您当前的位置:首页 > 发表论文>论文发表

图像检测顶论文

2023-02-28 10:24 来源:学术参考网 作者:未知

图像检测顶论文

随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!

图像识别技术研究综述

摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。

关键词:图像处理;图像识别;成像

中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02

图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。

1 图像处理技术

图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。

1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。

2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。

3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。

4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。

5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。

2 图像识别技术

图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:

2.1 指纹识别

指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。

2.2 人脸识别   目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。

2.3 文字识别

文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。

3 结束语

人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。

参考文献:

[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.

[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.

[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.

[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.

[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.

[6] Sanderson C,Paliwal K K.Information Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.

点击下页还有更多>>>图像识别技术论文

各位有没有数字图像处理方面的本科毕业论文题目

  数字图像处理是利用计算机对图像信息进行加工以满足人的视觉心理或者应用需求的行为,应用广泛,多用于测绘学、大气科学、天文学、美图、使图像提高辨识等。这里学术堂为大家整理了一些数字图像处理毕业论文题目,希望对你有用。

  1、基于模糊分析的图像处理方法及其在无损检测中的应用研究

  2、数字图像处理与识别系统的开发

  3、关于数字图像处理在运动目标检测和医学检验中若干应用的研究

  4、基于ARM和DSP的嵌入式实时图像处理系统设计与研究

  5、基于图像处理技术的齿轮参数测量研究

  6、图像处理技术在玻璃缺陷检测中的应用研究

  7、图像处理技术在机械零件检测系统中的应用

  8、基于MATLAB的X光图像处理方法

  9、基于图像处理技术的自动报靶系统研究

  10、多小波变换及其在数字图像处理中的应用

  11、基于图像处理的检测系统的研究与设计

  12、基于DSP的图像处理系统的设计

  13、医学超声图像处理研究

  14、基于DSP的视频图像处理系统设计

  15、基于FPGA的图像处理算法的研究与硬件设计

检测论文综述(一) : 从RCNN到Mask-RCNN

对于目标检测方向并不是特别熟悉,本文记录一下RCNN, fast-RCNN, faster-RCNN, mask-RCNN这4篇有关目标检测的论文笔记和学习心得。

R-CNN的意思就是Region based,主要思路就是根据一张图像,提取多个region,再将每个Region输入CNN来进行特征的提取。因此RCNN就可以分为 Region proposals , Feature extraction 两个主要部分,提取的特征就可以输入任意一个分类器来进行分类。 模型的流程图如下:

在训练的时候,首先使用的是已经训练好的CNN网络作为特征提取器,但是由于预训练是在分类数据集上,因此在应用到检测之前要做finetune。也就是说,为了将用ImageNet数据集训练的网络应用到新的任务(检测),新的数据集(region)上,作者将原来的CNN最后的1000类的fc层,更改为了 层, 代表待检测的物体的类别数。然后,对于所有的region,如果它和ground truth的重叠率大于0.5,就认为是正类。 对于分类器的训练,作者发现选择多大的IoU来区分正类和负类非常关键。并且,对于每一类,都会训练一个分类器。

框的回归非常重要,在对每一个region proposal使用分类器进行打分评价之后,作者使用一个回归器来预测一个新的框作为结果。这个回归器使用的特征是从CNN中提取的特征。回归器的训练中,输入是 region proposal 的 和ground truth的 ,目标是学习一种变换,使得region proposal通过该变换能够接近ground truth。同时,希望这种变换拥有尺度不变性,也就是说尺度变化的话,变换不会改变。 如下图所示,每一个regressor会学习一组参数,特征输入是pool 5的特征输出,拟合的目标是 。

Fast-RCNN 主要解决的问题是在RCNN中对于每一个region proposal都进行特征提取,会产生非常多的冗余计算,因此可以先对一张图像进行特征提取,再根据region proposal在相应的特征上进行划分得到对应region的特征(映射关系)。 这样便可以实现共享计算提高速度,但是与SPPnets不同,SPPnets在一副图像得到对应的特征后,从这张图像的特征上proposal对应的部分,采用空间金字塔池化,如下图:

RoI pooling的方法很简单,类似于空间金字塔pooling,它将proposal部分对应卷积层输出的特征(称之为RoI,因为用于做pooling的特征是 region of interest,也就是我们感兴趣的区域)划分成 块,然后对每一块求最大值,最终得到了一个 的特征图。可以看出,它只是空间金字塔pooling的一部分。 但是SPP-nets的空间金字塔也是可以求导的,那么它到底不好在哪里呢?因为当每一个RoI都可能来源于不同的图像的时候(R-CNN和SPPnets的训练策略是从一个batch的不同图像中,分别挑选一个proposal region),SPPNets的训练非常地低效,这种低效来源于在SPPnets的训练中,每个RoI的感受野都非常地大,很可能对应了原图的整个图像,因此,得到的特征也几乎对应了整张图像,所以输入的图像也就很大。 为了提高效率,Fast-RCNN首先选取 个图像,再从每个图像上选择 个RoI,这样的效率就比从每个图像提取一个RoI提高了 倍。

为了将分类和框回归结合起来,作者采用了多任务的loss,来进行联合的训练。具体来说就是将分类的loss和框回归的loss结合起来。网络的设计上非常直接,就是将RoI得到的特征接几个FC层后,分别接不同的输出层。对应于分类部分,特征会接一个softmax输出,用于分类,对于框回归部分,会接一个输出4维特征的输出层,然后分别计算loss,用于反向传播。loss的公式如下:

回归的target可以参考前面的R-CNN部分。

notes

为什么比fast还fast呢?主要原因是在这篇论文中提出了一个新的层:RPN(region proposal networks)用于替代之前的selective search。这个层还可以在GPU上运算来提高速度。 RPN的目的:

为了能够进行region proposal,作者使用了一个小的网络,在基础的卷积层输出的特征上进行滑动,这个网络输入大小为 ,输入后会映射(用 的卷积)为一个固定长度的特征向量,然后接两个并联的fc层(用 的卷积层代替),这两个fc层,一个为box-regressoin,一个为box-classification。如下图:

在每一个滑动窗口(可以参考 ),为了考虑到尽可能多的框的情况,作者设计了anchors来作为region proposal。anchors就是对于每一个滑动窗口的中心位置,在该位置对应的原图位置的基础上,按照不同的尺度,长宽比例框出 个不同的区域。然后根据这些anchors对应的原始图像位置以及区域,和ground truth,就可以给每一个滑动窗口的每一个anchor进行标记,也就是赋予label,满足一定条件标记为正类(比如和ground truth重叠大于一个值),一定条件为负类。对于正类,就可以根据ground truth和该anchor对应的原图的区域之间的变换关系(参考前面的R-CNN的框回归),得到回归器中的目标,用于训练。也就是论文中的loss function部分:

自然地,也就要求RPN的两个并联的FC层一个输出2k个值用于表示这k个anchor对应的区域的正类,负类的概率,另一个输出4k个值,用于表示框回归的变换的预测值。

对于整个网络的训练,作者采用了一种叫做 4-step Alternating Training 的方法。具体可以参考论文。

与之前的检测任务稍有不同,mask r-cnn的任务是做instance segmentation。因此,它需要对每一个像素点进行分类。 与Faster R-CNN不同,Faster R-CNN对每一个候选框产生两个输出,一个是类别,一个是bounding box的offset。Mask R-CNN新增加了一个输出,作为物体的mask。这个mask类似于ps中的蒙版。

与Faster R-CNN类似的是,Mask R-CNN同样采用RPN来进行Region Proposal。但是在之后,对于每一个RoI,mask r-cnn还输出了一个二值化的mask。

不像类别,框回归,输出都可以是一个向量,mask必须保持一定的空间信息。因此,作者采用FCN来从每个RoI中预测一个 的mask。

由于属于像素级别的预测问题,就需要RoI能够在进行特征提取的时候保持住空间信息,至少在像素级别上能够对应起来。因此,传统的取最大值的方法就显得不合适。 RoI Pooling,经历了两个量化的过程: 第一个:从roi proposal到feature map的映射过程。 第二个:从feature map划分成7*7的bin,每个bin使用max pooling。

为此,作者使用了RoIAlign。如下图

为了避免上面提到的量化过程

可以参考

作者使用ResNet作为基础的特征提取的网络。 对于预测类别,回归框,mask的网络使用如下图结构:

整体看完这几篇大佬的论文,虽说没有弄清楚每一个实现细节,但是大体上了解了算法的思路。可以看出,出发点都源于深度神经网络在特征提取上的卓越能力,因此一众大神试图将这种能力应用在检测问题中。从R-CNN中简单地用于特征提取,到为了提高速度减少计算的Fast R-CNN,再到为了将region proposal集成进入整个模型中,并且利用GPU加速的RPN,也就是Faster R-CNN。再到为了应用于instance segmentation任务中,设计的RoIAlign和mask。包括bounding box regression,pooling层的设计,训练方法的选择,loss的设计等等细节,无一不体现了大师们的思考和创造力。 可能在我们这些“拿来”者的眼中,这些方法都显得“理所应当”和巧妙,好用,但是,它们背后隐藏的选择和这些选择的思考却更值得我们学习。 以及,对待每一个问题,如何设计出合理的解决方案,以及方案的效率,通用性,更是应该我们努力的方向。

计算机图形图像处理相关的论文

随着现代化科学技术的快速发展,计算机图形图像处理技术也越来越成熟,为人们的生活、工作和学习提供了极大的便利。然而我们该如何写有关计算机图形图像处理的论文呢?下面是我给大家推荐的计算机图形图像处理相关的论文,希望大家喜欢!

《计算机图形图像处理技术分析》

摘 要:随着现代化科学技术的快速发展,计算机图形图像处理技术也越来越成熟,Photoshop、CAE、CAD等计算机图形图像处理软件被广泛的应用在各个领域,为人们的生活、工作和学习提供了极大的便利。在未来的发展过程中,要不断改进和完善计算机图形图像处理技术,推动计算机图形图像处理技术更加广泛的应用和发展。本文简要介绍了计算机图形图像处理技术,阐述了计算机图形图像处理技术的应用。

关键词:计算机;图形图像;处理技术

中图分类号:TP391.41

计算机图形图像技术以计算机网络系统为平台,实现了人们主观意识中图像和真实存在的图形之间的相互结合,各种各样的计算机图形图像处理软件,为人们的主观处理和操作提供了很多的便利,随着现代化科学技术的快速发展,计算机图形图像处理技术的应用前景会更加广阔。

1 计算机图形图像处理技术概述

1.1 基本含义

计算机图形图像处理技术是指通过几何模型和数据将描述性的形象或者概念在计算机系统软件中进行存储、定稿、优化、修改和显现。计算机图形图像处理技术可以用来设计图形的色彩、做纹理和明暗的贴图处理、对图像进行建模设计和造型、消除图像隐线和隐面、对图形曲线和曲面进行拟合操作、数字化的图像存储、图像分割、分析、编码、增强、复原等操作[1],以及对图像进行形式转换,如投影、缩放、旋转、平移等几何形式。

1.2 基本组成

计算机图形图像处理技术的基本组成主要包括计算机硬件设备和计算机图形图像处理软件。计算机硬件设备性能的好坏对于计算机图形图像处理效果有着直接的影响,计算机图形图像处理软件将终端的显示和计算机结合在一起,由于计算机图形图像处理技术自身具有设计、存储、修改等功能,可以迅速整合图片数据,不仅可以保障计算机图形图像的处理效果,也可以有效地提高计算机中央处理器和计算机图形图像处理软件的运行效果。键盘和鼠标作为终端的输入设备,可以完成对图形的修改和定位,并且利用显示器、绘图仪、打印机等显示设备和输出设备,可以完整的保存计算机图片。

1.3 基本功能

计算机图形图像处理技术主要具有五个基本功能:对话、输入、输出、存储和计算。对话功能是指利用通讯交互设备和计算机显示器实现人机交流。输入和输出功能是指计算机图形图像处理软件可以随时输入和输出相关的图形图像。存数功能是指实时监控计算机的图形图像数据进行有效的检索和维护。计算功能是指计算机图形图像处理软件对相关的图形图像进行必要的数据交换和计算分析。

1.4 计算机图形图像处理技术的运行环境

计算机图形图像处理技术的硬件配置主要包括工作站和微型机,软件配置就是建立在工作站和微型机上的运行软件。计算机图形图像处理技术的工作站软件主要有TDI和Alias两种,工作站的软件主要负责处理计算机工作站中的各种图形图像处理。微型机上的计算机图形图像处理软件主要包括3DStudio、Winimage:morph和Photoshop等,3DStudio是微型机上的一种最主要的图形图像处理软件,被广泛的应用在多个计算机系统中;Winimage:morph是一种常用的二维图形图像处理软件,可以将一个图形或者图像制作成另外一个图形或者图像;Photoshop是一个非常专业的图形图像处理软件,其支持图形图像资料的分色制版,给人们进行图形图像处理带来很多的便利。

2 计算机图形图像处理技术的应用

2.1 用户接口

人们利用计算机系统的用户接口来操作多种计算机软件,计算机图形图像处理技术和用户接口的有效结合,借助于计算机操作系统构建友好的人机交互用户图形界面,极大地提高了计算机图形图像处理的简便性和易用性。近年来,微软公司普及和推广的图像化windows系统,充分发挥了计算机图形图像处理技术和用户接口全面融合的重要作用。

2.2 动画与艺术

随着计算机科学技术的快速发展,计算机硬件设备和计算机图形学也在蓬勃发展,静态的图形图像已经很难再满足人们对高质量、优质的、动态的图形图像的巨大需求,因此近年来,计算机动画技术蓬勃发展,特别是一些美术设计人员,多是依靠计算机图形图像处理软件来进行艺术创作。计算机图形图像处理技术的快速发展,同时推动了艺术设计技术的应用和开发,例如,3DS Studio Max三维设计软件和Photoshop二维平面设计软件[2]。

2.3 可视化科学计算

近年来,我国社会主义市场经济快速发展,各个领域的信息通信越来越频繁,计算机网络技术的广泛应用和普及,使得计算机系统数据库中的信息量日益庞大,计算机数据处理和分析技术面临着严峻的考验。相关的技术操作人员利用计算机数据处理和分析软件,很难准确、快速地从计算机的数据库系统中检索出需要的信息数据,难以总结出数据信息的共性和特征。通过将计算机数据处理技术和计算机图形图像处理技术有效的结合起来,可以通过计算机图形图像技术将大量的复杂结构的信息数据进行归类,操作人员通过计算机数据处理软件可以对有共性特征和本质特征的数据信息进行快速检索,极大地提高了计算机数据处理和分析的效率。可视化的科学计算技术最早出现在美国的科学协会研讨中,目前,可视化的科学计算技术被广泛的应用在气象分析、流体力学、医学等领域中[3],特别是在医学领域,利用可视化的科学计算技术可以实现高精度的远程控制和操作,可以应用在远程的脑部手术中,突破医学难题。在未来的发展过程中,可视化的科学计算技术将会在更多的领域发挥更加重要的作用。

2.4 工业制造和设计

目前,计算机图形图像处理技术在工业制造和设计领域应用的最为广泛,特别是二维三维CAD和CAE等计算机图形图像处理软件,不仅在工业生产的产品制造和产品设计过程中,还有土木工程领域,甚至是集成电路、网络分析和电子线路等电子电工领域都有着广泛的应用。在高精度的工业制造和设计领域中,利用计算机图形图像处理软件,可以在很短的时间内完成高精度的图形图像设计和画图,极大地提高了技术人员的工作效率,同时,标准的计算机图形图像处理程序,提高了工业制造和设计的精确度,有效地降低了设计误差。由于工业产品多是批量化的制造和生产,利用计算机图形图像处理技术,可以极大地提高企业批量化的运行效率和生产质量,降低工业产品的质量检测投入成本,为工业企业带来了更大的经济效益。

3 结束语

计算机图形图像处理技术的广泛应用和快速发展,推动了多个领域的技术革新,充分发挥人们的想象和创造力,创造出很多独特新奇的图形图像效果,丰富人们的日常生活,同时也为企业节约了很多的图形图像处理成本,提高了产品竞争力。在未来的发展过程中,计算机图形图像处理技术的应用前景会更加广阔。

参考文献:

[1]韩晓颖.浅谈计算机图形图像处理技术[J].福建电脑,2011(10):83-84.

[2]和晓娟.计算机图形图像处理技术的探讨[J].信息与电脑(理论版),2013(11):164-165.

[3]王应荣,王静漪.计算机图形图像处理技术[J].天津理工学院学报,2012(03):6-10.

作者简介:刘倩(1981-),女,满族,硕士,讲师,研究方向:图形图像处理与多媒体技术。

作者单位:宁夏大学 数学计算机学院,银川 750001

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页