您当前的位置:首页 > 发表论文>论文发表

图像检测最新论文

2023-03-10 14:12 来源:学术参考网 作者:未知

图像检测最新论文

随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!

图像识别技术研究综述

摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。

关键词:图像处理;图像识别;成像

中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02

图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。

1 图像处理技术

图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。

1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。

2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。

3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。

4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。

5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。

2 图像识别技术

图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:

2.1 指纹识别

指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。

2.2 人脸识别   目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。

2.3 文字识别

文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。

3 结束语

人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。

参考文献:

[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.

[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.

[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.

[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.

[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.

[6] Sanderson C,Paliwal K K.Information Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.

点击下页还有更多>>>图像识别技术论文

医学影像的论文

关于医学影像的论文范文

医学影像是指为了医疗或医学研究,对人体或人体某部分,以非侵入方式取得内部组织影像的技术与处理过程。下面,我为大家分享关于医学影像的论文,希望对大家有所帮助!

前 言

数字图像处理技术以当前数字化发展为基础, 逐渐衍生出的一项网络处理技术, 数字图像处理技术可实现对画面更加真实的展示。 在医学中,随着数字图像处理技术的渗透,数字图像将相关的病症呈现出来, 并通过处理技术对画面上相关数据进行处理,这种医疗手段,可大幅提升相关病症的治愈率,实现更加精准治疗的疗效。 在医学中医学影像广泛用于以下几方面之中,其中包括 CT(计算机 X 线断层扫描)、PET(正电子发射断层成像)、MRI(核磁共振影像)以及 UI(超声波影像)。 数字图像处理技术在技术发展基础上,其应用的范围将会在逐渐得到扩展,应用成效将会进一步得到提升。

1 关键技术在数字图像处理中的应用

医学影像中对于数字图像的处理, 通常是将数字图像转化成为相关数据,并针对相关数据呈现的结果,对患者病症进行分析,在对数字图像处理中,存在一定的关键技术,这些关键技术直接影响着整个医疗治疗与检查。

1.1 图像获取

图像获取顾名思义将医患的相关数据进行整理, 在进行数字图像检测时,得出的相关图像,在获取相关图像后,经过计算机的转变,将图像以数据的形式进行处理,最后将处理结果呈现出来。 在计算机摄取图像中,通过光电的转换,以数字化的形式展现出来, 数字图像处理技术还可实现将分析的结果作为医疗诊断的依据,进行保存[1].

1.2 图像处理

在运用数字图像获取相关图像后,需对图像进行处理,如压缩处理、编码处理,将所有运行的数据进行整理,将有关的数据进行压缩,并将相关编码进行处理,如模型基编码处理、神经网络编码处理等。

1.3 图像识别与重建

在经过图像复原后,将图像进行变换,在进行图片分析后分割相关图像,测量图像的区域特征,最后实现图像设备与呈现,在重建图像后,进行图像配准。

2 医学影像中数字图像处理技术

2.1 数字图像处理技术的辅助治疗

当前医学图像其中包括计算机 X 线断层扫描、 正电子发射断层成像、核磁共振影像以及超声波影像,在医疗治疗中,可根据相关数据的组建,进而实现几何模式的呈现,如 3D,还原机体的各项组织中,对于细小部位可实现放大观察,可实现医生定量认识,更加细致的观察病变处,为接下来的医疗治疗提供帮助。 例如在核磁共振影像治疗中, 首先设定一定的磁场,通过无线电射频脉冲激发的'方式,对机体中氢原子核进行刺激,在运行过程中产生共振,促进机体吸收能力,帮助查找病症所在[2].

2.2 提升放射治疗的疗效

在医疗中, 运用数字图像处理技术即可实现对患病处的观察,也可实现对病患处的治疗,这种治疗方式常见于肿瘤或癌症病变的放射性治疗。 在进行治疗前, 首先定位于病患方位,在准确定位后,借助数字图像处理技术,全方位的计划治疗方案,并在此基础上对病患处进行治疗。 例如在治疗肿瘤癌症等病变之处,利用数字图像排查病变以外机体状况,降低手术风险。

2.3 加深对脑组织以其功能认识

脑组织是人体机能运转的核心, 在脑组织中存在众多复杂的结构,因此想要实现对脑组织的功能认识,必须对脑组织进行全方位的观测,深层探析其各项组织结构。 近些年随着医疗技术的提升,数字图像处理技术被运用到医学之中,数字图像处理技术可实现透过大脑皮层对脑组织进行全方位观测,最后立体的呈现出脑组织中各项机构的运作状况[3]. 例如功能性磁共振成像即 FMRI,这种成像可对机体大脑皮层的活动状况进行检测, 还可实时跟踪信号的改变, 其高清的时间分辨率,为当代医疗提供了众多帮助。

2.4 实现了数字解剖功能

数字解剖即虚拟解剖, 这种解剖行为需以高科技为依托从力学、视觉等各方面,通过虚拟人资源得建立,透析机体各项组织结构,实现对虚拟人的解剖,增加对机体的认识,真实的还原解剖学相关知识,这种手段对于医疗教学、解剖研究具有重要的影响作用。

3 结 论

综上所述, 数字图像处理技术在医学影像中具有重要的应用价值,其技术的发展为医疗技术提供了进步的平台,也为数字图像处理技术的发展提供了应用空间, 这种结合的方式既是社会发展的要求,也是时代进步的趋势。

参考文献:

[1]张瑞兰,华 晶,安巍力,刘迎九。数字图像处理在医学影像方面的应用[J].医学信息,2012,03:400~401.

[2]刘 磊,JINChen-Lie.计算机图像处理技术在医学影像学上的应用[J].中国老年学杂志,2012,24:5642~5643.

[3]李 杨,李兴山,何常豫,孟利军。数字图像处理技术在腐蚀科学中的应用研究[J].价值工程,2015,02:51~52.

目标检测算法经典论文回顾(一)

论文名称:Rich feature hierarchies for accurate object detection and semantic segmentation

提出时间:2014年

论文地址:

针对问题:

从Alexnet提出后,作者等人思考如何利用卷积网络来完成检测任务,即输入一张图,实现图上目标的定位(目标在哪)和分类(目标是什么)两个目标,并最终完成了RCNN网络模型。

创新点:

RCNN提出时,检测网络的执行思路还是脱胎于分类网络。也就是深度学习部分仅完成输入图像块的分类工作。那么对检测任务来说如何完成目标的定位呢,作者采用的是Selective Search候选区域提取算法,来获得当前输入图上可能包含目标的不同图像块,再将图像块裁剪到固定的尺寸输入CNN网络来进行当前图像块类别的判断。

参考博客: 。

论文题目:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks

提出时间:2014年

论文地址:

针对问题:

该论文讨论了,CNN提取到的特征能够同时用于定位和分类两个任务。也就是在CNN提取到特征以后,在网络后端组织两组卷积或全连接层,一组用于实现定位,输出当前图像上目标的最小外接矩形框坐标,一组用于分类,输出当前图像上目标的类别信息。也是以此为起点,检测网络出现基础主干网络(backbone)+分类头或回归头(定位头)的网络设计模式雏形。

创新点:

在这篇论文中还有两个比较有意思的点,一是作者认为全连接层其实质实现的操作和1x1的卷积是类似的,而且用1x1的卷积核还可以避免FC对输入特征尺寸的限制,那用1x1卷积来替换FC层,是否可行呢?作者在测试时通过将全连接层替换为1x1卷积核证明是可行的;二是提出了offset max-pooling,也就是对池化层输入特征不能整除的情况,通过进行滑动池化并将不同的池化层传递给后续网络层来提高效果。另外作者在论文里提到他的用法是先基于主干网络+分类头训练,然后切换分类头为回归头,再训练回归头的参数,最终完成整个网络的训练。图像的输入作者采用的是直接在输入图上利用卷积核划窗。然后在指定的每个网络层上回归目标的尺度和空间位置。

参考博客:

论文题目:Scalable Object Detection using Deep Neural Networks

提出时间:2014年

论文地址:

针对问题:

既然CNN网络提取的特征可以直接用于检测任务(定位+分类),作者就尝试将目标框(可能包含目标的最小外包矩形框)提取任务放到CNN中进行。也就是直接通过网络完成输入图像上目标的定位工作。

创新点:

本文作者通过将物体检测问题定义为输出多个bounding box的回归问题. 同时每个bounding box会输出关于是否包含目标物体的置信度, 使得模型更加紧凑和高效。先通过聚类获得图像中可能有目标的位置聚类中心,(800个anchor box)然后学习预测不考虑目标类别的二分类网络,背景or前景。用到了多尺度下的检测。

参考博客:

论文题目:DeepBox: Learning Objectness with Convolutional Networks

提出时间:2015年ICCV

论文地址:

主要针对的问题:

本文完成的工作与第三篇类似,都是对目标框提取算法的优化方案,区别是本文首先采用自底而上的方案来提取图像上的疑似目标框,然后再利用CNN网络提取特征对目标框进行是否为前景区域的排序;而第三篇为直接利用CNN网络来回归图像上可能的目标位置。

创新点:

本文作者想通过CNN学习输入图像的特征,从而实现对输入网络目标框是否为真实目标的情况进行计算,量化每个输入框的包含目标的可能性值。

参考博客:

论文题目:AttentionNet: AggregatingWeak Directions for Accurate Object Detection

提出时间:2015年ICCV

论文地址:

主要针对的问题:

对检测网络的实现方案进行思考,之前的执行策略是,先确定输入图像中可能包含目标位置的矩形框,再对每个矩形框进行分类和回归从而确定目标的准确位置,参考RCNN。那么能否直接利用回归的思路从图像的四个角点,逐渐得到目标的最小外接矩形框和类别呢?

创新点:

通过从图像的四个角点,逐步迭代的方式,每次计算一个缩小的方向,并缩小指定的距离来使得逐渐逼近目标。作者还提出了针对多目标情况的处理方式。

参考博客:

论文题目:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

提出时间:2014年

论文地址:

针对问题:

如RCNN会将输入的目标图像块处理到同一尺寸再输入进CNN网络,在处理过程中就造成了图像块信息的损失。在实际的场景中,输入网络的目标尺寸很难统一,而网络最后的全连接层又要求输入的特征信息为统一维度的向量。作者就尝试进行不同尺寸CNN网络提取到的特征维度进行统一。

创新点:

作者提出的SPPnet中,通过使用特征金字塔池化来使得最后的卷积层输出结果可以统一到全连接层需要的尺寸,在训练的时候,池化的操作还是通过滑动窗口完成的,池化的核宽高及步长通过当前层的特征图的宽高计算得到。原论文中的特征金字塔池化操作图示如下。

参考博客 :

论文题目:Object detection via a multi-region & semantic segmentation-aware CNN model

提出时间:2015年

论文地址:

针对问题:

既然第三篇论文multibox算法提出了可以用CNN来实现输入图像中待检测目标的定位,本文作者就尝试增加一些训练时的方法技巧来提高CNN网络最终的定位精度。

创新点:

作者通过对输入网络的region进行一定的处理(通过数据增强,使得网络利用目标周围的上下文信息得到更精准的目标框)来增加网络对目标回归框的精度。具体的处理方式包括:扩大输入目标的标签包围框、取输入目标的标签中包围框的一部分等并对不同区域分别回归位置,使得网络对目标的边界更加敏感。这种操作丰富了输入目标的多样性,从而提高了回归框的精度。

参考博客 :

论文题目:Fast-RCNN

提出时间:2015年

论文地址:

针对问题:

RCNN中的CNN每输入一个图像块就要执行一次前向计算,这显然是非常耗时的,那么如何优化这部分呢?

创新点:

作者参考了SPPNet(第六篇论文),在网络中实现了ROIpooling来使得输入的图像块不用裁剪到统一尺寸,从而避免了输入的信息丢失。其次是将整张图输入网络得到特征图,再将原图上用Selective Search算法得到的目标框映射到特征图上,避免了特征的重复提取。

参考博客 :

论文题目:DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers

提出时间:2015年

论文地址:

主要针对的问题:

本文的作者观察到CNN可以提取到很棒的对输入图像进行表征的论文,作者尝试通过实验来对CNN网络不同层所产生的特征的作用和情况进行讨论和解析。

创新点:

作者在不同的激活层上以滑动窗口的方式生成了假设,并表明最终的卷积层可以以较高的查全率找到感兴趣的对象,但是由于特征图的粗糙性,定位性很差。相反,网络的第一层可以更好地定位感兴趣的对象,但召回率降低。

论文题目:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

提出时间:2015年NIPS

论文地址:

主要针对的问题:

由multibox(第三篇)和DeepBox(第四篇)等论文,我们知道,用CNN可以生成目标待检测框,并判定当前框为目标的概率,那能否将该模型整合到目标检测的模型中,从而实现真正输入端为图像,输出为最终检测结果的,全部依赖CNN完成的检测系统呢?

创新点:

将当前输入图目标框提取整合到了检测网络中,依赖一个小的目标框提取网络RPN来替代Selective Search算法,从而实现真正的端到端检测算法。

参考博客 :

医学影像技术论文

医学影像技术论文范文

在日常学习、工作生活中,大家都经常接触到论文吧,论文是学术界进行成果交流的工具。你写论文时总是无从下笔?以下是我帮大家整理的医学影像技术论文,欢迎阅读,希望大家能够喜欢。

【摘要】 医学图像在临床应用或科研中的物理问题、算法和软硬件设计操作等,是医学物理学的重要分支。医学影像是人体信息的载体,可用于教学和科研、治疗和疾病诊断。

治疗中的医学影像可以用于制定治疗计划、在治疗过程实施影像监督,以及通过对治疗监督是采集的数据的图像重建实现对治疗计划的验证。当前医学影像的世界前沿是功能成像

主要内容是对人的生理功能和心理功能成像。这些成像方法和技术的发展以及在医疗界中的广泛使用,必将引起医学领域研究和新的治疗方案的革命。

【关键词】 医学影像;影响物理;成像技术

1引言

人体成像包括对健康人的成像和对病人的成像,对于前者的成像主要用于科研和教学,后者主要用于医学临床诊断和治疗。医学影像物理和技术是医学物理学的重要分支,研究的对象包括了所有人体成像。

目前临床广泛使用的模态按照成像时使用的物质波不同,分为X射线成像、γ射线成像、磁共振成像和超声成像。

2对目前各种医学成像模态现状的分析

2.1X射线成像

X射线成像模态分为平面X射线成像和断层成像。人体不同器官和组织对X射线的吸收可以用组织密度进行表征,因此,可以利用平面x射线、x射线照相术对人体内脏器官和骨骼的损伤和病灶进行诊断和定位

同时也把胶片带进了医学领域。随着x射线显像增强技术的发展,x射线的血管造影术和其他脏器的专用x线机相继诞生,扩大了x射线成像的应用范围。平面x射线成像的未来发展方向是数字化的x光机技术其中,x线机是全世界的发展方向,但是其价格使得大多数用户望而怯步。

作为传统影像技术中最为成熟的成像模式之一的x射线断层成像,其速度对于心脏动态成像完全没有问题,加上显像增强剂,还可以对用于血管病变及其血脑屏障是否被病灶破坏进行检查,属于功能成像的范畴。当前,三维控件x射线断层成像的实验室样机已经问世,将会为x射线成像带来新的生命力。

2.2核磁共振成像

目前,各种各样的核磁共振设备产品已经大量进入市场。核磁共振成像集中体现了各种高新技术在医学成像设备中的应用。目前核磁共振主要应用包括人脑认知功能成像,用于揭示大脑工具机制的认知心理实验测量。

2.3核医学成像

核医学成像包括平面和断层成像两种方式。目前,以单光子计算机断层成像和正电子断层成像为主,为动物正电子断层成像主要是用于基础研究,而平面的γ相机已经处于被淘汰的水平。

核医学成像设备可以定量地检测到由于基因突变而引起的大分子运动紊乱继而引起的脏器功能变化,例如代谢紊乱、血流变化等。这是其他设备如超声波检查不可能完成的任务。

这就是临床医学上所说的早期诊断,核医学影像设备能够快速发展归功于此。但是核医学成像存在空间分辨率差、病理和周围组织的相互关系很难准确定位的确定,因此,还需要医学物理工作的不懈努力。

2.4超声波成像

超声波是非电离辐射的成像模态,以二维成像的功能为主,也包括平面和断层成像两类产品。超声波成像由于其安全可靠、价格低廉,多以在诊断、介入治疗和预后影像检测中得到发展。

目前,超声波设备已有超过x射线成像的势头。同样,超声波成像也存在一定的缺点,如图像对比度差、信噪比不好、图像的重复性依赖于操作人员等。

3关于医学软件问题

3.1基本情况分析

成像的硬件设备要完成功能离不开医学软件的支持,对于这些医学软件按照和硬件设备的关系,可分为三个层次:

第一层,工作和硬件紧密结合的软件。主要功能是负责成像设备的运动控制,对数据的采集,图像预处理和重建,完成数据分析。

第二层,主要负责对医疗器械产生的数据进行分析、处理软件。这种软件的应用需要来自医学物理人员,软件编程人员和医生三方的合作,目前,由于我国还没有建立这种三方合作机制,这类软件应用情况明显滞后。

第三层,主要功能是完成医学信息的整合的软件,用于医疗过程中医疗信息,医学工作的管理。例如PACS。这种软件也需要医生的参与,但是并没有依赖性。

3.2PACS

PACS是医疗发展信息化的体现,是医学影像技术集成管理和开拓影像资源应用范围的重要技术手段。PACS将医学影像中的各种软件和图像工作站连接起来,使之成为局域网中的节点,实现了资源的共享。不同科室的医生在完成对病人的信息收集和诊断后可以完成信息的录入。还可以利用商业设备上采集的数据运用于病人的诊疗中,结合数据和医学影像,对诊断信息综合处理,以此提高诊断的准确率。

4医学影像物理和技术学科今后的发展

虽然存在各种不同的医学影像模态,但是目标只有一个,即为了更好的进行医学研究诊断,随着物理和计算机技术的发展,医学影像技术会随之提高。为了更好的为医疗服务,在今后的发展中,医学影响物理和技术学科还需在以下几方面继续努力。

第一,用于成像的物质波产生装置还需要不断进行提升,为更好的满足成像需求,在提高波源产生物质波的同时,还需要改变物质波的束流品质;

第二,将物质波和人体组织发生相互作用的规律模型化,为减少误诊率和定位误差,把模型参数的最佳化,改善从影像中提取信息的质量和速度。同时努力消除探测中的噪声和伪影;

第三,把探测的信号收集,放大、成形实现数字化;

第四,为满足影像诊断和治疗中的监督需要,高质量的实现图像重建和显示等。

在科学技术方面,开展医学影像在脑功能成像研究中的应用、临床诊断中的应用等,有利于拓宽医学影像的市场。

5结语

本文介绍了当今主流的几种医学成像技术,对各种成像方式的优缺点进行了阐述,对日后医学影像物理和技术的发展提出了自己的看法,希望能为那些为医疗服务的工作者们提供一些参考。随着医学影像物理和技术的不断进步,医疗服务行业的科学化加速发展。

参考文献

[1]黄浩,施红,陈伟炜,俞允,林多,许茜,俞向梅,洪全兴,魏国强.医学影像技术学专业教育的问题与思考[J].教育教学论坛.2013(11)

[2]彭文献,黄敏,罗敏.基于岗位需求培养医学影像技术学生专业意识的探讨[J].浙江医学教育.2011(03)

【摘 要】随着科学技术的进步,医学影像技术在医疗领域中的地位将更为重要。本文谈了医学影像技术发展史,总结了近年来取得的新进展。

【关键词】医学影像技术

医学影像技术主要是应用工程学的概念及方法,并基于工程学原理发展起来的一种技术,其实医学影像技术还是医学物理的重要组成部分,它是用物理学的概念和方法及物理原理发展起来的先进技术手段。医学影像信息包括传统X线、CT、MRI、超声、同位素、电子内窥镜和手术摄影等影像信息。它们是窥测人体内部各组织,脏器的形态,功能及诊断疾病的重要方法。随着医疗卫生事业的.发展,以胶片为主要方式的显示、存储、传递X-ray摄像技术已不能满足临床诊断和治疗发展的需求,医疗设备的数字化要求日益强烈,全数字化放射学、图像导引和远程放射医学将是放射医学影像发展的必然趋势。

1 传统摄影技术在摸索中进行

1.1 计算机X线摄影

X射线是发展最早的图像装置。它在医学上的应用使医生能观察到人体内部结构,这为医生进行疾病诊断提供了重要的信息。在1895年后的几十年中,X射线摄影技术有不少的发展,包括使用影像增强管、增感屏、旋转阳极X射线管及断层摄影等。但是,由于这种常规X射线成像技术是将三维人体结构显示在二维平面上,加之其对软组织的诊断能力差,使整个成像系统的性能受到限制。从50年代开始,医学成像技术进入一个革命性的发展时期,新的成像系统相继出现。70年代早期,由于计算机断层技术的出现使飞速发展的医学成像技术达到了一个高峰。到整个80年代,除了X射线以外,超声、磁共振、单光子、正电子等的断层成像技术和系统大量出现。这些方法各有所长,互相补充,能为医生做出确切诊断,提供愈来愈详细和精确的信息。在医院全部图像中X射线图像占80%,是目前医院图像的主要来源。在本世纪50年代以前,X射线机的结构简单,图像分辨率也较低。在50年代以后,分辨率与清晰度得到了改善,而病人受照射剂量却减小了。时至今日,各种专用X射线机不断出现,X光电视设备正在逐步代替常规的X射线透视设备,它既减轻了医务人员的劳动强度,降低了病人的X线剂量;又为数字图像处理技术的应用创造了条件。随着计算机的发展数字成像技术越来越广泛地代替传统的屏片摄影现阶段,用于数字摄影的探测系统有以下几种: (1)存储荧光体增感屏[计算机X射线摄影系统(computer Radiography.CR)]。

(2)硒鼓探测器。(3)以电荷耦合技术(charge Coupled Derices.CCD)为基础的探测器 。(4)平板探测器(Flat panel Detector)a:直接转换(非晶体硒)b:非直接转换(闪烁晶体)。这些系统实现了自动化、遥控化和明室化,减少了操作者的辐射损伤。

1.2 X-CT

CT的问世被公认为伦琴发现X射线以来的重大突破,因为他标志了医学影像设备与计算机相结合的里程碑。这种技术有两种模式,一种是所谓“先到断层成像”(FAT),另一种模式是“光子迁移成像”(PMI)。

1.3 磁共振成像

核磁共振成像,现称为磁共振成像。它无放射线损害,无骨性伪影,能多方面、多参数成像,有高度的软组织分辨能力,不需使用对比剂即可显示血管结构等独特的优点。

1.4 数字减影血管造影

它是利用计算机系统将造影部位注射造影剂的透视影像转换成数字形式贮存于记忆盘中,称作蒙片。然后将注入造影剂后的造影区的透视影像也转换成数字,并减去蒙片的数字,将剩余数字再转换成图像,即成为除去了注射造影剂前透视图像上所见的骨骼和软组织影像,剩下的只是清晰的纯血管造影像。

2 数字化摄影技术

数字X射线摄影的成像技术包括成像板技术、平行板检测技术和采用电荷耦合器或CMOS器件以及线扫描等技术。成像板技术是代替传统的胶片增感屏来照相,然后记录于胶片的一种方法。平行板检测技术又可分为直接和间接两种结构类型。直接FPT结构主要是由非品硒和薄膜半导体阵列构成的平板检测器。间接FPT结构主要是由闪烁体或荧光体层加具有光电二极管作用的非品硅层在加TFT阵列构成的平板检测器。电荷耦合器或CMOS器件以及线扫描等技术结构上包括可见光转换屏,光学系统和CCD或CMOS。

3 成像的快捷阅读

由于成像方法的改进,除了在成像质量方面有明显提高外,图像数量也急剧增加。例如随着多层CT的问世,每次CT检查的图像可多达千幅以上,因此,无法想象用传统方法能读取这些图像中蕴含的动态信息。这时在显示器上进行的“软阅读”正在逐渐显示出其无可比拟的优越性。软拷贝阅读是指在工作站图像显示屏上观察影像,就X线摄影而言这种阅读方式能充分利用数字影像大得多的动态范围,获取丰富的诊断信息。

4 PACS的广阔发展空间

随着计算机和网络技术的飞速发展,现有医学影像设备延续了几十年的数据采集和成像方式,已经远远无法满足现代医学的发展和临床医生的需求。PACS系统应运而生。PACS系统是图像的存储、传输和通讯系统,主要应用于医学影像图像和病人信息的实时采集、处理、存储、传输,并且可以与医院的医院信息管理系统放射信息管理系统等系统相连,实现整个医院的无胶片化、无纸化和资源共享,还可以利用网络技术实现远程会诊,或国际间的信息交流。PACS系统的产生标志着网络影像学和无胶片时代的到来。完整的PACS系统应包含影像采集系统,数据的存储、管理,数据传输系统,影像的分析和处理系统。数据采集系统是整个PACS系统的核心,是决定系统质量的关键部分,可将各种不同成像系统生成的图象采入计算机网络。由于医学图像的数据量非常大,数据存储方法的选择至关重要。光盘塔、磁带库、磁盘陈列等都是目前较好的存储方法。数据传输主要用于院内的急救、会诊,还有可以通过互联网、微波等技术,以数据的远距离传输,实现远程诊断。影像的分析和处理系统是临床医生、放射科医生直接使用的工具,它的功能和质量对于医生利用临床影像资源的效率起了决定作用。综上所述,PACS技术可分为三个阶段,(1)用户查找数据库;(2)数据查找设备;(3)图像信息与文本信息主动寻找用户。

5 技术——分子影像

随着医学影像技术的飞速发展,在今天已具有显微分辨能力,其可视范围已扩展至细胞、分子水平,从而改变了传统医学影像学只能显示解剖学及病理学改变的形态显像能力。由于与分子生物学等基础学科相互交叉融合,奠定了分子影像学的物质基础。Weissleder氏于1999年提出了分子影像学的概念:活体状态下在细胞及分子水平应用影像学对生物过程进行定性和定量研究。

分子成像的出现,为新的医学影像时代到来带来曙光。基因表达、治疗则为彻底治愈某些疾病提供可能,因此目前全世界都在致力于研究、开创分子影像与基因治疗,这就是21世纪的影像学。 新的医学影像的观察要超出目前的解剖学、病理学概念,要深入到组织的分子、原子中去。其关键是借助神奇的探针--即分子探针。到目前为止,分子影像学的成像技术主要包括MRI、核医学及光学成像技术。一些有识之士认为;由于诊治兼备的介入放射学已深入至分子生物学的层面,因此,分子影像学应包括分子水平的介入放射学研究。

6 学科的交叉结合

交叉学科、边缘学科是当今科学发展的趋势。影像技术学最邻近的学科应为影像诊断学。前者致力于解决信息的获取、存储、传输、管理及研发新的技术方法;后者则将信息与知识、经验结合,着重于信息的内容,根据影像做出正常解剖结构的辨认及病变的诊断。两者相辅相成,互为依托。所以,影像技术学的发展离不开影像诊断学更密切地沟通与结合将为提高、拓展原有成像方式及开辟新的成像方式做出有益的贡献。医用影像诊断装置用于详细地观察人体内部各器官的结构,找出病灶的位置毫克大小,有的还可以进行器

官功能的判断 。还有医用影像诊断装备情况,已成了衡量医院现代化水平的标志。

7 浅谈医学影像技术的下一个热点

医疗保健事业在经济上的窘迫使得90年代以来,成为一个没有大规模推广一种新的影像技术的、相对沉寂的时期,延续了一些现有影像技术的发展,使得他们中至今还没有一种影像技术能对影像学产生巨大的影响。随着科技的发展,最近逐渐发展起来的一批有希望的影像技术。如:磁共振谱(MRS),正电子发射成像(PET)单光子发射成像(SPECT),阻抗成像(EIT)和光学成像(OCT或NRI)。他们有可能很快成为大规模应用的影像技术,将为脑、肺、乳房及其他部位的成像提供新的信息。

7.1 磁源成像

人体体内细胞膜内外的离子运动可形成生物电流。这种生物电流可产生磁现象,检测心脏或脑的生物电流产生的磁场可以得到心磁图或脑磁图。这类磁现象可反映出电子活动发生的深度,携带有人体组织和器官的大量信息。

7.2 PET和SPECT

单光子发射成像(SPECT)和正电子成像(PET)是核医学的两种CT技术。由于它们都是接受病人体内发射的射线成像,故统称为发射型计算机断层成像(ECT)。ECT依据核医学的放射性示踪原理进行体内诊断,要在人体中使用放射性核素。ECT存在的主要问题是空间分辨率低。最近的技术发展可能促进推广ECT的应用。

7.3 阻抗成像(EIT)

EIT是通过对人体加电压,测量在电极间流动的电流,得到组织电导率变化的图像。 目的在于形成对体内某点阻抗的估计。这种技术的优点是,所采用的电流对人体是无害的,因而对成像对象无任何限制。这种技术的时间分辨率很好,因而可连续监测实际的应用,已实现以视频帧速的医用EIT的实验样机。

7.4 光学成像(OTC或NIR)

近期的一些实质性的进展表明,光学成像有可能在最近几年内发展成为一种能真正用于临床的影像设备。它的优点是:光波长的辐射是非离子化的,因而对人体是无伤害的,可重复曝光;它们可区分那些在光波长下具有不同吸收与散射,但不能由其它技术识别的软组织;天然色团所特有的吸收使得能够获得功能信息。它正在开辟它的临床领域。

7.5 MRS

MRS是一种无创研究人体组织生理化的极有用的工具。它所得到的生化信息可与人体组织代谢相关联,并表明它正常组织的方式有差别。目前MRS还没有常规用于临床,但已有大量技术正在进行正式适用。

上述的几个先进的技术,究竟哪一个能成为医学影像技术的热点,我们认为应要有最大效益、安全和经济是最为重要的。在逝去的20世纪,医学影像技术经历了从孕育、成长到发展的过程,回顾过去可以断言它在防治人类疾病及延长平均寿命方面是功不可没的。在一切“以人类为本”的21世纪中,人们将继续用医学影像技术来为人们的健康服务。

卷积神经网络CNN在图像识别问题应用综述(20191219)

这两天在公司做PM实习,主要是自学一些CV的知识,以了解产品在解决一些在图像识别、图像搜索方面的问题,学习的主要方式是在知网检索了6.7篇国内近3年计算机视觉和物体识别的硕博士论文。由于时间关系,后面还会继续更新图片相似度计算(以图搜图)等方面的学习成果    将这两天的学习成果在这里总结一下。你将会看到计算机视觉在解决特定物体识别问题(主要是卷积神经网络CNNs)的基础过程和原理,但这里不会深入到技术的实现层面。

计算机视觉(Computer vision)是一门研究如何使机器“看”的科学,更进一步的说,就是指用摄影机和计算机代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图像处理,用计算机处理成为更适合人眼观察或传送给仪器检测的图像。                                          ————维基百科   通常而言,计算机视觉的研究包括三个层次: (1)底层特征的研究:   这一层次的研究主要聚焦如何高效提取出图像对象具有判别性能的特征,具体的研究内容通常包括:物体识别、字符识别等 (2)中层语义特征的研究:    该层次的研究在于在识别出对象的基础上,对其位置、边缘等信息能够准确区分。现在比较热门的:图像分割;语义分割;场景标注等,都属于该领域的范畴 (3)高层语义理解:   这一层次建立在前两层的基础上,其核心在于“理解”一词。 目标在于对复杂图像中的各个对象完成语义级别的理解。这一层次的研究常常应用于:场景识别、图像摘要生成及图像语义回答等。   而我研究的问题主要隶属于底层特征和中层语义特征研究中的物体识别和场景标注问题。

人类的视觉工作模式是这样的:    首先,我们大脑中的神经元接收到大量的信息微粒,但我们的大脑还并不能处理它们。    于是接着神经元与神经元之间交互将大量的微粒信息整合成一条又一条的线。    接着,无数条线又整合成一个个轮廓。    最后多个轮廓累加终于聚合我们现在眼前看到的样子。   计算机科学受到神经科学的启发,也采用了类似的工作方式。具体而言,图像识别问题一般都遵循下面几个流程

(1)获取底层信息。获取充分且清洁的高质量数据往往是图像识别工作能否成功的关键所在   (2)数据预处理工作,在图像识别领域主要包括四个方面的技术:去噪处理(提升信噪比)、图像增强和图像修复(主要针对不够清晰或有破损缺失的图像);归一化处理(一方面是为了减少开销、提高算法的性能,另一方面则是为了能成功使用深度学习等算法,这类算法必须使用归一化数据)。   (3)特征提取,这一点是该领域的核心,也是本文的核心。图像识别的基础是能够提取出足够高质量,能体现图像独特性和区分度的特征。   过去在10年代之前我们主要还是更多的使用传统的人工特征提取方法,如PCA\LCA等来提取一些人工设计的特征,主要的方法有(HOG、LBP以及十分著名的SIFT算法)。但是这些方法普遍存在(a)一般基于图像的一些提层特征信息(如色彩、纹理等)难以表达复杂的图像高层语义,故泛化能力普遍比较弱。(b)这些方法一般都针对特定领域的特定应用设计,泛化能力和迁移的能力大多比较弱。   另外一种思路是使用BP方法,但是毕竟BP方法是一个全连接的神经网络。这以为这我们非常容易发生过拟合问题(每个元素都要负责底层的所有参数),另外也不能根据样本对训练过程进行优化,实在是费时又费力。   因此,一些研究者开始尝试把诸如神经网络、深度学习等方法运用到特征提取的过程中,以十几年前深度学习方法在业界最重要的比赛ImageNet中第一次战胜了SIFT算法为分界线,由于其使用权重共享和特征降采样,充分利用了数据的特征。几乎每次比赛的冠军和主流都被深度学习算法及其各自改进型所占领。其中,目前使用较多又最为主流的是CNN算法,在第四部分主要也研究CNN方法的机理。

上图是一个简易的神经网络,只有一层隐含层,而且是全连接的(如图,上一层的每个节点都要对下一层的每个节点负责。)具体神经元与神经元的作用过程可见下图。

在诸多传统的神经网络中,BP算法可能是性能最好、应用最广泛的算法之一了。其核心思想是:导入训练样本、计算期望值和实际值之间的差值,不断地调整权重,使得误差减少的规定值的范围内。其具体过程如下图:

一般来说,机器学习又分成浅层学习和深度学习。传统的机器学习算法,如SVM、贝叶斯、神经网络等都属于浅层模型,其特点是只有一个隐含层。逻辑简单易懂、但是其存在理论上缺乏深度、训练时间较长、参数很大程度上依赖经验和运气等问题。   如果是有多个隐含层的多层神经网络(一般定义为大于5层),那么我们将把这个模型称为深度学习,其往往也和分层训练配套使用。这也是目前AI最火的领域之一了。如果是浅层模型的问题在于对一个复杂函数的表示能力不够,特别是在复杂问题分类情况上容易出现分类不足的弊端,深度网络的优势则在于其多层的架构可以分层表示逻辑,这样就可以用简单的方法表示出复杂的问题,一个简单的例子是:   如果我们想计算sin(cos(log(exp(x)))),   那么深度学习则可分层表示为exp(x)—>log(x)—>cos(x)—>sin(x)

图像识别问题是物体识别的一个子问题,其鲁棒性往往是解决该类问题一个非常重要的指标,该指标是指分类结果对于传入数据中的一些转化和扭曲具有保持不变的特性。这些转化和扭曲具体主要包括了: (1)噪音(2)尺度变化(3)旋转(4)光线变化(5)位移

该部分具体的内容,想要快速理解原理的话推荐看[知乎相关文章] ( ),   特别是其中有些高赞回答中都有很多动图和动画,非常有助于理解。   但核心而言,CNN的核心优势在于 共享权重 以及 感受野 ,减少了网络的参数,实现了更快的训练速度和同样预测结果下更少的训练样本,而且相对于人工方法,一般使用深度学习实现的CNN算法使用无监督学习,其也不需要手工提取特征。

CNN算法的过程给我的感觉,个人很像一个“擦玻璃”的过程。其技术主要包括了三个特性:局部感知、权重共享和池化。

CNN中的神经元主要分成了两种: (a)用于特征提取的S元,它们一起组成了卷积层,用于对于图片中的每一个特征首先局部感知。其又包含很关键的阈值参数(控制输出对输入的反映敏感度)和感受野参数(决定了从输入层中提取多大的空间进行输入,可以简单理解为擦玻璃的抹布有多大) (b)抗形变的C元,它们一起组成了池化层,也被称为欠采样或下采样。主要用于特征降维,压缩数据和参数的数量,减小过拟合,同时提高模型的容错性。 (c*)激活函数,及卷积层输出的结果要经过一次激励函数才会映射到池化层中,主要的激活函数有Sigmoid函数、Tanh函数、ReLU、Leaky ReLU、ELU、Maxout等。

也许你会抱有疑问,CNN算法和传统的BP算法等究竟有什么区别呢。这就会引出区域感受野的概念。在前面我们提到,一个全连接中,较高一层的每个神经元要对低层的每一个神经元负责,从而导致了过拟合和维度灾难的问题。但是有了区域感受野和,每个神经元只需要记录一个小区域,而高层会把这些信息综合起来,从而解决了全连接的问题。

了解区域感受野后,你也许会想,区域感受野的底层神经元具体是怎么聚合信息映射到上一层的神经元呢,这就要提到重要的卷积核的概念。这个过程非常像上面曾提到的“神经元与神经元的联系”一图,下面给大家一个很直观的理解。

上面的这个过程就被称为一个卷积核。在实际应用中,单特征不足以被系统学习分类,因此我们往往会使用多个滤波器,每个滤波器对应1个卷积核,也对应了一个不同的特征。比如:我们现在有一个人脸识别应用,我们使用一个卷积核提取出眼睛的特征,然后使用另一个卷积核提取出鼻子的特征,再用一个卷积核提取出嘴巴的特征,最后高层把这些信息聚合起来,就形成了分辨一个人与另一个人不同的判断特征。

现在我们已经有了区域感受野,也已经了解了卷积核的概念。但你会发现在实际应用中还是有问题:   给一个100 100的参数空间,假设我们的感受野大小是10 10,那么一共有squar(1000-10+1)个,即10的六次方个感受野。每个感受野中就有100个参数特征,及时每个感受野只对应一个卷积核,那么空间内也会有10的八次方个次数,,更何况我们常常使用很多个卷积核。巨大的参数要求我们还需要进一步减少权重参数,这就引出了权重共享的概念。    用一句话概括就是,对同一个特征图,每个感受野的卷积核是一样的,如这样操作后上例只需要100个参数。

池化是CNN技术的最后一个特性,其基本思想是: 一块区域有用的图像特征,在另一块相似的区域中很可能仍然有用。即我们通过卷积得到了大量的边缘EDGE数据,但往往相邻的边缘具有相似的特性,就好像我们已经得到了一个强边缘,再拥有大量相似的次边缘特征其实是没有太大增量价值的,因为这样会使得系统里充斥大量冗余信息消耗计算资源。 具体而言,池化层把语义上相似的特征合并起来,通过池化操作减少卷积层输出的特征向量,减少了参数,缓解了过拟合问题。常见的池化操作主要包括3种: 分别是最大值池化(保留了图像的纹理特征)、均值池化(保留了图像的整体特征)和随机值池化。该技术的弊端是容易过快减小数据尺寸,目前趋势是用其他方法代替池化的作用,比如胶囊网络推荐采用动态路由来代替传统池化方法,原因是池化会带来一定程度上表征的位移不变性,传统观点认为这是一个优势,但是胶囊网络的作者Hinton et al.认为图像中位置信息是应该保留的有价值信息,利用特别的聚类评分算法和动态路由的方式可以学习到更高级且灵活的表征,有望冲破目前卷积网络构架的瓶颈。

CNN总体来说是一种结构,其包含了多种网络模型结构,数目繁多的的网络模型结构决定了数据拟合能力和泛化能力的差异。其中的复杂性对用户的技术能力有较高的要求。此外,CNN仍然没有很好的解决过拟合问题和计算速度较慢的问题。

该部分的核心参考文献: 《深度学习在图像识别中的应用研究综述》郑远攀,李广阳,李晔.[J].计算机工程与应用,2019,55(12):20-36.   深度学习技术在计算机图像识别方面的领域应用研究是目前以及可预见的未来的主流趋势,在这里首先对深度学习的基本概念作一简介,其次对深度学习常用的结构模型进行概述说明,主要简述了深度信念网络(DBN)、卷积神经网络(CNN)、循环神经网络(RNN)、生成式对抗网络(GAN)、胶囊网络(CapsNet)以及对各个深度模型的改进模型做一对比分析。

深度学习按照学习架构可分为生成架构、判别架构及混合架构。 其生成架构模型主要包括:   受限波尔兹曼机、自编码器、深层信念网络等。判别架构模型主要包括:深层前馈网络、卷积神经网络等。混合架构模型则是这两种架构的集合。深度学习按数据是否具有标签可分为非监督学习与监督学习。非监督学习方法主要包括:受限玻尔兹曼机、自动编码器、深层信念网络、深层玻尔兹曼机等。   监督学习方法主要包括:深层感知器、深层前馈网络、卷积神经网络、深层堆叠网络、循环神经网络等。大量实验研究表明,监督学习与非监督学习之间无明确的界限,如:深度信念网络在训练过程中既用到监督学习方法又涉及非监督学习方法。

[1]周彬. 多视图视觉检测关键技术及其应用研究[D].浙江大学,2019. [2]郑远攀,李广阳,李晔.深度学习在图像识别中的应用研究综述[J].计算机工程与应用,2019,55(12):20-36. [3]逄淑超. 深度学习在计算机视觉领域的若干关键技术研究[D].吉林大学,2017. [4]段萌. 基于卷积神经网络的图像识别方法研究[D].郑州大学,2017. [5]李彦冬. 基于卷积神经网络的计算机视觉关键技术研究[D].电子科技大学,2017. [6]李卫. 深度学习在图像识别中的研究及应用[D].武汉理工大学,2014. [7]许可. 卷积神经网络在图像识别上的应用的研究[D].浙江大学,2012. [8]CSDN、知乎、机器之心、维基百科

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页