您当前的位置:首页 > 发表论文>论文发表

研究小论文圆

2023-03-11 17:56 来源:学术参考网 作者:未知

研究小论文圆

毕业论文答辩的目的
毕业论文答辩的目的,对于组织者——校方,和答辩者——毕业论文作者是不同的。校方组织毕业论文答辩的目的简单说是为了进一步审查论文,即进一步考查和验证毕业论文作者对所著论文论述到的论题的认识程度和当场论证论题的能力;进一步考察毕业论文作者对专业知识掌握的深度和广度;审查毕业论文是否学员自己独立完成等情况。
第一,进一步考查和验证毕业论文作者对所著论文的认识程度和当场论证论题的能力是高等学校组织毕业论文答辩的目的之一。一般说来,从学员所提交的论文中,已能大致反映出各个学员对自己所写论文的认识程度和论证论题的能力。但由于种种原因,有些问题没有充分展开细说,有的可能是限于全局结构不便展开,有的可能是受篇幅所限不能展开,有的可能是作者认为这个问题不重要或者以为没有必要展开详细说明的;有的很可能是作者深不下去或者说不清楚而故意回避了的薄弱环节,有的还可能是作者自己根本就没有认识到的不足之处等等。通过对这些问题的提问和答辩就可以进一步弄清作者是由于哪种情况而没有展开深入分析的,从而了解学员对自己所写的论文的认识程度、理解深度和当场论证论题的能力。
第二,进一步考察毕业论文作者对专业知识掌握的深度和广度是组织毕业论文答辩所要达到的目的之二。通过论文,虽然也可以看出学员已掌握知识面的深度和广度。但是,撰写毕业论文的主要目的不是考查学员掌握知识的深广度,而是考查学员综合运用所学知识独立地分析问题和解决问题的能力,培养和锻炼进行科学研究的能力。学员在写作论文中所运用的知识有的已确实掌握,能融会贯通的运用;有的可能是一知半解,并没有转化为自己的知识;还有的可能是从别人的文章中生搬硬套过来,其基本涵义都没搞清楚。在答辩会上,答辩小组成员把论文中有阐述不清楚、不祥细、不完备、不确切、不完善之处提出来,让作者当场作出回答,从而就可以检查出作者对所论述的问题是否有深广的知识基础、创造性见解和充分扎实的理由。
第三,审查毕业论文是否学员独立完成即检验毕业论文的真实性是进行毕业论文答辩的目的之三。撰写毕业论文,要求学员在教师的指导下独立完成,但它不像考试、考查那样,在老师严格监视下完成,而是在一个较长的时期(一般为一个学期)内完成,难免会有少数不自觉的学生会投机取巧,采取各种手段作弊。尤其是像电大、函大等开放性大学,学员面广、量大、人多、组织松散、素质参差不齐,很难消除捉刀代笔、抄袭剽窃等不正之风的出现。指导教师固然要严格把关,可是在一个教师要指导多个学员的不同题目,不同范围论文的情况下对作假舞弊,很难做到没有疏漏。而答辩小组或答辩委员会有三名以上教师组成,鉴别论文真的能力就更强些,而且在答辩会上还可通过提问与答辩来暴露作弊者,从而保证毕业论文的质量。
对于答辩者(毕业论文作者)来说,答辩的目的是通过,按时毕业,取得毕业证书。学员要顺利通过毕业论文答辩,就必须了解上述学校组织毕业论文答辩的目的,然后有针对性的作好准备,继续对论文中的有关问题作进一步的推敲和研究,把论文中提到的基本树料搞准确,把有关的基本理论和文章的基本观点彻底弄懂弄通。
三、毕业论文成绩评分方式
各个院校要求不同,可以由指导教师成绩,检查评阅成绩,答辩小组成绩3部分综合而来.
1论文阶段须提交材料
各个院校要求不同,例如:任务书,开题报告,文献综述,论文,论文档案袋,论文中期检查表,汇报表,论文成绩册,指导教师工作手册等
2答辩委员会
1)答辩工作在学院领导下,由答辩委员会主持进行
2)答辩委员会主要由专业课教师组成,可聘请部分基础课教师或专业基础课教师参加,答辩委员会的责任是主持答辩工作,统一评分标准和要求,对有争议的成绩进行裁决,并综合指导教师,交叉评阅教师,答辩小组的成绩及评语,决定学生的最终成绩.最终成绩经主管院长审核后,由学院统一向学生公布
3)答辩委员会可下设若干答辩小组,答辩小组一般由3—5人(包括秘书1名)组成,组长应由具有副教授及以上职称的教师担任

数学小论文 寻找生活中的圆 300字

圆到处都是。大的,小的,比比皆是。我们说“没有规矩,不能成方圆”。可见,方和圆是生活中很常见的图形。圆在哪里呢?
早上又到了上学的时间,闹钟响了。闹钟的小表盘是圆形的,三根表针都固定在圆心上。爸爸戴的手表的表盘也是圆的。起床后,妈妈叫我洗漱吃早餐。我的杯子是圆的,杯口是圆圆的。洗手液的瓶子也是圆的。还有洗手池,都是圆的。我坐在圆圆的餐桌旁边,吃妈妈给我煎好的荷包蛋。荷包蛋是圆的,装荷包蛋的盘子竟然也是圆的。
我去上学。路上的汽车轮子都是圆的,就连小汽车的司机抓着的方向盘也是圆的。叔叔阿姨们骑的自行车,摩托车车轮也是圆的。
学校里,体育课上,老师带我们踢足球,足球是圆的。在操场边的器材室里,还有圆圆的篮球和排球。不光如此,还有呼啦圈呢!
我抬起头看天上,太阳是圆的。我想,当我晚上吃完饭出来玩的时候,就能看到圆圆的月亮了。

求小学六年级关于圆的数学小论文!

圆周率“π”的由来 很早以前,人们看出,圆的周长和直经的比是个与圆的大小无关的常数,并称之为圆周率.1600年,英国威廉.奥托兰特首先使用π表示圆周率,因为π是希腊之"圆周"的第一个字母,而δ是"直径"的第一个字母,当δ=1时,圆周率为π.1706年英国的琼斯首先使用π.1737年欧拉在其著作中使用π.后来被数学家广泛接受,一直没用至今. π是一个非常重要的常数.一位德国数学家评论道:"历史上一个国家所算得的圆周率的准确程度,可以做为衡量这个这家当时数学发展水平的重要标志."古今中外很多数学家都孜孜不倦地寻求过π值的计算方法. 公元前200年间古希腊数学家阿基米德首先从理论上给出π值的正确求法.他用圆外切与内接多边形的周长从大、小两个方向上同时逐步逼近圆的周长,巧妙地求得π 会元前150年左右,另一位古希腊数学家托勒密用弦表法(以1 的圆心角所对弦长乘以360再除以圆的直径)给出了π的近似值3.1416. 公元200年间,我国数学家刘徽提供了求圆周率的科学方法----割圆术,体现了极限观点.刘徽与阿基米德的方法有所不同,他只取"内接"不取"外切".利用圆面积不等式推出结果,起到了事半功倍的效果.而后,祖冲之在圆周率的计算上取得了世界领先地位,求得"约率" 和"密率" (又称祖率)得到3.1415926<π<3.1415927.可惜,祖冲之的计算方法后来失传了.人们推测他用了刘徽的割圆术,但究竟用什么方法,还是一个谜. 15世纪,伊斯兰的数学家阿尔.卡西通过分别计算圆内接和外接正3 2 边形周长,把 π 值推到小数点后16位,打破了祖冲之保持了上千年的记录. 1579年法国韦达发现了关系式 ...首次摆脱了几何学的陈旧方法,寻求到了π的解析表达式. 1650年瓦里斯把π表示成元穷乘积的形式 稍后,莱布尼茨发现接着,欧拉证明了这些公式的计算量都很大,尽管形式非常简单.π值的计算方法的最大突破是找到了它的反正切函数表达式. 1671年,苏格兰数学家格列哥里发现了 1706年,英国数学麦欣首先发现 其计算速度远远超过方典算法. 1777年法国数学家蒲丰提出他的著名的投针问题.依靠它,可以用概率方法得到 的过似值.假定在平面上画一组距离为 的平行线,向此平面任意投一长度为 的针,若投针次数为 ,针马平行线中任意一条相交的次数为 ,则有 ,很多人做过实验,1901年,有人投针3408次得出π3.1415926,如果取 ,则该式化简为 1794年勒让德证明了π是无理数,即不可能用两个整数的比表示. 1882年,德国数学家林曼德证明了π是超越数,即不可能是一个整系数代数方程的根. 本世纪50年代以后,圆周率π的计算开始借助于电子计算机,从而出现了新的突破.目前有人宣称已经把π计算到了亿位甚至十亿位以上的有效数字. 人们试图从统计上获悉π的各位数字是否有某种规律.竞争还在继续,正如有人所说,数学家探索中的进程也像π这个数一样:永不循环,无止无休…… 曾听一位奥数老师说过这么一句话:学数学,就犹如鱼与网;会解一道题,就犹如捕捉到了一条鱼,掌握了一种解题方法,就犹如拥有了一张网;所以,“学数学”与“学好数学”的区别就在与你是拥有了一条鱼,还是拥有了一张网。 数学,是一门非常讲究思考的课程,逻辑性很强,所以,总会让人产生错觉。 数学中的几何图形是很有趣的,每一个图形都互相依存,但也各有千秋。例如圆。计算圆的面积的公式是S=∏r�0�5,因为半径不同,所以我们经常会犯一些错。例如,“一个半径为9厘米和一个半径为6厘米的比萨饼等于一个半径为15厘米的比萨饼”,在命题上,这道题目先迷惑大家,让人产生错觉,巧妙地运用了圆的面积公式,让人产生了一个错误的天平。 其实,半径为9厘米和一个半径为6厘米的比萨饼并不等于一个半径为15厘米的比萨饼,因为半径为9厘米和一个半径为6厘米的比萨饼的面积是S=∏r�0�5=9�0�5∏+6�0�5∏=117∏,而半径为15厘米的比萨饼的面积是S=∏r�0�5=15�0�5∏=225∏,所以,半径为9厘米和一个半径为6厘米的比萨饼是不等于一个半径为15厘米的比萨饼的。 数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻松,但我们爬得越高,山峰就变得越陡,让人感到恐惧,这时候,只有真正喜爱数学的人才会有勇气继续攀登下去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的。 记住,站在峰脚的人是望不到峰顶的。

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页