医学影像毕业论文题目很多的,原创的最好。我写的《基于PACS的网络教学在医学影像学实习中的应用》,当时也是雅文网的专家帮忙弄的,一周就过了
CT/MRI医学影像分割算法研究
基于IHE的医学影像协作网的构建研究
基于DICOM标准的医学影像数据库的建立
多模态医学影像鲁棒配准方法研究
医学影像学课程网络CAI教学系统的分析与设计
医学影像数据库的图像检索技术应用研究
基于PACS的医学影像学网络教学软件的开发研究
基于Retinex理论的X射线医学图像算法的改进与应用
医学影像图像分割与存储若干问题的研究
医学影像三维可视化系统设计及关键技术研究
OCT医学影像血管分割与三维重建关键技术研究
PACS医学影像文件存储方法的研究
医学影像二维处理及三维重建系统的研究与实践
医学影像设备维护与管理技术的研究
医学影像三维重建的算法研究及应用
DICOM医学影像自适应显示技术的研究与实现
医学影像后处理技术的研究及其在X线影像优化中的应用
基于LBM的三维医学影像非刚体配准算法研究
嵌入式医学影像平台设计研究
医学影像按需打印系统关键技术研究
多模态医学影像融合方法研究
DICOM标准下医学影像数据库的建立与研究
基于语义的图像检索技术在医学影像系统中的研究与应用
基于核匹配追踪的医学影像辅助诊断
基于几何代数理论的医学图像配准研究
医学影像的数字化采集与存储
基于Level Set的医学影像分割
面向医学影像处理领域的软件框架研究与应用
随机森林在医学影像数据分析中的应用
医学影像处理及三维重建技术在医学TPS中的应用
基于内容的图像检索,即CBIR(Content-based image retrieval),是计算机视觉领域中关注大规模数字图像内容检索的研究分支。典型的CBIR系统,允许用户输入一张图片,以查找具有相同或相似内容的其他图片。而传统的图像检索是基于文本的,即通过图片的名称、文字信息和索引关系来实现查询功能。
这一概念于1992年由T.Kato提出的。他在论文中构建了一个基于色彩与形状的图像数据库,并提供了一定的检索功能进行实验。此后,基于图像特征提取以实现图像检索的过程以及CBIR这一概念,被广泛应用于各种研究领域,如统计学、模式识别、信号处理和计算机视觉。
计算机论文题目
随着大科学时代的到来及科技水平的高速发展,计算机科学与技术已经渗透到我国经济、社会的各个领域,这些都有利于全球经济的发展,还极大地推动了社会的进步,
1、基于物联网的煤矿井下监测网络平台关键技术研究
2、基于抽象状态自动机和π演算的UML动态语义研究
3、基于多种数据源的中文知识图谱构建方法研究
4、基于矩阵化特征表示和Ho-Kashyap算法的分类器设计方法研究
5、基于博弈论的云计算资源调度方法研究
6、基于合约的泛型Web服务组合与选择研究
7、本体支持的Web服务智能协商和监测机制研究
8、基于神经网络的不平衡数据分类方法研究
9、基于内容的图像检索与推荐技术研究
10、物联网技术及其在监管场所中的应用
11、移动图书馆的研发与实现
12、图书馆联机公共目录查询系统的研究与实现
13、基于O2O模式的外卖订餐系统
14、网络时代个人数据与隐私保护的调查分析
15、微信公众平台CMS的设计与实现
16、环保部门语义链网络图形化呈现系统
17、BS结构计量信息管理系统设计与研究
18、基于上下文的天然气改质分析控制系统的设计与实现
19、基于增量学习和特征融合的多摄像机协作监控系统目标匹配方法研究
20、无线自组网络密钥管理及认证技术的研究
21、基于CDMI的云存储框架技术研究
22、磨损均衡在提高SSD使用寿命中的应用与改进
23、基于.NET的物流管理软件的设计与实现
24、车站商铺信息管理系统设计与实现
25、元数据模型驱动的合同管理系统的设计与实现
26、安睡宝供应与销售客户数据管理与分析系统
27、基于OpenCV的人脸检测与跟踪算法研究
28、基于PHP的负载均衡技术的研究与改进
29、协同药物研发平台的构建及其信任机制研究
30、光纤网络资源的智能化管理方法研究
31、基于差异同步的云存储研究和实践
32、基于Swift的云存储产品优化及云计算虚拟机调度算法研究
33、基于Hadoop的重复数据删除技术研究
34、中文微博情绪分析技术研究
35、基于协议代理的内控堡垒主机的设计与实现
36、公交车辆保修信息系统的研究与设计
37、基于移动互联网的光纤网络管理系统设计与开发
38、基于云平台的展馆综合管理系统
39、面向列表型知识库的组织机构实体链接方法研究
40、Real-time Hand Gesture Recognition by Using Geometric Feature
41、基于事件的社交网络核心节点挖掘算法的研究与应用
42、线性判别式的比较与优化方法研究
43、面向日志分类的蚁群聚类算法研究
44、基于决策树的数据挖掘技术在电信欠费管理中的应用与研究
45、基于信任关系与主题分析的微博用户推荐技术
46、微博用户兴趣挖掘技术研究
47、面向多源数据的信息抽取方法研究
48、基于本体约束规则与遗传算法的BIM进度计划自动生成研究
49、面向报关行的通关服务软件研究与优化
50、云应用开发框架及云服务推进策略的研究与实践
51、复杂网络社区发现方法以及在网络扰动中的影响
52、空中交通拥挤的识别与预测方法研究
53、基于RTT的端到端网络拥塞控制研究
54、基于体系结构的无线局域网安全弱点研究
55、物联网中的RFID安全协议与可信保障机制研究
56、机器人认知地图创建关键技术研究
57、Web服务网络分析和社区发现研究
58、基于球模型的三维冠状动脉中心线抽取方法研究
59、认知无线网络中频谱分配策略的建模理论与优化方法研究
60、传感器网络关键安全技术研究
61、任务关键系统的软件行为建模与检测技术研究
62、基于多尺度相似学习的图像超分辨率重建算法研究
63、基于服务的信息物理融合系统可信建模与分析
64、电信机房综合管控系统设计与实现
65、粒子群改进算法及在人工神经网络中的应用研究
66、污染源自动监控数据传输标准的研究与应用
67、一种智能力矩限制器的设计与研究
68、移动IPv6切换技术的研究
69、基于移动Ad hoc网络路由协议的改进研究
70、机会网络中基于社会关系的数据转发机制研究
71、嵌入式系统视频会议控制技术的研究与实现
72、基于PML的物联网异构信息聚合技术研究
73、基于移动P2P网络的广播数据访问优化机制研究
74、基于开放业务接入技术的业务移动性管理研究
75、基于AUV的UWSN定位技术的研究
76、基于隐私保护的无线传感网数据融合技术研究
77、基于DIVA模型语音生成和获取中小脑功能及其模型的研究
78、无线网络环境下流媒体传送技术的研究与实现
79、异构云计算平台中节能的任务调度策略研究
80、PRAM模型应用于同步机制的研究
81、云计算平台中虚拟化资源监测与调度关键技术研究
82、云存储系统中副本管理机制的研究
83、嵌入式系统图形用户界面开发技术研究
84、基于多维管理的呼叫中心运行系统技术研究
85、嵌入式系统的流媒体播放器设计与性能优化
86、基于组合双向拍卖的云资源调度算法的研究
87、融入隐私保护的特征选择算法研究
88、济宁一中数字化校园系统的设计与实现
89、移动合作伙伴管理系统的设计与实现
90、黄山市地税局网络开票系统的设计与应用
91、基于语义的领域信息抽取系统
92、基于MMTD的图像拼接方法研究
93、基于关系的垃圾评论检测方法
94、IPv6的过渡技术在终端综合管理系统中的实现与应用
95、基于超声波测距与控制的运动实验平台研发
96、手臂延伸与抓取运动时间协调小脑控制模型的研究
97、位置可视化方法及其应用研究
98、DIVA模型中定时和预测功能的研究
99、基于蚁群的Ad Hoc路由空洞研究
100、基于定向天线的Ad Hoc MAC协议的研究
101、复杂网络社区发现方法以及在网络扰动中的影响
102、空中交通拥挤的识别与预测方法研究
103、基于RTT的端到端网络拥塞控制研究
104、基于体系结构的无线局域网安全弱点研究
105、物联网中的RFID安全协议与可信保障机制研究
106、机器人认知地图创建关键技术研究
107、Web服务网络分析和社区发现研究
108、基于球模型的`三维冠状动脉中心线抽取方法研究
109、认知无线网络中频谱分配策略的建模理论与优化方法研究
110、传感器网络关键安全技术研究
111、任务关键系统的软件行为建模与检测技术研究
112、基于多尺度相似学习的图像超分辨率重建算法研究
113、基于服务的信息物理融合系统可信建模与分析
114、电信机房综合管控系统设计与实现
115、粒子群改进算法及在人工神经网络中的应用研究
116、污染源自动监控数据传输标准的研究与应用
117、一种智能力矩限制器的设计与研究
118、移动IPv6切换技术的研究
119、基于移动Ad hoc网络路由协议的改进研究
120、机会网络中基于社会关系的数据转发机制研究
121、嵌入式系统视频会议控制技术的研究与实现
122、基于PML的物联网异构信息聚合技术研究
123、基于移动P2P网络的广播数据访问优化机制研究
124、基于开放业务接入技术的业务移动性管理研究
125、基于AUV的UWSN定位技术的研究
126、基于隐私保护的无线传感网数据融合技术研究
127、基于DIVA模型语音生成和获取中小脑功能及其模型的研究
128、无线网络环境下流媒体传送技术的研究与实现
129、异构云计算平台中节能的任务调度策略研究
130、PRAM模型应用于同步机制的研究
131、云计算平台中虚拟化资源监测与调度关键技术研究
132、云存储系统中副本管理机制的研究
133、嵌入式系统图形用户界面开发技术研究
134、基于多维管理的呼叫中心运行系统技术研究
135、嵌入式系统的流媒体播放器设计与性能优化
136、基于组合双向拍卖的云资源调度算法的研究
137、融入隐私保护的特征选择算法研究
138、济宁一中数字化校园系统的设计与实现
139、移动合作伙伴管理系统的设计与实现
140、黄山市地税局网络开票系统的设计与应用
141、基于语义的领域信息抽取系统
142、基于MMTD的图像拼接方法研究
143、基于关系的垃圾评论检测方法
144、IPv6的过渡技术在终端综合管理系统中的实现与应用
145、基于超声波测距与控制的运动实验平台研发
146、手臂延伸与抓取运动时间协调小脑控制模型的研究
147、位置可视化方法及其应用研究
148、DIVA模型中定时和预测功能的研究
149、基于蚁群的Ad Hoc路由空洞研究
150、基于定向天线的Ad Hoc MAC协议的研究
1.一种面向多服务的抗共谋的非对称公钥叛逆者追踪方案.西安电子科技大学学报(EI,A2类),2006年第3期,第一作者。2. 一种新的面向多服务抗共谋非对称公钥叛逆者追踪方案.四川大学学报(工程科学版,EI,A2类), 2006年第4期,第一作者。3. 一种支持多频道服务的抗共谋的非对称公钥叛逆者追踪方案.电子与信息学报(EI,A2类), 2006年第11期,第一作者。4. 一种新的基于大整数分解困难问题的叛逆者追踪方案.计算机科学(B类),2006年第7期,第一作者。5. 一种抗共谋的非对称公钥叛逆者追踪方案.计算机科学(B类),2006年第8期,第一作者。6. 一种新的无第三方参与的买方卖方水印协议.计算机应用(B类),2006年第7期,第一作者。7. 面向多服务的可灵活撤销的非对称公钥叛逆者追踪方案.计算机应用(B类),2006年第8期,第一作者。8. 基于身份无可信中心的盲签名和代理签名. 计算机应用(B类),2006年第10期,第一作者。9. 两个叛逆者追踪方案的密码学分析.计算机工程与应用(B类),2006年第15期,第一作者。10. 一种新的基于身份的代理盲签名.西北师范大学学报(自然科学版),2006年第5期,第一作者。11. 一种新的叛逆者追踪方案.西北师范大学学报(自然科学版),2006年第3期,第一作者。12. 一种面向多服务的抗共谋公钥叛逆者追踪方案.西北师范大学学报(自然科学版),2006年第1期,第一作者。13. 抗共谋的非对称公钥叛逆者追踪方案.网络安全技术与应用,2006年第1期,第一作者。14. 叛逆者追踪方案的密钥盲化攻击模型.网络安全技术与应用,2005年第12期,第一作者。15. 在课件制作中调用应用程序的通用方法.中小学电教,2003年第9期,独立完成。16. 教育信息网站建设中若干关键技术研究.电化教育研究(CSSCI检索源期刊,B类),2002年第10期,第一作者。17. 基于ASP的网站动态布局的数据库化管理.微型电脑应用,2002年第5期,独立完成。18. 递归程序探讨.甘肃教育学院学报(自然科学版),2002年第1期,第一作者。19. 关于教育技术学本科专业计算机程序设计核心课有关问题的探讨.电化教育研究(CSSCI检索源期刊,B类),2001年第5期,独立完成。20. 用ASP技术开发网上考试程序.计算机系统应用(计算机技术与自动化类的国家核心期刊),2001年第6期,第一作者。21. 基于WWW技术的课件探讨.安徽教育学院学报,2001年第6期,独立完成。22. 关于提高教育软件创作质量的探讨.甘肃广播电视大学学报,2002年第2期,第二作者。23. 快速小波熵在图像检索中的应用.红外技术(B类),2005年第6期,第二作者。24. 基于显著兴趣点颜色及空间分布的图像检索新方法.光子学报(EI),2006年第2期,第二作者。25.基于显著封闭边界的图像检索算法.计算机科学(B类),2006年第8期,第二作者。
视觉关系识别/检测 任务不仅需要识别出图像中的物体以及他们的位置(detection),还要识别物体之间的关系(relationship)。例子如下图所示,输入为一张图片,输出为objects和bounding boxes,以及objects之间的关系,如
视觉关系识别是图像理解的基础,可以 应用 在
挑战:
这篇文章将整理与视觉关系相关的论文,并作简要的介绍。论文列表:
第一篇是比较经典的论文,提出了一个数据集VRD和一个结合语言先验的关系预测模型。
Visual Phrases只有13个类型,Scene Graph 有两万多关系,但是它平均每个对象只有大约2个谓词关系。除了这三个数据集,还有有名的 VIsual Genome 大数据集,包含99658张图片,19237个关系,标注了物体类型,位置,属性和物体间的关系(场景图),还有caption,qa。虽然数据量大了,但是数据集的标注还是会有一些没有被标注的,毕竟组合多。
思考:论文利用了语言先验word embedding,对预测起到了很大的帮助,但是先验知识可能会使得关系预测倾向于频繁的关系,而忽略了视觉方面的信息。一个解决方案是先预训练视觉模型。然而,真正合理的融合先验的方式我觉得不是简单的乘法(先验可能会误导),是一个思考的点。
**Motivation: **这篇论文的启发是来源于知识图谱中,使用转移向量(translation vector)来表示实体之间的关系(见 Trans系列的知识表示 )。在视觉关系中,通过将对象的视觉特征映射到低维的关系空间中,然后用对象间的转移向量来表示对象之间的关系,比如person+ride=bike。如下图所示:
所以为了让 能够接近 ,即相似,loss函数为
在实验中,单从在VRD数据集上的predicate预测,与上一篇论文Lu对比是没有提升的(44<47),这是这篇论文中没有说明的,是我从两篇论文的实验数据中发现的。这篇论文在另外两个任务上效果比Lu的好些,我觉得有可能是用了Faster RCNN的缘故。 除了这三个任务的实验对比,还加了图像检索,zero-shot关系检测(没有Lu的好),特征重要性分析的实验。实验也表明了关系检测任务对目标检测任务的准确率的提升,不过其实很少。
更多相关的可参考原论文。
思考:论文用TransE来表示关系空间中对象与predicate的关系,如何映射到关系空间,更好的表达对象的联系,甚至predicate间的关系,是值得研究的一个点。(比如结合语言先验等,因为我觉的它的效果其实应该比不上加了语言先验的)
这篇论文跟上一篇论文类似,都是将
思考:这也是篇关于投射对象和关系到另一空间的论文,不过任务稍有不同,效果也比上一篇好些。同上,embedding也是可研究的一个方向。
这篇论文使用场景图scene graph来建模图片中对象以及它们的关系,任务是生成场景图:
这篇论文的亮点就是利用上下文信息以及消息传递,迭代更新以更好地预测关系。这是一个在场景图层级上的新的预测关系的方式,其消息传递方法等都是可以改进的地方,甚至结合embedding。
这篇论文的主要贡献是使用因式分解的方法来得到信息先验(a factorization scheme that yields highly informative priors),也就是关系的先验分布,即两个object间的predicate分布。 这个分布是通过张量分解的方法得到,具体是: (1) 张量构建Tensorize :关系张量 , i, j是对象,k是关系,表示为关系k的矩阵 的堆叠,每一个值对象i, j在数据集中有关系k的次数。张量表示可以反映objects间的内在联系,关系分布等。
最后BP训练SG网络,θ设为0.2. 在实验中,论文对比了Lu的Visual Relationship Detection with Language Priors,和Xu的Scene Graph Generation by Iterative Message Passing,都有较好的提升。
思考:这篇论文通过张量分解的方式来得到关系的先验分布,与论文Visual Relationship Detection with Language Priors用到的语言先验有着异曲同工之处,都是用predicate的先验分布来调整网络预测的关系,提升zero shot能力。 不过我认为这种直接相乘的调整方式是比较粗糙的,需要更好的方式来融合先验分布与视觉上预测的分布。
这是一篇用场景上下文信息和实体间的关系来改进目标检测的论文,举个被错误检测的例子说明上下文的作用:
这篇论文做的任务不是关系预测,而是利用关系来消歧关系中的相同类的对象,其实是根据关系元组,来定位对象的位置。比如下图中需要确定人踢球是图中的哪个人,在什么位置。
论文首先用attention到对象object/subject,然后用predicate的卷积核来进行注意力的shift,同时object和subject需要结合。
这又是李飞飞团队做的工作(他们团队做了很多relationship相关的工作,语言先验那篇,迭代消息传递那篇等),做的是语句生成图像,利用了场景图表示语句中对象间的关系/联系,一个很有趣的研究,应该是第一个使用场景图的图像生成尝试了。
Sentence一般包含多个对象,以及对象间关系的描述,是比较复杂的,从上图也可以看出,直接从语句到图像效果是很差的。但是当我们把语句解析为场景图,然后再生成图像,可以更好的生成图像表示对象间的关系。 具体做法大致是根据场景图做布局预测 (layout prediction) 预测对象的位置,最后结合噪声,用生成网络生成图像。具体细节这里就不啰嗦了,列一下最终效果吧。
可以看出,对象的位置基本位于正确的位置,不过生成的图像质量不是很高,所以还是有很大的改进空间的。
这篇论文是Arxiv上今年7月份的论文,利用图像中的对象间的关系和对象属性,做QA任务。关系挖掘根据图像和问题得到一系列相关的fact——关系,对象属性,然后再attention到需要的fact上,联合视觉特征最后得到最终answer。
思考:这种提取fact的方法为QA提供了高层的语义信息,也符合人的思维方式。相比于我之前调研过的方法( 一文带你了解VQA ),可以认为这是知识的补充,之前的方法有的是只有类,属性信息,或者是额外的文本形式的知识,本论文的方法多了关系的检测,且用一个网络来提取高层语义用于QA,相比直接做数据增强更具解释性。不过论文没有用到那个bottom-up attention,这是我觉得可以改进的地方。
至此,有关VIsual Ralationship的相关问题,方法大家应该有个大致的了解和收获。有什么问题和想法欢迎一起交流学习。