您当前的位置:首页 > 发表论文>论文发表

神经学研究论文

2023-03-11 22:10 来源:学术参考网 作者:未知

神经学研究论文

  针对径向基函数(Radial basis function,RBF)神经网络的结构设计问题,提出一种结构动态优化设计方法.利用敏感度法(Sensitivity analysis,SA)分析隐含层神经元的输出加权值对神经网络输出的影响,以此判断增加或删除RBF神经网络隐含层中的神经元,解决了RBF神经网络结构过大或过小的问题,并给出了神经网络结构动态变化过程中收敛性证明;利用梯度下降的参数修正算法保证了最终RBF网络的精度,实现了神经网络的结构和参数自校正.通过对非线性函数的逼近与污水处理过程中关键参数的建模结果,证明了该动态RBF具有良好的自适应能力和逼近能力,尤其是在泛化能力、最终网络结构等方面较之最小资源神经网络(Minimal resource allocation networks,MRAN)与增长和修剪RBF神经网络(Generalized growing and pruning radial basis function,GGAP-RBF)有较大提高.

  [1] 朱文莉. 一类具有时滞的神经网络的稳定性分析[J]. 电子科技大学学报. 2000(05)
  [2] 廖晓昕,傅予力,高健,赵新泉. 具有反应扩散的Hopfield神经网络的稳定性[J]. 电子学报. 2000(01)
  [3] 张菊亮,章祥荪. 一个新的解线性规划的神经网络(英文)[J]. 运筹学学报. 2001(02)
  [4] 罗公亮. 从神经网络到支撑矢量机(上)[J]. 冶金自动化. 2001(05)
  [5] 蒋德云,张弓. 谷物识别中对神经网络的优化(英文)[J]. 农业工程学报. 2002(05)
  [6] 王芳荣,周德义,郑咏梅,王鼎,张铁强. 生物表面光谱特性识别的神经网络方法[J]. 吉林大学学报(信息科学版). 2002(03)
  [7] 宋光雄,何胜锋,曹辉,张峥,钟群鹏. 基于Hopfield神经网络的腐蚀失效模式识别[J]. 金属热处理学报. 2003(01)
  [8] 王学武,谭得健. 神经网络的应用与发展趋势[J]. 计算机工程与应用. 2003(03)
  [9] 刘斌,刘新芝,廖晓昕. 脉冲Hopfield神经网络的鲁棒H-稳定性及其脉冲控制器设计(英文)[J]. 控制理论与应用. 2003(02)
  [10] 刘国良,强文义,麻亮,陈兴林. 基于粗神经网络的仿人智能机器人的语音融合算法研究[J]. 控制与决策. 2003(03)

Nature 论文:探索深度神经网络之间的个体差异

深度神经网络(DNNs)是 AI 领域的重要成果,但它的 “存在感” 已经不仅仅限于该领域。

一些前沿生物医学研究,也正被这一特别的概念所吸引。特别是计算神经科学家。

在以前所未有的任务性能彻底改变计算机视觉之后,相应的 DNNs 网络很快就被用以试着解释大脑信息处理的能力,并日益被用作灵长类动物大脑神经计算的建模框架。经过任务优化的深度神经网络,已经成为预测灵长类动物视觉皮层多个区域活动的最佳模型类型之一。

用神经网络模拟大脑或者试图让神经网络更像大脑正成为主流方向的当下,有研究小组却选择用神经生物学的方法重新审视计算机学界发明的DNNs。

而他们发现,诸如改变初始权重等情况就能改变网络的最终训练结果。这对使用单个网络来窥得生物神经信息处理机制的普遍做法提出了新的要求:如果没有将具有相同功能的深度神经网络具有的差异性纳入考虑的话,借助这类网络进行生物大脑运行机制建模将有可能出现一些随机的影响。要想尽量避免这种现象,从事 DNNs 研究的计算神经科学家,可能需要将他们的推论建立在多个网络实例组的基础上,即尝试去研究多个相同功能的神经网络的质心,以此克服随机影响。

而对于 AI 领域的研究者,团队也希望这种表征一致性的概念能帮助机器学习研究人员了解在不同任务性能水平下运行的深度神经网络之间的差异。

人工神经网络由被称为 “感知器”、相互连接的单元所建立,感知器则是生物神经元的简化数字模型。人工神经网络至少有两层感知器,一层用于输入层,另一层用于输出层。在输入和输出之间夹上一个或多个 “隐藏” 层,就得到了一个 “深层” 神经网络,这些层越多,网络越深。

深度神经网络可以通过训练来识别数据中的特征,就比如代表猫或狗图像的特征。训练包括使用一种算法来迭代地调整感知器之间的连接强度(权重系数),以便网络学会将给定的输入(图像的像素)与正确的标签(猫或狗)相关联。理想状况是,一旦经过训练,深度神经网络应该能够对它以前没有见过的同类型输入进行分类。

但在总体结构和功能上,深度神经网络还不能说是严格地模仿人类大脑,其中对神经元之间连接强度的调整反映了学习过程中的关联。

一些神经科学家常常指出深度神经网络与人脑相比存在的局限性:单个神经元处理信息的范围可能比 “失效” 的感知器更广,例如,深度神经网络经常依赖感知器之间被称为反向传播的通信方式,而这种通信方式似乎并不存在于人脑神经系统。

然而,计算神经科学家会持不同想法。有的时候,深度神经网络似乎是建模大脑的最佳选择。

例如,现有的计算机视觉系统已经受到我们所知的灵长类视觉系统的影响,尤其是在负责识别人、位置和事物的路径上,借鉴了一种被称为腹侧视觉流的机制。

对人类来说,腹侧神经通路从眼睛开始,然后进入丘脑的外侧膝状体,这是一种感觉信息的中继站。外侧膝状体连接到初级视觉皮层中称为 V1 的区域,在 V1 和 V4 的下游是区域 V2 和 V4,它们最终通向下颞叶皮层。非人类灵长类动物的大脑也有类似的结构(与之相应的背部视觉流是一条很大程度上独立的通道,用于处理看到运动和物体位置的信息)。

这里所体现的神经科学见解是,视觉信息处理的分层、分阶段推进的:早期阶段先处理视野中的低级特征(如边缘、轮廓、颜色和形状),而复杂的表征,如整个对象和面孔,将在之后由颞叶皮层接管。

如同人的大脑,每个 DNN 都有独特的连通性和表征特征,既然人的大脑会因为内部构造上的差异而导致有的人可能记忆力或者数学能力更强,那训练前初始设定不同的神经网络是否也会在训练过程中展现出性能上的不同呢?

换句话说,功能相同,但起始条件不同的神经网络间究竟有没有差异呢?

这个问题之所以关键,是因为它决定着科学家们应该在研究中怎样使用深度神经网络。

在之前 Nature 通讯发布的一篇论文中,由英国剑桥大学 MRC 认知及脑科学研究组、美国哥伦比亚大学 Zuckerman Institute 和荷兰拉德堡大学的 Donders 脑科学及认知与行为学研究中心的科学家组成的一支科研团队,正试图回答这个问题。论文题目为《Individual differences among deep neural network models》。

根据这篇论文,初始条件不同的深度神经网络,确实会随着训练进行而在表征上表现出越来越大的个体差异。

此前的研究主要是采用线性典范相关性分析(CCA,linear canonical correlation analysis)和 centered-kernel alignment(CKA)来比较神经网络间的内部网络表征差异。

这一次,该团队的研究采用的也是领域内常见的分析手法 —— 表征相似性分析(RSA,representational similarity analysis)。

该分析法源于神经科学的多变量分析方法,常被用于将计算模型生产的数据与真实的大脑数据进行比较,在原理上基于通过用 “双(或‘对’)” 反馈差异表示系统的内部刺激表征(Inner stimulus representation)的表征差异矩阵(RDMs,representational dissimilarity matrices),而所有双反馈组所组成的几何则能被用于表示高维刺激空间的几何排布。

两个系统如果在刺激表征上的特点相同(即表征差异矩阵的相似度高达一定数值),就被认为是拥有相似的系统表征。

表征差异矩阵的相似度计算在有不同维度和来源的源空间(source spaces)中进行,以避开定义 “系统间的映射网络”。本研究的在这方面上的一个特色就是,使用神经科学研究中常用的网络实例比较分析方法对网络间的表征相似度进行比较,这使得研究结果可被直接用于神经科学研究常用的模型。

最终,对比的结果显示,仅在起始随机种子上存在不同的神经网络间存在明显个体差异。

该结果在采用不同网络架构,不同训练集和距离测量的情况下都成立。团队分析认为,这种差异的程度与 “用不同输入训练神经网络” 所产生的差异相当。

如上图所示,研究团队通过计算对应 RDM 之间的所有成对距离,比较 all-CNN-C 在所有网络实例和层、上的表示几何。

再通过 MDS 将 a 中的数据点(每个点对应一个层和实例)投影到二维。各个网络实例的层通过灰色线连接。虽然早期的代表性几何图形高度相似,但随着网络深度的增加,个体差异逐渐显现。

在证明了深度神经网络存在的显著个体差异之后,团队继续探索了这些差异存在的解释。

随后,研究者再通过在训练和测试阶段使用 Bernoulli dropout 方法调查了网络正则化(network regularization)对结果能造成的影响,但发现正则化虽然能在一定程度上提升 “采用不同起始随机种子的网络之表征” 的一致性,但并不能修正这些网络间的个体差异。

最后,通过分析网络的训练轨迹与个体差异出现的过程并将这一过程可视化,团队在论文中表示,神经网络的性能与表征一致性间存在强负相关性,即网络间的个体差异会在训练过程中被加剧。

总而言之,这项研究主要调查了多个神经网络在最少的实验干预条件下是否存在个体差异,即在训练开始前为网络设置不同权重的随机种子,但保持其他条件一致,并以此拓展了此前与 “神经网络间相关性” 有关的研究。

除了这篇 这篇 研究以外,“深度学习三巨头” 之一、著名 AI 学者 Hinton 也有过与之相关的研究,论文名为《Similarity of Neural Network Representations Revisited》,文章探讨了测量深度神经网络表示相似性的问题,感兴趣的读者可以一并进行阅读。

Refrence:

[1]

[2]

神经学的神经学研究

国际神经科学研究 International Journal of Psychiatry and Neurology 是一本专注神经学精神病学领域最新进展的国际中文期刊,由汉斯出版社发行。主要刊登国内外神经精神科学相关领域的学术论文。本刊支持思想创新、学术创新,倡导科学,繁荣学术,集学术性、思想性为一体,旨在为全球关注神经精神疾病的科学家、学者、科研人员提供一个传播、分享和讨论神经精神基础研究和临床治疗成果的交流平台 。研究领域:精神障碍神经解剖精神障碍神经生化精神障碍生理学精神障碍药理学精神障碍内分泌精神障碍免疫学精神疾病遗传精神障碍心理学精神疾病社会学精神卫生精神障碍流行病学精神障碍病因学精神障碍症状学精神障碍诊断精神障碍分类学成瘾性精神障碍中毒性精神障碍精神分裂症抑郁症分裂情感性精神病偏执性精神病文化性精神障碍妇女精神卫生儿童精神障碍精神疾病治疗精神疾病护理精神障碍预防司法精神病学

人工智能神经网络论文

随着科学技术的发展,人工神经网络技术得到了空前的发展,并且在诸多领域得到了广泛的应用,为人工智能化的发展提供了强大的动力。以下是我整理分享的人工智能神经网络论文的相关资料,欢迎阅读!

人工神经网络的发展及应用

摘要随着科学技术的发展,人工神经网络技术得到了空前的发展,并且在诸多领域得到了广泛的应用,为人工智能化的发展提供了强大的动力。人工神经网络的发展经历了不同的阶段,是人工智能的重要组成部分,并且在发展过程中形成了自身独特的特点。文章对人工神经网络的发展历程进行回顾,并对其在各个领域的应用情况进行探讨。

关键词人工神经网络;发展;应用

随着科学技术的发展,各个行业和领域都在进行人工智能化的研究工作,已经成为专家学者研究的热点。人工神经网络就是在人工智能基础上发展而来的重要分支,对人工智能的发展具有重要的促进作用。人工神经网络从形成之初发展至今,经历了不同的发展阶段,并且在经济、生物、医学等领域得到了广泛的应用,解决了许多技术上的难题。

1人工神经网络概述

关于人工神经网络,到目前为止还没有一个得到广泛认可的统一定义,综合各专家学者的观点可以将人工神经网络简单的概括为是模仿人脑的结构和功能的计算机信息处理系统[1]。人工神经网络具有自身的发展特性,其具有很强的并行结构以及并行处理的能力,在实时和动态控制时能够起到很好的作用;人工神经网络具有非线性映射的特性,对处理非线性控制的问题时能给予一定的帮助;人工神经网络可以通过训练掌握数据归纳和处理的能力,因此在数学模型等难以处理时对问题进行解决;人工神经网络的适应性和集成性很强,能够适应不同规模的信息处理和大规模集成数据的处理与控制;人工神经网络不但在软件技术上比较成熟,而且近年来在硬件方面也得到了较大发展,提高了人工神经网络系统的信息处理能力。

2人工神经网络的发展历程

2.1 萌芽时期

在20世纪40年代,生物学家McCulloch与数学家Pitts共同发表文章,第一次提出了关于神经元的模型M-P模型,这一理论的提出为神经网络模型的研究和开发奠定了基础,在此基础上人工神经网络研究逐渐展开。1951年,心理学家Hebb提出了关于连接权数值强化的法则,为神经网络的学习功能开发进行了铺垫。之后生物学家Eccles通过实验证实了突触的真实分流,为神经网络研究突触的模拟功能提供了真实的模型基础以及生物学的依据[2]。随后,出现了能够模拟行为以及条件反射的处理机和自适应线性网络模型,提高了人工神经网络的速度和精准度。这一系列研究成果的出现为人工神经网络的形成和发展提供了可能。

2.2 低谷时期

在人工神经网络形成的初期,人们只是热衷于对它的研究,却对其自身的局限进行了忽视。Minskyh和Papert通过多年对神经网络的研究,在1969年对之前所取得的研究成果提出了质疑,认为当前研究出的神经网络只合适处理比较简单的线性问题,对于非线性问题以及多层网络问题却无法解决。由于他们的质疑,使神经网络的发展进入了低谷时期,但是在这一时期,专家和学者也并没有停止对神经网络的研究,针对他们的质疑也得出一些相应的研究成果。

2.3 复兴时期

美国的物理学家Hopfield在1982年提出了新的神经网络模型,并通过实验证明在满足一定的条件时,神经网络是能够达到稳定的状态的。通过他的研究和带动,众多专家学者又重新开始了对人工神经网络方面的研究,推动了神经网络的再一次发展[3]。经过专家学者的不断努力,提出了各种不同的人工神经网络的模型,神经网络理论研究不断深化,新的理论和方法层出不穷,使神经网络的研究和应用进入了一个崭新的时期。

2.4 稳步发展时期

随着人工神经网络研究在世界范围内的再次兴起,我国也迎来了相关理论研究的热潮,在人工神经网络和计算机技术方面取得了突破性的进展。到20世纪90年代时,国内对于神经网络领域的研究得到了进一步的完善和发展,而且能够利用神经网络对非线性的系统控制问题进行解决,研究成果显著。随着各类人工神经网络的相关刊物的创建和相关学术会议的召开,我国人工神经网络的研究和应用条件逐步改善,得到了国际的关注。

随着人工神经网络的稳步发展,逐渐建立了光学神经网络系统,利用光学的强大功能,提高了人工神经网络的学习能力和自适应能力。对非线性动态系统的控制问题,采取有效措施,提高超平面的光滑性,对其精度进行改进。之后有专家提出了关于人工神经网络的抽取算法,虽然保证了精度,但也加大了消耗,在一定程度上降低了神经网络的效率,因此在此基础上又提出了改进算法FERNN。混沌神经网络的发展也得到了相应的进步,提高了神经网络的泛化能力。

3人工神经网络的应用

3.1 在信息领域中的应用

人工神经网络在信息领域中的应用主要体现在信息处理和模式识别两个方面。由于科技的发展,当代信息处理工作越来越复杂,利用人工神经网络系统可以对人的思维进行模仿甚至是替代,面对问题自动诊断和解决,能够轻松解决许多传统方法无法解决的问题,在军事信息处理中的应用极为广泛[4]。模式识别是对事物表象的各种信息进行整理和分析,对事物进行辨别和解释的一个过程,这样对信息进行处理的过程与人类大脑的思维方式很相像。模式识别的方法可以分为两种,一种是统计模式识别,还有一种是结构模式识别,在语音识别和指纹识别等方面得到了广泛的应用。

3.2 在医学领域的应用

人工神经网络对于非线性问题处理十分有效,而人体的构成和疾病形成的原因十分复杂,具有不可预测性,在生物信号的表现形式和变化规律上也很难掌握,信息检测和分析等诸多方面都存在着复杂的非线性联系,所以应用人工神经网络决解这些非线性问题具有特殊意义[5]。目前,在医学领域中的应用涉及到理论和临床的各个方面,最主要的是生物信号的检测和自动分析以及专家系统等方面的应用。

3.3 在经济领域中的应用

经济领域中的商品价格、供需关系、风险系数等方面的信息构成也十分复杂且变幻莫测,人工神经网络可以对不完整的信息以及模糊不确定的信息进行简单明了的处理,与传统的经济统计方法相比具有其无法比拟的优势,数据分析的稳定性和可靠性更强。

3.4 在其他领域的应用

人工神经网络在控制领域、交通领域、心理学领域等方面都有很广泛的应用,能够对高难度的非线性问题进行处理,对交通运输方面进行集成式的管理,以其高适应性和优秀的模拟性能解决了许多传统方法无法解决的问题,促进了各个领域的快速发展。

4总结

随着科技的发展,人工智能系统将进入更加高级的发展阶段,人工神经网络也将得到更快的发展和更加广泛的应用。人工神经网络也许无法完全对人脑进行取代,但是其特有的非线性信息处理能力解决了许多人工无法解决的问题,在智能系统的各个领域中得到成功应用,今后的发展趋势将向着更加智能和集成的方向发展。

参考文献

[1]徐用懋,冯恩波.人工神经网络的发展及其在控制中的应用[J].化工进展,1993(5):8-12,20.

[2]汤素丽,罗宇锋.人工神经网络技术的发展与应用[J].电脑开发与应用,2009(10):59-61.

[3]李会玲,柴秋燕.人工神经网络与神经网络控制的发展及展望[J].邢台职业技术学院学报,2009(5):44-46.

[4]过效杰,祝彦知.人工神经网络的发展及其在岩土工程领域研究现状[J].河南水利,2004(1):22-23.

[5]崔永华.基于人工神经网络的河流汇流预报模型及应用研究[D].郑州大学,2006.

下一页分享更优秀的<<<人工智能神经网络论文

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页