您当前的位置:首页 > 发表论文>论文发表

纳什发表论文

2023-11-02 04:15 来源:学术参考网 作者:未知

纳什发表论文

1950年,纳什发表了他的“非合作对策”博士论文,提出了与诺伊曼的理论相对立的观点。当纳什向诺伊曼提出他的理论时,却被简单地认为是“对已完善定理的新译法”。但诺伊曼这一回却是大错特错,纳什的非合作对策论,不但奠定了对策论的数学基础,而且在后来得到了商业策略家的广泛应用。

博弈论体系的诞生史

1944年11月4日,被后人称为“计算机之父”和“博弈论之父”的大数学家冯·诺依曼(同时也是一位重要的经济学家)与经济学家摩根斯坦合作的名著《博弈论与经济行为》的出版,标志着博弈论体系的诞生,这是博弈论的开山之作,一度引起轰动。

博弈论又被称为对策论,既是现代数学的一个新分支,也是运筹学的一个重要学科。博弈论主要研究公式化了的激励结构间的相互作用,是研究具有斗争或竞争性质现象的数学理论和方法。博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。生物学家使用博弈理论来理解和预测进化论的某些结果。

其实,博弈论思想古已有之,中国古代的《孙子兵法》等著作就不仅是一部军事著作,而且算是最早的一部博弈论著作。博弈论最初主要研究象棋、桥牌、赌博中的胜负问题,人们对博弈局势的把握只停留在经验上,没有向理论化发展。

近代对于博弈论的研究,开始于策梅洛,波莱尔及冯·诺依曼。1928年,冯·诺依曼证明了博弈论的基本原理,从而宣告了博弈论的正式诞生。1944年,冯·诺依曼和摩根斯坦共著的划时代巨著《博弈论与经济行为》将二人博弈推广到n人博弈结构并将博弈论系统地应用于经济领域,从而奠定了这一学科的基础和理论体系。

1950—1951年,约翰·福布斯·纳什利用不动点定理证明了均衡点的存在,为博弈论的一般化奠定了坚实的基础。纳什的开创性论文《n人博弈的均衡点》(1950),《非合作博弈》(1951)等等,给出了纳什均衡的概念和均衡存在定理。此外,莱因哈德·泽尔腾、约翰·海萨尼的研究也对博弈论发展起到推动作用。今天,博弈论已发展成一门较完善的学科。

博弈论在20世纪50年代更多地被职业数学家运用,数学家和工程师们通力合作,使博弈论飞速发展,并在火箭控制等工程领域得到了重要应用。在此期间,少数杰出数学家也开始对经济分析中的博弈问题进行深入研究。其中数学家纳什的贡献最出色,他为非合作的一般理论与合作博弈的谈判理论奠定了基础,他获奖的主要工作体现在他1950年的博士论文《非合作博弈》里,纳什一生只发表过两三篇论文,这一篇是最重要的。在其中,他定义了纳什均衡,现在经济学最重要的三个概念就是:需求、供给、纳什均衡。

20世纪60年代以后,研究经济博弈问题的经济博弈论则开始成为主流,并且后来者居上,因为博弈论在解释经济问题时最成功。诺贝尔经济学奖,已经有几次授予博弈论的大师。

本作品为“科普中国-科技创新里程碑”原创 转载时务请注明出处

作者: 孔祥宇

什么是纳什均衡

纳什均衡,Nash equilibrium ,又称为非合作博弈均衡,是博弈论的一个重要术语,以约翰·纳什命名。

约翰·纳什1948年作为年轻数学博士生进入普林斯顿大学。其研究成果见于题为《非合作博弈》(1950)的博士论文。该博士论文导致了《n人博弈中的均衡点》(1950)和题为《非合作博弈》(1951)两篇论文的发表。纳什在上述论文中,介绍了合作博弈与非合作博弈的区别。他对非合作博弈的最重要贡献是阐明了包含任意人数局中人和任意偏好的一种通用解概念,也就是不限于两人零和博弈。该解概念后来被称为纳什均衡。   
纳什的主要学术贡献体现在1950年和1951年的两篇论文,1950年他才把自己的研究成果写成题为“非合作博弈”的文章刊登在美国全国科学院每月公报上,立即引起轰动。说起来这全靠师兄戴维·盖尔之功,就在遭到冯·诺依曼贬低,嘲笑几天之后,他遇到盖尔,像说梦话似的告诉他自己已经将冯·诺依曼的“最小最大原理找到了普遍化的方法和均衡点。纳什这个初出茅庐的小子,根本不知道竞争的险恶,从没想到学术欺骗的后果。结果还是戴维·盖尔充当了他的“经纪人”,起草致科学院的短信,系主任列夫谢茨则利用方便的人脉关系亲自将文稿递交给科学院。纳什写的文章不多,他辩解说:少了才是精品。中国国内提一个教授,要求在“核心的刊物”上发表多少篇文章。按照这个标准可能纳什还不一定够资格。 
1996年诺贝尔经济学奖得主莫尔里斯当牛津大学艾奇沃思经济学讲座教授时也没有发表过什么文章,特殊的人才,必须有特殊的选拔办法。   
Nash平衡是指博弈中这样的局面,对于每个参与者来说,只要其他人不改变策略,他就无法改善自己的状况。Nash在证明了在每个参与者都只有有限种策略选择、并允许混合策略的前提下,Nash平衡一定存在。以两家公司的价格大战为例,Nash平衡意味着两败俱伤的可能:在对方不改变价格的条件下,既不能提价,否则会进一步丧失市场;也不能降价,因为会出现赔本甩卖。于是两家公司可以改变原先的利益格局,通过谈判寻求新的利益评估分摊方案,也就是Nash平衡。类似的推理当然也可以用到选举,群体之间的利益冲突,潜在战争爆发前的僵局,议会中的法案争执等。
假设有n个局中人参与博弈,给定其他人策略的条件下,每个局中人选择自己的 纳什均衡
最优策略(个人最优策略可能依赖于也可能不依赖于他人的战略),从而使自己利益最大化。所有局中人策略构成一个策略组合(Strategy Profile)。纳什均衡指的是这样一种战略组合,这种策略组合由所有参与人最优策略组成。即在给定别人策略的情况下,没有人有足够理由打破这种均衡。纳什均衡,从实质上说,是一种非合作博弈状态。   
纳什均衡达成时,并不意味着博弈双方都处于不动的状态,在顺序博弈中这个均衡是在博弈者连续的动作与反应中达成的。纳什均衡也不意味着博弈双方达到了一个整体的最优状态,以下的囚徒困境就是一个例子。

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页