今天的我总结几个毕业论文问卷分析的几点建议,希望能帮到各位看官
PS:此处的问卷分析,仅代表具有量表的问卷分析。
因为成熟量表往往经历了现实的考验,其信度和效度达标的概率比较大。
而自己设计的量表,很容易出现信度和效度检验结果惨不忍睹的情况。
这样我们在处理信度分析,探索性因子分析,甚至验证性因子分析的时候,都能游刃有余。
另外如果题目是2个,因子分析KMO值是一定等于0.5的,而一般我们最低也得0.6吧
为了信度和效度能出一个比较好的结果,在文字描述部分,同维度的各个题目,尽量能给一些心理暗示,或者描述上尽量相近,这样能使得维度内的题目的相关性较好,从而信度和效度也不至于太差
一般达到0.6就可以了,0.7以上更好。最好是把每个维度的信度都求一下,然后总体再求一个。这个一般没什么难度,也很容易通过。如果你的数据信度不行,那就进行下项目分析,将高低分样本中不具有区分度的样本删掉。
只求量表的KMO值和巴特利球形检验值。这可能是效度检验的最低要求了。除非导师认同,最好不要仅用这两个值
大部分的同学都会用到的,也是比较不容易通过的一个分析。
遇到最多的问题莫过于,假设题目的维度归属,跟实际出的结果不一致。
碰到这种情况,一般进行如下处理:
①只有少数题目不匹配
要么直接删掉,要么暂时保留
②绝大多数题目不匹配
从新设计量表,重新收集数据,重新来过吧
若非特殊情况,不建议使用。因为实际收集的问卷数据要想探索性因子分析+验证性因子分析,各个指标均达到理想值,那几乎是不可能的。
如果你看到某某人的论文中用了这样的检验方法,指标非常漂亮,我可以负责任的告诉你,其大概率是改过数据了。
特殊情况1:模型验证阶段,使用AMOS结构方程,导师要求效度检验阶段使用验证性因子分析。
特殊情况2:模型验证阶段,未使用AMOS结构方程,导师也要求效度检验使用验证性因子分析。(导师傻x)
这里特别提一点,显著性的p值代表的是两者是否相关,皮尔逊或者斯皮尔曼系数代表的是相关性程度。
显著性检验通过了,皮尔逊或者斯皮尔曼系数大小才有意义,绝对值越大相关性越大,正负代表正相关与负相关。
显著性通过了,但是系数偏小,那相关性也是显著的,只是两者是存在显著的弱相关性,而不是系数小就代表不相关。
可能是最简单的模型了,将自变量和因变量放进,直接跑就行了。
①要不要放控制变量
这个随意。
如果放控制变量,尽量放一些层级类的变量,不要放多分类变量。
层级变量比如学历(初中,高中,大学,硕士)
多分类变量比如职业
层级变量的赋值尽量与其题项对应。
如果放了多分类的变量,尽量删掉,如果想保留最好做成虚拟变量
②用标准系数还是标准化系数
标准化系数。
③要不要做VIF共线性检验
若非导师要求,那就不做。
④r方多大算好
这个指标没有非常严格的标准,而且跟导师的价值观有非常深刻的影响。
对于现实收集的数据而言,个人认为,一般大于0.2就好了。
不过我遇到过大于0.1,导师也认为可以接受的情况。
这是一个仁者见仁的问题
从科学的角度来看,应该与你研究的场景有密切的关系。
但是,中介效应模型要比调节效应模型容易出通过,而且解释起来也不那么绕口。
所以,如果不是想给自己挖坑,那就用中介效应模型吧。
快捷验证中介效应模型的方式(快速确定是否存在中介,非正式使用)
条件1,中介变量,自变量和因变量,相关性都显著
条件2,自变量和中介变量关于因变量的回归模型,中介变量的系数显著
如果满足上述两个条件,中介效应一定显著,如果条件2中的自变量也显著,那么就是部分中介效应,如果不显著就是完全中介效应。
另外极少数情况是用sobel来检验中介效应的
如果不是导师要求amos验证中介效应,尽量用spss回归的方式检验中介效应。
快捷验证条件效应模型的方式(快速确定是否有调节效应,非正式使用)
先将调节因子计算处理(标准化后的自变量和中介变量相乘即可)
自变量,调节变量和调节因子关于因变量的回归模型,调节因子的系数显著。
公众号:alone5400
这个要看你刚开始的题目设置是否合理如果合理那就不是题目的问题,那就不应该删除题目。
如果你确定是题目设置的问题那你可以删除题目的。要看你是调查过程中哪个环节出现了问题,针对出现问题的环节进行改正就行了。
如果说希望研究影响关系,比如研究“认知”,“态度” 分别对于“行为”的影响关系,此时可考虑使用回归分析,线性回归是将一系列影响因素和结果进行一个拟合,拟合出一个方程(非线性回归就没有方程,人脑就类似一个非线性回归),然后通过将这个方程应用到其他同类事件中,可以进行预测,所谓回归,就是向某个理想的状态或平衡状态的趋向发展,通过回归可以找出哪些影响因素,对结果的影响规律。
毕业论文问卷调查制作方法:
1、设计问卷。首先你要知道自己研究的主体,比如你研究的主体是某小学的英语课堂学习情况,那么你最低需要设计两份问卷,问卷一针对老师,问卷二针对学生。同时你也可以采用对比分析法或者访谈法,在收集其他方面的数据跟资料。
2、问卷设计一般本科10-15道题,一份问卷,硕士一般15-25道题一份问卷,题不要多,不要重复提问,可以细分。
题目设计多为单选题,多选题尽力少一点,不然论文分析不好写,此外,还需要注意分数档位的设计,像是1-10分,这样其实你统计完了就是十个表格,而且相差不大,最好可以是不满意,一般,满意,非常满意。
3、问卷设计完成后发放收集数据。第一种就是打印出来,去你需要调研的地方发放,一般本科生在这个方面难度比较大,除非是平时就有这方面经验的同学,因为这个需要时间,而且很多人不愿意给陌生人填写问卷,因此收集起来比较困难。
第二种采用网上问卷统计方式,比如:问卷星,调查派等,在网上发放,然后回收,上面会显示调查结果。回头你把彩色表格改成三线格,可以直接用于论文中。也可以找其他好用的问卷软件。
4、当你的问卷回收率高于75%,那么你这个问卷就可以作为毕业论文的问卷分析使用了,如果低于75%则不能,一般学校要求回收率不低于90%。也就是十个人中,最低有九个给你填写了问卷。
5、应用于论文中,在统计数据与分析环节、问题凸显现状环节、常规类分析环节(比如根据这个问卷调查的结果你发现了哪些影响因素很重要等)、结果分析类环节(比如根据这个问卷调查的结果,你能给出什么建议)。
一、学习背景
本科学了四年文科专业,除了形式逻辑外几乎没再接触过与理科搭边的东西。想借着毕业论文学一点数据分析的东西,知网上找了几篇相关文献,以为数据分析很简单,于是跟导师定了题开始着手做。
二、问卷编制+数据分析类论文框架
(一)低阶版:非专业,要求低,不需要用spss,调研规模200+即可。
如果时间相对紧张,不想在毕业论文上花过多时间,建议采用低阶版即可,字数也绝对够。知网上“问卷编制+数据分析”类的文章除少部分期刊论文,大多数都是硕博论文,看看文献综述即可,不要用他们的数据分析框架,这是高阶版需要考虑的。
引言,研究背景写完,就写研究综述。把需要研究的变量列出来分别写研究综述,记得加上一些国外的研究,引用一些外文文献。接下来,简单地说一下自己如何编制的问卷,如何发放的问卷(线上/线下),回收问卷的情况。然后写样本情况,可以列一个大表格,内容包括哪类人有多少个,占百分之多少。接下来就是对数据结果的分析,用例如“A越...,B就越...”、“C的总体水平较低/高”、“D的....比E的....水平要高”的句式,找出一些规律即可。最后就可以写讨论、结论、总结对策建议了。
(二)高阶版:比较专业,要求高,不确定因素大(比如数据可能真的拟合不了模型),需要用spss statistics 和 amos。
采用高阶版不仅对人有要求,对数据也有要求。如果你没有把握自己能拿到样本较大的数据,也没有把握帮你填问卷的人是认真的,还是谨慎尝试为好,免得前面都做得很好,最后卡在模型拟合或者相关分析之类。大多数本科毕业论文的同学都是用问卷星,让小伙伴、家长等帮扩,这个样本量可能不会很大,而且如果题目比较多,不排除会出现开始东一个西一个乱填的情况。
以上内容就是青藤小编关于本科毕业论文做问卷和数据分析应该怎么着手的相关分享,希望对小伙伴们有所帮助,想要了解更多毕业论文相关内容,欢迎大家及时在本平台进行查看哦!