组织指挥,都面临前所未有的挑战。也正因如此,自1965年3月18日苏联航天员列昂诺夫首次踏足太空,43度春秋过去,世界上依然只有美、俄两国拥有完整的出舱行走技术和经验。然而,正如中国载人航天工程总设计师周建平所说的一样,在实现千年飞天梦想之路上大步前进的中华民族,有勇气来迎接这样的挑战。如果此次航天员出舱行走顺利,下一步的神舟飞行就将进行航天器交会对接试验,然后,就是开展具有一定应用规模的短期有人照料、长期在轨自主飞行的空间实验室的研制,再往后,就是长期有人值守的空间站……。现实的辉煌,从来始于伟大的梦想。从渔船、出租车上的GPS全球定位导航仪到几乎家家都有的卫星广播电视,从气象预报、信息网络到餐桌上的“太空稻米”、“太空蔬菜”……今天,我们已经生活在一个广泛应用“太空文明”所带来成果的时代太空,不仅为我们提供了高度资源、微重力资源、超高真空资源、无限的能源和物质资源,而且为我们提供了广袤无垠的空间资源,甚至能够为我们开拓出无穷的生存空间,为我们创造出全新的生活方式……但是,人类对太空的探索和开发才刚刚起步。即使我们顺利实现了出舱行走的历史性突破,无垠的宇宙依然有无数的奥秘等待着我们破译。光荣与梦想始终紧紧相连。作为最早产生飞天梦想的民族,还在饿着肚子的时候,就曾把“两弹一星”的梦想变成了辉煌的现实。我们有理由相信,在新一轮空间探索热潮已然兴起的今天,中华民族用自己的飞天智慧造福人类的时代已经到来。神舟七号,为你自豪。
航天工程硕士毕业论文范文(含了格式的),你可以找你导师或者师兄要一个参考一下,我在志文网找的专业老师写的,我写的是关于有限元法的压电桁架结构的,就等答辩了
您好,这里是乐乐为您回答功效:高血压食谱 健康提示镇肝熄风,明目降压。适用于头晕目眩、头痛、肢体麻木。高血压病调理药膳 工艺:拌天麻双豆的制作材料:主料:天麻10克,花生仁(生)100克,青豆50克调料:盐2克,味精1克,香油2克天麻双豆的做法:1. 将天麻用蒸馏水浸泡,提出药液,花生米用开水泡15分钟,捏去皮,青豆用凉水涨发开。2 . 将花生米与青豆在开水锅内氽熟,捞出,加入天麻液、精盐、味精、香油调匀即成。食物相克天麻:天麻不可与御风草根同用,否则有令人肠结的危险。花生仁(生):对于肠胃虚弱者,花生不宜与黄瓜、螃蟹同食,否则易导致腹泻。
天麻加工一定要认直细致,不然的话会把辛辛苦苦栽培出来的好天麻加工成次品,功亏一篑,收不到好的经济效益。我补充一下,天麻加工炮制过程中,不得以明矾浸泡、刮皮、直接水煮等。天麻 将原药大小分档,用清水略浸(春冬季大者浸3--5小时,小者浸2--3小时;春秋季大者漫1—2小时,小者半一1小时),捞出稍晾,放甏内闷润,软者先切,硬者再润,待软后切—薄片,晒干。炒天麻 先用文火将锅烧热,随即倒入天麻片,炒至片微黄色为度。煨天麻 将天麻片平铺于喷过水的表芯纸上,置锅内用文火烧至纸色焦黄,并不断翻动药片,至两面呈老黄为度;或先取麸皮(天麻100公斤,用麸皮10公斤)撒于热锅内,见冒烟时,再将天麻片倒入锅内,用文火炒至黄色。略见焦斑时取出。天麻经炒煨后略缓燥性,用于血虚肝旺所致的眩晕头痛、手足搐搦等症较为适宜。
楼主你好:天麻加工一定要认直细致,不然的话会把辛辛苦苦栽培出来的好天麻加工成次品,功亏一篑,收不到好的经济效益。我补充一下,天麻加工炮制过程中,不得以明矾浸泡、刮皮、直接水煮等。天麻 将原药大小分档,用清水略浸(春冬季大者浸3--5小时,小者浸2--3小时;春秋季大者漫1—2小时,小者半一1小时),捞出稍晾,放甏内闷润,软者先切,硬者再润,待软后切0.1—O.15cm薄片,晒干。炒天麻 先用文火将锅烧热,随即倒入天麻片,炒至片微黄色为度。煨天麻 将天麻片平铺于喷过水的表芯纸上,置锅内用文火烧至纸色焦黄,并不断翻动药片,至两面呈老黄为度;或先取麸皮(天麻100公斤,用麸皮10公斤)撒于热锅内,见冒烟时,再将天麻片倒入锅内,用文火炒至黄色。略见焦斑时取出。天麻经炒煨后略缓燥性,用于血虚肝旺所致的眩晕头痛、手足搐搦等症较为适宜。
箭麻和大白麻可以加工商品麻。天麻的加工,应随起随加工,存放的时间过长,天麻就会变空。
(1)分等
根据天麻大小,可分为3~4个等级,一般鲜重在90克以上的为一等,45~85克的为二等,45克以下和碰伤挖断的为三等,然后清洗泥土,要随洗随加工,以免影响药效。
(2)蒸烫
将洗净的鲜天麻,蒸15~20分钟,要求蒸透,以见不到黑心为度。也可用沸水烫5~15分钟。再放入熏房,用硫黄熏10~12小时,熏过的天麻,色泽明亮净白,质量好,并可预防虫蛀、霉变。
(3)烘干
熏过的天麻应立即进行烘烤干燥。要求温度控制在50~60℃,开始温度不能过高,防止天麻体内水分蒸发过快、中间糖心和表皮形成硬壳;温度过低(40℃),需要排湿,防止发生霉菌,引起腐烂;用慢火烘至七八成干时,取出压扁整形,然后将温度升至70℃左右,继续烘至全干。干燥时要经常检查,防止烘焦变质或鼓泡。
航天梦,中国梦,怎么样
以航天为主题的题目如下:
《弘扬航天精神 拥抱星辰大海》、《弘扬航天精神,拥抱碧空大海》、《弘扬航天精神,拥抱北斗卫星》、《世界航天日,重温这些航天高光时刻》、《探索浩瀚宇宙梦想的远航、创新的跋涉》、《航天精神一以贯之、历久弥新》、《千年天问,一朝梦圆 》。
航空航天介绍:
中国发展航天事业的宗旨是:探索外太空,扩展对地球和宇宙的认识;和平利用外太空,促进人类文明和社会进步,造福全人类;满足经济建设、科技发展、国家安全和社会进步等方面的需求,提高全民科学素质,维护国家权益,增强综合国力。
中国发展航天事业贯彻国家科技事业发展的指导方针,即自主创新、重点跨越、支撑发展、引领未来。航空指飞行器在地球大气层内的航行活动,航天指飞行器在大气层外宇宙空间的航行活动。
航空航天大大改变了交通运输的结构,航空航天的发展虽然与军事应用密切相关,但更为重要的是人类在这个领域所取得的巨大进展,对国民经济的众多部门和社会生活的许多方面都产生了重大影响。
中国航天事业是在50年代中期开始的,1956年,中国制定了12年科 学发展远景规划,把火箭和喷气技术列为重点发展项目。同年建立了第 一个导弹、火箭研究机构,1958年把发射人造地球卫星列入国家科学规 划,组建机构开展空间物理学研究和探空火箭研制工作,并开展星际航 行的学术活动和实验设备的筹建工作。中国航天事业在创业之初经历了 经济上、技术上的种种困难,经过艰苦奋斗,终于在1960年2月发射成 功第一枚探空试验火箭,同年11月又发射成功第一枚自制的运载火箭, 在60年代后期又研制成功中程和中远程运载火箭,为中国航天事业的发 展奠定了基础。中国于60年代中期制定了研制和发射人造地球卫星的空 间计划。1968年组建了中国空间技术研究院。1970年4月24日,中国第 一颗人造地球卫星“东方红”1号发射成功,使中国成为继苏、美、法 、日之后世界上第五个用自制运载火箭成功地发射卫星的国家。1971年 3月3日发射成功的第二颗人造地球卫星向地面发回了各项科学实验数据 ,正常工作了多年。1975年11月26日首次发射成功返回型人造地球卫星 ,中国成了继美、苏之后世界上第三个掌握卫星返回技术的国家。1980 年5月,向南太平洋发射大型运载火箭取得成功,1981年9月20日首次用 一枚大型运载火箭把三颗空间物理探测卫星送入地球轨道,1982年10月 从水下潜艇发射运载火箭成功。1984年4月,发射一颗对地静止轨道试 验通信卫星“东方红”2号,4月16日卫星定点于东经125度赤道上空, 至1985年10月,中国依靠自己的力量共发射了17颗不同类型的人造地球 卫星。这些卫星为地质、测绘、地震、海洋、农林、环境保护等国民经 济部门和空间科学研究提供了十分有价值的资料。第一颗试验通信卫星 已用于国内通信广播和电视节目传输,对改善边远地区的通信和广播状 况发挥了重要作用。通过一系列航天活动中国已建立了各类人造卫星、 运载火箭、发射设备和测量控制系统的研究、设计、试验和生产的基地 ,建成了能发射近地卫星和对地静止轨道卫星,拥有光测、遥测和雷达 等多种跟踪测量手段的酒泉和西昌航天器发射场;组成了由控制中心地 面台站和测量船构成的卫星测控网,造就了一支富有经验的航天科学技 术队伍,从而有能力不断开拓航天活动。 10月15日到16日神州5号载人飞船发射成功,是中国高科技领域继 “两弹一星”之后又一座光辉的里程碑,中国由此成为世界上继俄罗斯 和美国之后第三个有能力将航天员送上太空的国家