您当前的位置:首页 > 发表论文>论文发表

毕业论文飞机系统

2023-03-07 07:42 来源:学术参考网 作者:未知

毕业论文飞机系统

飞机系统,航空发动机原理与结构,民航机电,英语,机电维修工程管理方向,毕业论文,航空无线电,导航与雷达系统,自动飞行控制系统

我现在写关于波音飞机起落架收放系统的论文,但找不到一篇关于B757的起落架故障分析的资料,

  您好,可以到百度文库里面去找一些哦,我有下载了几篇,可以加我,向我要,另外如果需要代写的话,我们拥有自己的写手团队,保证质量,千字百元(不含图),欢迎加我为好友,文章可以发表在我们刊物上! 科技传播杂志 吴卓颖 推荐

  歼七飞机起落架收放系统典型故障分析

  【摘要】:飞机起落架液压收放系统的传动性能与系统或元件的结构参数、工作条件参数以及负载参数等有关.文中在对收放系统传动时间、传动速度等传动性能计算的基础上分析影响其性能的主要因素。比较其影响程度,并进一步探讨了判断故障原因的方法.
  【关键词】: 起落架 自动收起 传动性能 压力流量特性 液阻负载 配合间隙 摩擦力

  【正文】:
  一.歼七飞机前起落架自动收起的故障研究
  起落架收放系统是飞机的重要组成部分,此系统的工作性能直接影响到飞机的安全性和机动性.
  改进设计飞机起落架收放系统主要用于控制起落架的收上与放下,控制主起落架舱门和前起落架舱门的打开与关闭,是飞机一个重要的系统,其能否正常工作将直接影响飞行安全。因此对该系统的维护和对所出现的故障进行分析研究,并进行有效的预防就显得十分重要。某单位在对某新型飞机做出厂试飞准备时,当机组人员接上地面压力源和电源进行该机的停机刹车压力调整时,在供压13min后,前起落架开始缓慢收起,飞机机头失去支撑最终导致机头接地,造成雷达罩和前机身02段蒙皮撕裂、结构损坏和前起落架变形等严重后果。本文将对前起落架自动收起的故障进行分析研究,并在此基础上针对性地提出预防措施。
  1起落架收放控制原理分析

  图1 前起落架收放系统原理图
  前起落架收放系统原理如图1所示。正常收起落间隙时,起落架收放手柄(下简称手柄)处于收上位时,电液换向阀l使高压油进入收上管路,放下管路b回油管路相通。在高压油的作用下,下位锁作动筒的活塞杆缩进,下位锁打开。另一路高压油一方面液控单向阀13打开,使舱门作动筒10、12的回油略沟通;另一方面油通过限流活门9进入收放作动筒,使活塞杆伸出,起落架收起,作动筒8的回油经脚向活门7、应急转换活门4、电液换向阀1和应急排油活门2流入油箱。当起落架收好后,协调活门11压通,高压油进入舱门作动筒lO、12的收上腔使舱门收起。当手柄处于放下位置时,来油与放下管路接通,收上管路与回油路相通,起落架放下。在系统中还设有地面联锁开关,当飞机停放时,联锁开关自动断开电液换向阀的电路,此时即使将手柄置于收起位置,电液换向阀也不会工作,从而防止了地面误收起落架。
  2起落架自动收起原因分析
  由起落架收放控制原理知道,前起落架放下位置是由带下位锁的后撑杆来保持的,所以要使前起落架收起,必要条件是下位锁开锁。而下位锁开锁有两种情况:第一种是机械原因,即放下起落架时下位锁处于假上锁状态,在维修和使用过程中受到某种外力扰动而开锁;第二种是液压原因,即有液压油进入下位锁开锁作动筒,使作动筒活塞杆缩进导致下位锁开锁。而外部检查和事后的收放检查均未发现下位锁有假上锁的现象。因此前起落架自动收起是由液压方面的原因引起的。而由液压原因引起下位锁开锁的因素很多。当电液换向阀工作不正常使来油与收上管路相通,或者联锁开关故障,地面又误将手柄置于收上位置,在电液换向阀工作时,当给飞机供油压时,都会使下位锁开锁。但这两种情况会使前起落架以较快的速度收起而不会缓慢收起,另外也会同时收起主起落架。但这与事故发生时的实际情况不符,因此基本可以排除。结合当时事故发生的情况,导致前起落架自
  动收起的原因如下。
  2.1 电液换向阀性能不良
  起落架电液换向阀用于起落架收放管路的控制,是一种三位四通电液阀,当手柄在中立位置时(不通电),电液换向阀处于中立位置,

  图2电液换向阀中立位置(断电)
  此时供油路堵死,起落架的收、放管路均与回油路相通,如图2所示。由于滑阀与阀套之间都有径向间隙6,由6形成两个相同的矩形节流缝隙,此缝隙的节流面积为A=W8,由于形6,且通过此节流口的流量很小,雷诺数m也很小,流动状态属于层流,故通过此节流口的流量Q为:

  式中: ——节流口两侧压力差;
  ——动力粘度系数;
  ——节流口面积梯度。

  则此时,通过2个节流口处的流量为:

  式中: ——主液压系统供油压力;
  ——回油管路压力。
  由上式可知,泄漏量的大小主要由节流口面积梯度形和径向间隙6确定,当间隙6越大,则泄漏量越大。而形的大小主要与阀芯的直径有关,直径越大梯度越大;6的大小主要与阀口的形状、制造工艺和加工质量等有关,当设计合理、工艺水平和加工质量高、滑阀和阀套之间没有偏心时,则6就小。如果是新阀,径向间隙小,故泄漏量也小;如果是旧阀,由于控制边被磨损,泄漏面积增大,则泄漏量也增大。为测定泄漏量的大小,拆下电液换向阀,堵住通向作动筒的两个接头,在供压接头处.加液压20.59MPa.在回油接头处接上量杯。
  3min后,在回油接头处漏油量为45mL,远大于所规定的不超过20mL

  的要求。电液换向阀泄漏示意图如图3所示。
  2.2 系统不完整,回油路堵死
  为了提高起落架收放系统的可靠性,在系统设计中采用了余度技术。即当正常收放起落架失效时,飞行员可以采用冷气应急放下起落架,以保证安全着陆,如图1所示。为防止应急放起落架时,大量液压油回到密闭增压油箱,使油箱因回油过多而引起爆破,为此在电液换向阀的回油路上安装了应急排油活门。应急放起落架时,将收上管路的油液直接排到机外。平时,在主液压系统供压且电液换向阀不工作时,电液换向阀泄漏到收放管路中的油液可以通过应急排油活门直接流入回油管路中,因此不会引起收放系统的压力升高;如果回油管路被堵死,不能回油时,则泄漏油将进入收放系统(参看图l、2),使系统压力升高,当压力升高到一定值时就会引起系统故障。据了解,在发生本次事故前,应急排油活门因故障拆下修理,用堵头将回油路堵住,使起落架收放系统不能回油。这样,电液换向阀泄漏到收放管路的压力油就不能释放掉,收放系统的油压将逐渐升高。由于前起落架下位锁的开锁压力比主起落架的小,因此当压力达到一定值后,就会首先使前起落架下位锁开锁,这样飞机在自重的作用下就会引起前起落架自动收起。
  3 故障验证
  为了验证上述分析是否正确,在原飞机上进行了以下试验:
  (1)给主液压系统供压并通电,把手柄放在中立位置。保持30min后,前起落架下位锁没有任何动作。这说明在系统完整的情况下,因电液换向阀的渗漏而进入收放系统的压力油可以从应急排油活门处及时排出系统回油箱。
  (2)为模拟事故当时的系统环境,将应急排油活门拆下,并用堵头堵住回油路。给主液压系统供压5min后,前起落架下位锁就开始动作,到6min时下位锁完全开锁。该项试验足以证明从起落架电液换向阀泄漏进入起落架收放系统的油液确实能够将前起落架下位锁打开,说明上述分析是完全正确的。
  4维修对策
  由以上分析和验证可知,本次事故的原因有两个:一是起落架电液换向阀泄漏量超过规定;二是起落架收放系统不完整,使系统丧失了对不良因素的“自我消化”能力。为了有效预防此类事故的发生,
  建议采取以下措施。
  (1)改进起落架收放管路的设计
  经仔细分析后不难发现,该型飞机在系统的设计方面存在一些不足。应急排油活门的功用是应急放起落架时将收上管路的油液排到机外。由于应急排油活门是安装在系统的回油管路上的,一方面当应急排油活门出现故障时,将会影响整个系统的回油,进而影响系统的工作;另一方面当电液换向阀故障使收上管路不能回油时,则在应急放起落架时,收上管路的油液就无法从应急排油活门排到机外,就会使起落架无法应急放下,即应急放起落架还要受到电液换向阀工作的影响。该型飞机在定型试飞过程中就曾发生过应急放起落架未放到位的故障,其原因就是由于电液换向阀的故障引起的。所以这种安装是不科学的,它使系统的可靠性和安全性降低。但是如果将应急排油活门安装到收上管路,即电液换向阀收上接头的出口处,则既不会影响应急排油活门的功能,又能提高系统的可靠性,也不会发生上述事故。因此,建议有关部门经充分论证后,将应急排油活门安装到电液换向阀收上接头的出口处。
  (2)提高产品质量,加强安装前的检查
  电液换向阀是起落架收放控制系统的核心附件,对其制造质量和性能指标都有具体的要求。但在实际生产和使用过程中,人们往往重视它的功能,而对它的泄漏量等指标的规定不太重视,总认为泄漏量的大小对系统的工作和性能没有什么影响。因此建议一方面要努力提高工艺水平和加工质量,保持滑阀和阀套的同心,以尽可能地减少滑阀与阀套之间的径向间隙,另一方面在装机使用前一定要加强对其各种性能指标的测定,对泄漏量超过规定的电液换向阀不允许安装使用。
  二.数据符合规定前起落架为何放不下
  1995年4月13日,我部歼七×××,号机飞完第一个起落着陆时,前起落架未放下,两主轮接地后正常滑跑,机头触地后又滑行约800米停在跑道中段右侧。机务人员及时赶到现场,抬起机头,这时前起落架自动掉下,机务人员将前起落架推上锁,进行初步检查后,即将该机牵引至定检中队。
  该机于1992年12月19日第二次大修出厂后飞行236小时446个起落。,在这之前的445个起落均无异常现象。
  1、地面检查和模拟试验情况
  为查清故障原因,检查组对可能造成前 起落架放不好的有关部位进行了专项检查。
  1.1 飞机着陆后,飞机主液压系统尚有余 压60kgf/cm2,油量正常,油箱密封增压良好。在定检中队进行起落架收放共10次,均未发现异常,起落架收上时间为8秒(规程规定不超过15秒),左右起落架收上时问差 为1秒(规程规定不大于1.5秒)。
  1.2开车检查液压泵及液压系统工作情况,系统工作正常,从起动至慢车压力达到140kgf/cm2。,符合规定(规程规定为140一5 kgf/cm2)。
  1.3将该机与另一架良好的歼教七飞机同 时拉至起飞线,顶起千斤顶,作慢车工作状态下的收放情况对比,收放起落架10次,未见异常;测量前起落架各部间隙,均符合规定
  1.4检查前起落架锁臂、锁槽.表面光滑无毛刺,摇臂转动灵活。测量前起落架开锁动作筒活塞杆与开锁臂之间的间隙h值为3.5mm,其值虽在上极限,但仍住规定值的允许范围内。
  1.5模拟飞机着陆状态,发动机在小转速液压泵处在卸荷末期,先放襟翼减速板,紧接着放起落架,再次进行收放起落架的试验(将地面油泵车压力调至80kgf/cm2。)。这样的试验共做了12次,其中3次主起落地已开锁并放到位,主起落架放下指示灯亮后,前起落架仍未开锁。等到系统压力恢复至所调压力值时,前起落架才开锁并放到位,但前起落架开锁时响声很大。
  2、原因分析
  针对模拟收放试验中该机前起落架3次出现开锁难、放下晚的情
  况,检查组集中分析了该机前起落架开锁动作筒工作失常导致前起落架放不下的可能性。
  如图(4)所示,正常情况下,前起落架开锁 动作筒的工作可分

  为三个阶段:第一阶段,活塞杆伸出长度h为2—3.5mm,消除活塞杆与开锁臂的间隙;第二阶段,活塞杆伸出长度L为20-21mm,锁钩机构开锁,活塞上(右)端面在“B”管咀通油孔的边缘;第三阶段,活塞杆伸出长度S为29~31mm时,“B”管咀打开,前起落架收放动作筒通油工作。一般情况下,只要能够达到上述的顺序条件,就能保证先开锁后放起落架。
  经测量,该机h值为3.5mm,L值为20.5mm,S值为30.5mm。从测量情况看,该机除h值在上极限位置外,其余均正常。
  根据开锁动作筒的作原理可知,当h值分别在上极限位置(3.5mm)极限位置(2mm)时,值达1.5mm。对于一个既定的开锁动作筒而言,如果当其h值为2mm时,活塞杆伸出L后锁钩机构即开锁,而此时活塞上(右)端面又正好处在“B”管咀即将通油的边缘的话,那么,当其h值因某种原因变为3.5mm时,活塞杆伸出L后,就可能出现在锁钩机构尚未开锁(需要活塞杆再伸出1.5mm才能开锁)的情况下,“B”管咀的油路已通,前起落架收放动作筒的上腔已提前通油,使前起落架产生一个放下力矩,而该力矩又通过支柱上凸部的锁槽作用在锁块上,增大相互的摩擦力,如此时液压系统压力小于80kgf/cm2。,此摩擦力与锁簧拉力之和就很可能大于前起落架开锁动作筒活塞杆的开锁力,造成前起落架开不了锁、放不下。
  为进一步判明该机此次故障是否符合上述分析,检查组在地面做了如下试验:用手摇泵给开锁动作筒的“A”管咀加压,并拆开“B”管咀接头(便于检查“B”管咀的通油时机).查发现,活塞杆伸出长度21mm起落架锁钩机构尚未开锁,而“B”管咀开始通油。这项试验结果与以上分析完全吻合
  为什么该机在翻修出厂后的445个飞行起落中,工作都正常,而到第446个起落着陆时前起落架放不好呢?为什么发生问题后,地面收放起落架102次均正常呢?检查组分析,这可能是因为在液压系统压力较大(80~lOOkgf/cm2。)时,虽然也存在开锁动作筒“B”管咀通的问题,但由于开锁动作连续(中间不停顿),动摩擦力较小,所以,前起落架放不下来的故障就暴露不出来。而只有在小压力、连续收放和开锁停顿等几个因素同时存在的情况下,前起落架放不下来的故障才会发生。据飞行员反映,该机本次飞行是小航线着陆,着陆放起落架前飞行员可能使用了减速板。因此,当时的情况就可能是:飞行员使用减速板时,液压系统已处于卸荷末期,系统压力很小,放减速板后,压力进一步减小,接着再放起落架,则压力减至更小(据地面试验,压力可减小至0),使开锁动作筒活塞杆的伸出过程有停顿,使开锁动作不能连续完成。而在液压系统压力回升时,“B”管又恰通油,因而收放动作筒对锁钩机构施加了压紧力,增大了开锁摩擦力。所以,在这次着陆时,小压力、.连续收放和开锁停顿等几个因素恰好向时具备,致使前起落架开不了锁、放不下,加上该机本次是小航线着陆,从飞行员放起落架到飞机着陆接地的时间缩短,在液压系统压力尚未回升到足以使前起落架开锁放出之前,机头已接地。
  3、结论
  根据以上分析,开锁动作筒活塞杆与开锁臂之间的间隙偏大(虽在规定范围内,但处在上极限)是造成该机本次着陆时前起落架未放好的直接原因。
  三、总结:通过以上的分析说明,歼七飞机起落收不上、放不下、动作筒错为等故障,其原因主要是油液污染,油泵的供油性能不足和某些设计缺陷等,经过理论计算,检修或实验,可以把问题透明化,就有可能更好的解决问题,为提高飞机的飞行品质和可靠性提供了保障,提高了飞行安全系数,最后,也可能为航修企业提供一些必要的规则。
  四、致谢:我毕业设计及毕业论文的完成,得到了很多同学和老师的帮助,因此,我要向他们表示最真挚的感谢。
  历经近三个月的时间,我的论文终于圆满完成,这不仅仅是我完成了老师下达的任务,更是对我大学整个专业知识的一次升华!在写论文的过程中,我深深感觉到我的专业知识还待进一步的完善,基础知识还得进一步夯实!知识面的狭窄是我完成这篇论文最突出的一个问题,在充分认清了我的不足后,我更加努力地利用我打工业余的时间来搜集大量的专业资料,并尽量吸收其中的精华,最终通过自己的独立思考将之转变为自己的东西,并在一定程度上提出了自己的一些见解,较成功的实现了由理论转为实践的最终目的!
  当然,论文能顺利完成离不开指导教师的教诲,特别在学期的实习中,您一直灌输我们“多思考,多动手”的意识,这在我构思论文时去积极的独立思考并解决一些实际的问题起到了很好的启蒙作用!在此向您及所有的指导教师道一声:您辛苦了!在以后的工作中,我会继续秉承您的教诲,以一个优秀员工的行动给老师争光,给航院添彩!
  完成论文期间我并没有专业实习的机会,虽然我很努力地去写好我的论文,但由于自己的知识面的狭窄及实习经验的匮乏,这篇在时间上相对紧迫的论文难免会有一些漏洞或不足,恳请您的谅解! 谢谢您,老师!
  同时还要感谢我的同学们,三年的大学生活,他们帮助我学到了很多,使我懂得了很多道理,同时也打下了良好的基础,我才能顺利的完成这次的毕业论文设计,以及能在以后的工作生活中,不断的开拓进取。
  再次的感谢你们,谢谢!

  五、参考文献
  1.史纪定.液压系统故障诊断与维修技术.北京:机械工业出版社,1990.7.
  2.某型飞机地勤培训教材第二册.西安:航空工业总公司第603研究所,1995.10.
  3. 黄树执.歼七飞机构造讲义〔M〕.空军工程学院,1987:70- 71
  4. 杨闽桢.飞机机体传动与控制〔M〕.空军工程学院。1986:276-287

飞机空调系统资料·可以是AMM手册上的···写论文用 急急

空调系统中有组件流量控制、组件制冷系统、区域温度控制、再循环系统及空气分配管路几个基本部分。它们的主要作用为:
 通过控制空气流量来控制机舱压力及换气
 控制驾驶舱及客舱温度
 客舱空气再循环流通
下面我们简要介绍各部分的功用及组成:
1. 组件流量控制:
组件流量控制用于控制进入飞机的新鲜空气量流。所需的空气流量是由机组及乘客的数量和泄露的空气流量决定的,并且要大于飞机增压所需的空气流量。通常,左右两部组件流量控制系统给飞机提供同样的空气流量,流量的大小随飞机的飞行状态的改变而改变。
2. 组件冷却系统
组件冷却系统主要由左右两部分组成,它的主要作用是调节新鲜空气的温度,并去除空气中的水分。左组件一般单独为驾驶舱提供冷却后的空气,以保证驾驶舱的温度,而右组件主要为客舱服务。
3. 区域温度控制
区域温度控制将飞机内部的温度分成驾驶舱和客舱两个区域分别控制。当需要改变舱内温度时,温度调节器就会发送信号到混合活门,以改变混合空气的比例,从而改变进入机舱的空气温度。
4. 再循环系统
为了减少气源系统的负载,减少燃油消耗,提高飞机的经济性,再循环系统将机舱内50%的空气过滤后再次利用。这个系统主要由再循环风扇和空气滤两个部分组成。
21.4.2空调系统的分系统介绍
下面,我们将空调系统分为分配管路、压力控制、设备冷却、加热、制冷及温度控制几个分系统,分别介绍。
21.4.2.1分配管路
分配管路的主要作用为将调节过得空气送到飞机的两个舱区,对客舱内的空气再循环,为厨房和厕所通风和设备冷却。而分配管路由主分配管路,驾驶舱分配管路,客舱分配管路,再循环系统,通风系统和设备冷却系统组成
1) 主分配管路
主分配管路位于前货仓的后壁板内。它将来自两个空调组件的调节空气通过客舱壁板内的提升管路和头顶分配管路送到客舱。头顶分配管路位于客舱天花板内。
地面空调接头是用来当飞机停放在地面时由外部空调源为飞机空调系统供气。
在主分配管路舱内还装有混合室,混合室的主要作用是将热空气同来自空调组件的冷空气混合后再送到分配管路。需要注意的是混合室是用V型卡箍安装的,作用两个混合室是不能够互换的。
2) 驾驶舱分配管路
驾驶舱分配管路的调节空气来自左组件,调节空气使用沿机身安装的管路,并且与客舱的管路不同。由于采用单独的分配管路,驾驶员就可以单独控制驾驶舱的温度。当左组件不工作时,驾驶舱分配管路也可以由右组件供气。
3) 客舱分配管路
客舱分配管路主要作用是将来自主分配管路的调节空气均匀的分配到客舱。首先,来自主分配管路的调节空气进入安装在机体两侧侧壁板内的提升管路,由提升管路送到天花板内的头顶分配管路。头顶分配管路有间隔的分布在客舱顶板的中央。此后,空调供气进入分布在天花板和侧壁板上的扩散器和喷嘴。同时,前后厨房和厕所的流通空气也由头顶分配管路输送。最后,调节空气在客舱内流通后通过地板上的格栅进入再循环系统或排出机外。
4) 空气再循环系统在没有地面空调源时,空调系统的气源来自气源系统(关于气源系统我们将在36章详细介绍),为了减少引气量,降低发动机负载,空气再循环系统将客舱中大约50%的空气经过过滤后再送回到主分配管路。空气再循环系统位于前货仓后壁板的主分配管路舱内。再循环系统中主要由收集管路,气滤,再循环风扇,单向活门等组成。再循环风扇将客舱内的空气抽出,通过高效微粒空气滤以过滤掉空气中的灰尘等杂质。单向活门用于防止主分配管路的空气倒流入再循环系统。
5) 设备冷却系统
设备冷却系统使用机舱内的空气为驾驶舱和电子舱的电子设备降温。它由供气和排气两个系统组成,每个系统中都有主用和备用两个风扇。设备冷却系统的空气流量由低流量传感器探测,当供气或排气系统中的空气流量低或完全停止时,传感器将警告信号发送到驾驶舱,提醒机组注意。
机外排气活门有两个作用:正常时控制设备冷却空气的排气量,排烟模式中的作用我们将在后面的章节介绍。
6) 压力控制
压力控制系统用于保持机内的客舱高度,使机组和乘客处于安全舒适的气压环境中。它主要包括压力控制,压力释放和压力指示警告三个子系统。压力控制系统子系统通过调节外流活门的开度控制排出机外的空气量,从而控制舱内压力的大小。外流活门开度越大,流出的空气量越大,客舱高度越高,机内空气压力越低;外流活门开度减小则反之。这个子系统的主要部件有客舱压力控制组件,两部数字式客舱压力控制器(简称CPC),外流活门。
机组可以通过控制面板使客舱压力控制系统工作在自动,备用自动和人工三种方式。在自动和备用自动方式时,两部CPC都处于激活状态,但只有一部CPC工作负责控制外流活门,另一部备份。当工作的CPC故障时,系统自动转为另一部CPC工作。在人工方式时,外流活门的开度由机组人工控制,机组通过客舱压力控制面板监视和控制客舱高度。
在飞机后下部外流活门的两侧安装有两个正释压活门。当外流活门失效关闭,客舱客舱余压达到8.95+/-0.15psi时,正释压活门打开,将客舱内的空气排到机外,降低客舱余压,保护飞机结构安全。当客舱压力回复正常时,正释压活门关闭。整释压活门为机械装置,自动工作,并且与增压系统无任何交联,不需要机组操作。
在前面我们已经介绍过,飞机在特殊情况下可能会出现余压为负的情况,而这将会对飞机结构造成损伤,所以在机身下部安装了负释压活门。当客舱余压低于-1.0psi时,活门打开,调节内外压力。与正释压活门相同,负释压活门同样为机械装置,自动工作,并且与增压系统无任何交联,不需要机组操作。
在前后两个货仓中都装有货仓气压保险板。当座舱发生爆炸减压时,保险板两侧的压差将保险板推出框架,机体上下两部分压差迅速平衡,避免损伤机体结构。
在前后货仓中还装有压力平衡活门。该部件有两个活门组成,当客舱增压时,空气由其中一个流向货仓,而当客舱减压时,空气由另一个活门流出,这样就可以使货仓内的压力与客舱保持一致。
最后我们来介绍一下客舱压力警告装置,当客舱高度高于10,000英尺时触发警报,驾驶舱内会有警告喇叭响。机组可以通过按压“ALT HORN CUTOUT”按钮关闭警告,当客场高度到达下一个警报高度时,喇叭会再次响起。
7) 加温系统
加温系统提供热空气到舱门区域及货仓中,以防止结冰并提高舒适度。它分为三个部分:前货仓加温,后货仓加温及门区加温。
为前货仓加温的热空气来自设备冷却系统排出的空气。加温气流首先沿着前货仓地板及侧壁板流动,之后进入分配总管内与客舱内循环空气混合。而后货仓的加温空气来自客舱。客舱内的循环空气经过侧壁板下的格栅进入货仓的地板和侧壁板内,随后经由外流活门排出机外。加温空气在货仓壁板内还能起到绝热的作用,避免货仓内的热量经由蒙皮向机外传导。
加温系统中的门区加温是为了提高门区温度,避免区域低温。客舱内的两个进口门加温采用空调的热空气,其加温管路通过柔性软管与空调系统的供气管路连接。其中左前登机门的加热空气来自驾驶舱空调分配管路。离翼紧急逃离门的加温采用电加温的方式,即在每个逃离门的内衬板,装饰板等位置安装电热毯。
8) 制冷系统
制冷系统作为整个空调系统中的重要组成部分,它的主要功能包括:控制空调组件(以下简称组件)的引气量;降低空气温度;控制组件出口空气的温度和湿度。制冷系统的组成包括:空调/引气控制面板,流量控制关断活门,两级交换器,空气循环机,冲压空气系统,低温限制系统和水分离系统。下面我们将逐一介绍各个组成部分。
空调/引气控制面板用来指示和控制冷却系统。
来自气源系统的引气首先经过流量控制关断活门,由活门控制到达组件的引气流量。该活门为电控气动活门,当组件选择电门位于OFF位时,由弹簧力保持在关位。当电门置于AUTO或HIGH位置时,增压空气进入作动器,克服弹簧力,打开活门,引气经过流量控制后就到达主级热交换器。
冲压空气系统用于控制流过主级和次级热交换器的冲压空气气流。冲压空气系统有三种工作模式:地面,飞行(襟翼未收上),飞行(襟翼收上)。在当飞处于地面模式时,冲压空气进口门全开,使冲压空气进气量达到最大,进口折流门处于全伸出位,以阻挡冰雪等外来物进入内部管道。当飞机在地面停放时并没有迎面气流形成冲压空气,所以此时的气流完全由空气循环机中的涡轮带动风扇形成的。当工作在襟翼未收上为时,进口门及折流门都处于打开为。当襟翼完全收上时,进口门的开度受冲压空气控制器控制。冲压空气控制器收集来自ACM压气机出口的温度,当温度过高时则增加进口门开度,增大冲压空气进气量;温度过低时则关小进口门。如果在飞行过程中对应的空调组件关闭,则冲压空气进口门也将关闭,以减小阻力。
主级热交换器将来自引气系统空气与来自机外的冲压空气进行第一次热交换后送到空气循环机(以下简称ACM)。
737NG系列飞机采用三轮空气轴承式空气循环机。其中三轮是指压气机,涡轮和叶轮风扇。ACM的作用是降低空气温度,后面我们将参照图例介绍他的工作原理。由于ACM内部的三轮式设计为高速旋转部件,所以采用了空气轴承的方式,以降低摩擦力。需要注意的是不能反向转动ACM内部的轮轴,这样会损坏口气轴承。
次级热交换的功能与主级热交换器的功能类似,将从ACM压气机出口的增压空气与冲压空气进行热交换,有冲压空气带走热量,降低增压空气的温度。
低温限制系统用于监控进入水分离器的空气温度不低于35℉,以避免进入水分离器的水分结冰。它主要包括温度探测器,控制器和活门三个部分。探测器探测水分离器内部温度,当温度低于34℉时,发送信号到控制器,控制器打开活门,当温度高于36℉时,则关闭活门,在34℉到36℉之间时,控制器不发送信号到活门。
希望对你有帮助。

飞机大战毕业论文6000字

  本文阐述了一个基于安卓平台的射击类手机游戏的研究、设计和实现过程。在众多游戏类型中,飞行射击游戏是一种很典型的游戏,这种类型的游戏操作简单,画面炫丽,根据指定的方位击中目标,能设置游戏的场景,购买和选择各种游戏道具,制定各种通关规则,制定得分标准,能记录用户信息和用户上次玩游戏的得分和排名等。

  本课题基于Android系统和java语言技术,实现了一个基于安卓手机平台的飞行射击类游戏。该游戏具体包含的功能模块有:游戏开始模块、关卡选择模块、游戏进行模块、道具商店模块和排行榜模块等。 其中重点实现了碰撞检测和游戏人工智能的跟踪算法等。图形界面模块重点实现各个界面的绘制,其中涉及双缓冲绘图技术、游戏界面纵向屏幕滚动技术等。

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页