您当前的位置:首页 > 发表论文>论文发表

研究一次函数论文

2023-03-08 12:54 来源:学术参考网 作者:未知

研究一次函数论文

例析一次函数的常见问题
一次函数是初中数学的重要内容之一,在历年的中考中,
不仅一些基础题出现,而且一些联系实际的应用题也频频“亮
相”。因此,现就有关一次函数的一些常见问题举例分析如下:
一、有关字母的取值(取值范围)
例1已知y=(k2-1)x2+(k+1)x+k是一次函数,求k的值。
简析掌握一次函数的定义“形如y=kx+b(k、b为常数k≠
0)的函数,叫做一次函数”是解决这类问题的关键,一定不要忽
视了k≠0的隐含条件,否则就会出错。
解由题意,得k2-1=0,k+1≠0。∴k=1。
二、确定一次函数的表达式
例2已知一次函数的图象经过点(3,0)和点(2,5),求这
个一次函数的表达式。
简析这是一道最常见最基础的确定一次函数关系式的
问题,在一次函数y=kx+b(k、b为常数k≠0)中有两个待定系数
k和b,需要两个独立的条件,常见的求函数关系式的题型主要
有利用定义求表达式,利用一次函数的性质求表达式等。
确定一次函数表达式的一般步骤:
(1)设出含有待定系数的一次函数关系式;
(2)把已知条件(自变量与函数的对应值)代入关系式,得
到关于待定系数的方程(方程组);
(3)解方程(方程组),求出待定系数;
(4)把求出的待定系数的值代入所设的关系式。
解设一次函数的表达式为y=kx+b(k≠0)
由题意,得3k+b=0,2k+b=5,解之得k=-5,b=15。
∴这个一次函数的表达式为y=-5x+15。
三、一次函数的图象所在象限
例3一次函数在同一坐标系下的图象是图1中的()。
简析一次函数y=kx+b(k≠0)的图象是一条直线,它所经
过的象限是由k、b的符号决定的,理解掌握它们的关系,才可
以轻松熟练的解答此类问题。解选(A)。
四、有关一次函数图象的交点
(一)与坐标轴的交点问题。(略)。
(二)两个一次函数的图象交点问题。
例4已知两条直线y=2x-3和
y=6-x。①求它们的交点坐标;②利用函
数图象解不等式:2x-3>6-x;③求这两
条直线与轴围成的三角形的面积。
简析①二元一次方程组都对应两
个一次函数,于是也对应两条直线。从
“数”的角度看,解方程组相当于求自变
量的取值,使两个函数的值相等;从“形”
的角度看,解方程组相当于确定两条直
线的交点坐标。
②一次函数与二元一次方程组之间的关系是解决一次函
数与一元一次不等式的基础,正确理解交点坐标与自变量、函
数值之间的关系,是解决这类问题的关键。
③直线与坐标轴围成的三角形的面积是常见的一次函数
综合性较强的题目,它涉及了许多关于坐标、函数的基础内容。
这里,正确求出两条直线的交点坐标,是解决直线与坐标轴围
成三角形的面积的前提。
解①解方程组y=2x-3,y=6-x得x=3,y=3。
∴直线y=2x-3和y=6-x的交点为(3,3)。
②在同一平面直角坐标系中分别画出
直线y=2x-3和y=6-x,(如图2),可以看出,两直线的交点
为(3,3)。又由图所示,当x>3时,对于同一个x,直线y=2x-3
上的点在直线y=6-x上相应点的上方,这时,2x-3>6-x,所以不
等式的解集为x>3。
③设直线y=2x-3与x轴的交点为A点,直线y=6-x与x
轴的交点为B点。
令y=0,分别代入两直线表达式得A(3/2,0)、B(6,0),
∴AB=6-3/2=9/2,
又由①知两直线的交点为(3,3)
∴这两条直线与轴围成的三角形的面积为:
S=1

9

3=2
7
4。
五由函数图象提供信息的问题
例5《邹城日报》2007年
9月12日报道了“养老保险执
行新标准”的消息。尚河中学课
外活动小组根据消息中提供的
数据,绘制出邹城企业职工养
老保险个人月缴费y(元)随个
人月工资x(元)变化的图象,
如图3,请你根据图象提供的信息解答下面的问题:
(1)赵工程师5月份的工资是3500元,这月他个人应缴
养老保险元;
(2)小王5月份的工资是550元,这月他个人应缴养老保
险元;
(3)李师傅5月份个人养老保险56元,求他5月份的工资
是多少。
简析这是以图象提供信息为特征,考查一次函数的综合
应用题。解决这类问题首先应具备阅读图象的能力,然后要有
分类的数学思想,要注意“分段”地观察图象,即自变量分成若
干“段”,观察各“段”中图象的变化情况,逐一加以分析。
解从图象易得(1)填195.2元;(2)填38.99元;
(3)设中间线段所在直线的解析式为y=kx+b(k≠0),
由图象,知该直线过点(557,38.99)和(2786,195.2)
∴2786k+b=195.2,557k+b=38.99。解之得k=7/100,b=0
∴y=7x/100。
∴当y=56时,x=800,即李师傅5月份的工资为800元。
(A)(B)(C)(D)
y=2x-3
y=6-x
118

有关一次函数、一元一次方程组、一元一次不等式的数学论文,急求!!!

1.一次函数只是自变量与因变量成线性比,在平面坐标系下的图像一般是一条直线.
2.一元一次方程是一个等式,即自变量或因变量等于0的情形.一般其解为(平面坐标系下的)直线与x,y轴的交点.
3.一元一次不等式,自变量与因变量之间是以不等号连接的.其解一般是一个面域(即在平面坐标系下,其解一般是图像为直线的上半部分或者是其下半部分)

初二数学一次函数论文 3000字 求求各位大哥大姐了!

(一)教材地位:

本小节属于《全日制义务教育数学课程标准实验稿》中“数与代数”领域,是我们在

学习了平面直角坐标系和一次函数的基础上,再一次进入函数领域,通过本小节的学习,让学生感受到函数是反映现实生活的一种有效模型,同时,本小节的学习内容,直接关系到后续内容的学习,也可以说是后续内容的基础。

(二)教学重点:

1、了解并掌握反比例函数的概念;

2、能根据问题中的已知条件确定反比例函数解析式;

3、能判断一个函数是否为反比例函数及比例系数;

4、培养学生的观察、比较、概括能力。

(三)教学重学:

1、了解并掌握反比例函数的概念

2、能根据已知条件确定反比例函数解析式

(四)教学难点:

1、解并掌握反比例函数的概念

2、能根据已知条件确定反比例函数解析式
分式目录
第一节 分式的基本概念
第二节 分式的基本性质和变形应用
第三节 分式的四则运算
第四节 分式方程

第一节 分式的基本概念
I.定义:整式A除以整式B,可以表示成A/B的形式。如果除式B中含有字母,那么称为分式(fraction)。
注:A÷B=A×1/B
II.组成:在分式 中A称为分式的分子,B称为分式的分母。
III.意义:对于任意一个分式,分母都不能为0,否则分式无意义。
IV.分式值为0的条件:在分母不等于0的前提下,分子等于0,则分数值为0。
注:分式的概念包括3个方面:①分式是两个整式相除的商式,其中分子为被除式,分母为除式,分数线起除号的作用;②分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母,这是区别整式的重要依据;③在任何情况下,分式的分母的值都不可以为0,否则分式无意义。这里,分母是指除式而言。而不是只就分母中某一个字母来说的。也就是说,分式的分母不为零是隐含在此分式中而无须注明的条件。
第二节 分式的基本性质和变形应用
V.分式的基本性质:分式的分子和分母同时乘以或除以同一个不为0的整式,分式的值不变。
VI.约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.
VII.分式的约分步骤:(1)如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去.(2)分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去.
注:公因式的提取方法:系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式.
VIII.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分时,一般将一个分式化为最简分式.
IX.通分:把几个异分母分式分别化为与原分式值相等的同分母分式,叫做分式的通分.
X.分式的通分步骤:先求出所有分式分母的最简公分母,再将所有分式的分母变为最简公分母.同时各分式按照分母所扩大的倍数,相应扩大各自的分子.
注:最简公分母的确定方法:系数取各因式系数的最小公倍数,相同字母的最高次幂及单独字母的幂的乘积.
注:(1)约分和通分的依据都是分式的基本性质.(2)分式的约分和通分都是互逆运算过程.
第三节 分式的四则运算
XI.同分母分式加减法则:分母不变,将分子相加减.
XII.异分母分式加减法则:通分后,再按照同分母分式的加减法法则计算.
XIII.分式的乘法法则:用分子的积作分子,分母的积作分母.
XIV.分式的除法法则:把除式变为其倒数再与被除式相乘.
第四节 分式方程
XVI.分式方程的意义:分母中含有未知数的方程叫做分式方程.
XVII.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).
二、分析教法与学法:

(一)教法:

由于学生已学过正比例关系,一次函数,正比例函数等概念,由于打算采用新旧知识相联系的方法,让学生通过比较发现从而掌握新知识

(二)学法:

通过观察、比较、发现、概括的方法来学习新知识。

三、分析教学过程

(一)创设情境:

1、由于学生所学过的反比例关系,一次函数等概念时间已较长,所以在创设情境时对这些知识加以复习,以换取学生以以有知识的记忆。

2、在情境中,列举大量实例,让学生装根据已知条件,列出一次函数、正比例函数、反比例函数为学生的探险索创造条件。

(二)探索过程

1、学生的探索能力不是很强,因此在列出的大量函数中,教师发挥主导作用,启发学生思考。

2、通过一系列的探索,让学生概括出反比例函数的共同特征,从而给出概念。

3、在学生得出反比例函数后,再进行深化,给出比例系数为负数或分

的情境,巩固反比例函数的概念。

(三)小结和作业:

在学生的自我小结中教师加以完善,对反比例函数有一定程度上的掌握。

关于一次函数的初中数学论文(要有实际)

求解一次函数表达式
求一次函数表达式是一次函数中常见的问题.下面把此类问题的常见题型归纳如下,供同学们参考.
一、定义型
例1 已知函数y=(m-2)xm2-3+5是一次函数,求其表达式.
解 由一次函数的定义,知m-2≠0且m2-3=1,所以m=-2.
所以这个一次函数的表达式为y=-4x+5.
点拨 利用一次函数定义求表达式时,要注意两点:一是自变量的系数不为0;二是自变量的次数是1,这两点必须同时满足,所以本题在保证次数m2-3=1的同时还要保证系数m-2≠0.
二、代入型
例2 已知一次函数y=kx-3的图像过点(-2,1),求这个函数的表达式.
解 因为一次函数y=kx-3的图像过点(-2,1),所以1=-2k-3,解得k=-2.
故这个一次函数的表达式为y=-2x-3.
点拨 本题依据函数的性质:函数图像经过一点,则该点坐标满足此函数关系式.这也是解决此类问题的关键.
例3 已知一次函数的图像过点(2,1)且与y轴的交点坐标为(0,3),则这个函数的表达式为.
解 设这个一次函数的表达式为y=kx+b,依题意,得2k+b=1,b=3,解得k=-1,b=3.
所以这个一次函数的表达式为y=-x+3,故填y=-x+3.
评注 这是一道典型的用待定系数法求表达式的问题,此法最为有效,应用也很广泛,同学们要用心揣摩,以领悟其本质.
三、平移型
例4 将直线y=3x-1向上平移3个单位长度所得直线的表达式为.
解 设平移后的表达式为y=kx+b,因为平移前后两直线平行,所以k=3,直线y=kx+b与y轴的交点到原点的距离为3-1=2,所以b=2,所以平移后的表达式为y=3x+2,故填y=3x+2.
评注 解决这类平移问题还可以采用数形结合的方法,大致画出图像,根据题意再进行平移.
四、面积型
例5 已知直线y=kx+6与两坐标轴围成的三角形的面积等于12,求此函数的表达式.
解 易求直线与x轴的交点为(-6k,0),与y轴交点为(0,6),所以有12•6k•6=12,解得|k|=32,即k=±32.所以该直线的表达式为y=32x+6或y=-32x+6.
评注 一定要注意这类问题中满足条件直线有两种情况:直线上升时(即k>0)和下降时(k<0),很多同学在求这类问题时常常考虑不全没有加绝对值,而导致出错.

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页