您当前的位置:首页 > 发表论文>论文发表

桥梁抗震论文模板

2023-03-05 07:35 来源:学术参考网 作者:未知

桥梁抗震论文模板

帮助作者考虑文章全篇逻辑构成的写作设计图。其优点在于,使作者易于掌握论文结构的全局,层次清楚,重点明确,简明扼要,一目了然。[2]
  第二,有利于论文前后呼应。有一个提纲,可以帮助我们树立全局观念,从整体出发,在检验每一个部分所占的地位、所起的作用,相互间是否有逻辑联系,每部分所占的篇幅与其在全局中的地位和作用是否相称,各个部分之间的比例是否恰当和谐,每一字、每一句、每一段、每一部分是否都为全局所需要,是否都丝丝入扣、相互配合,成为整体的有机组成部分,都能为展开论题服务。经过这样的考虑和编写,论文的结构才能统一而完整,很好地为表达论文的内容服务。
  第三,有利于及时调整,避免大返工。在毕业论文的研究和写作过程中,作者的思维活动是非常活跃的,一些不起眼的材料,从表面看来不相关的材料,经过熟悉和深思,常常会产生新的联想或新的观点,如果不认真编写提纲,动起笔来就会被这种现象所干扰,不得不停下笔来重新思考,甚至推翻已写的从头来过;这样,不仅增加了工作量,也会极大地影响写作情绪。毕业论文提纲犹如工程的蓝图,只要动笔前把提纲考虑得周到严谨,多花点时间和力气,搞得扎实一些,就能形成一个层次清楚、逻辑严密的论文框架,从而避免许多不必要的返工。另外,初写论文的学生,如果把自己的思路先写成提纲,再去请教他人,人家一看能懂,较易提出一些修改补充的意见,便于自己得到有效的指导。

桥梁结构抗震的抗震措施

为防止或减轻震害,提高结构抗震能力,对结构构造所作的改善和加强处理,通常称为抗震措施。各国的工程结构抗震规范对此都有明确的规定。对于桥梁结构,这些措施可归纳为:①对结构抗震的薄弱环节在构造上予以加强;②对结构各部加强整体联结;③对梁式桥,要在墩台上设置防止落梁的纵、横向挡块,以及上部结构之间的连接件;④加强桥梁支座的锚固;⑤加强墩台及基础结构的整体性,增强配筋,提高结构的延性;⑥对桥位处的不良土质应采取必要的土层加固措施;⑦须特别重视施工质量,如施工接缝处的强度保证等;⑧在重要的大桥上,必要时需采用减震消能装置,如橡胶垫块,特制的消能支座等。地震具有突发性与毁灭性,一次地震,持续时间往往只有几十秒,却会造成巨大的生命财产损失,这是其它自然灾害无法相比的。历来是严重危害人类的大自然灾害,尤其是最近20年全球发生的许多次大地震,其中,多次破坏性地震都集中在城市,造成了非常惨重的生命财产损失。城市地震的共同特点是:由于桥梁工程遭到严重破坏,切断了震区交通生命线工程,造成救灾工作的巨大困难,使次生灾害加重,对交通线的依赖性越来越强,而一旦地震使交通线遭到破坏,可能导致的生命财产以及间接经济损失也将会越来越大。数次大地震一再显示桥梁工程破坏的严重后果,也再次显示了桥梁工程抗震研究的重要性。   缆索单元    计算缆索线形的方法可以分为解析法和有限元法。在有限法计算缆索单元的非线性刚度矩阵有等效弹性模量、等效割线弹性模量法。  1等效弹性模量  在斜拉桥或悬索桥中,缆索的垂度影响缆索的表观刚度,随着缆索张力的增加,垂度减少,倾斜缆索的轴向表观刚度增加,简便计算方法是Enst等效弹性模量计算方法。  2等效割线弹性模量  如果缆索拉力在施加一荷载=增量过程中从Ti增加到Tj,那么在荷载增量范围内等效割线弹性模量可表达为:

桥梁震害

桥梁震害多由地震引发,形式有以下:摆柱式支座倾倒、固定支座齿板剪脱滑出,有的是墩台倾斜,桩柱式墩的基桩折断,甚至墩倒梁落(见图);而柔性桩墩的双曲连续拱桥的震害多为主拱圈和拱上建筑的小拱圈严重开裂,个别有主拱圈拱起而严重破坏。如果桥梁因桥墩基础较好,侧向刚度较强,震害严重程度比公路桥稍轻,如墩台沿施工接缝处开裂或被剪断,钢支座的锚固螺栓被拉出而移位,但落梁事故较少。在其他多地震国家如日本,桥梁震害也以中小跨度的桥梁为多。比如日本1964年7月新潟地震(M=7.5)时,昭和大桥因河床土层液化导致墩台基础大规模下沉而落梁。大跨度的悬索桥和斜张桥尚无因地震坠落的事例,但在日本一些轻便悬索桥有塔柱折断,缆索破坏的震害。近年来在多地震国家如日本、美国都积极开展这类大跨度桥梁结构的抗震研究。中国也正在研究地震区天津市郊建造大跨预应力混凝土斜张桥的抗震性能。

桥梁震害的直接起因是:①在强烈地震时,地形地貌产生剧烈的变化(如地裂、断层等),河流两岸地层向河心滑移等导致桥梁结构的破坏;②地震时河床砂土液化,地基失效,桥梁墩台基础大量下沉或不均匀下沉引起的破坏;③在地震惯性力作用下,导致桥梁结构某一部分产生的内力或变位超过结构构造和材料强度所能承受的限度,从而发生不同程度的破坏。

桥梁结构抗震设计: ①地震区桥位和桥型选择。桥位应选择在对抗震有利的地段,尽可能避免选择在软弱粘性土层、可液化土层和地层严重不均匀的地段,特别是发震断层地段。如必须设置在可液化或松软土层的河岸地段时,桥长应适当增长,将桥台置于稳定的河岸上,而桥墩基础要加强。桥型要选择抗震性能好、整体性强的结构体系,如连续梁,无铰拱等。如在软土地基上选用简支梁或悬臂梁体系(带有挂孔)时,应在构造上加强防止落梁的措施。墩台结构应选用整体性好的结构形式。基础要埋入稳定土层内。②设计烈度。地震时,各地区地面受到的影响和程度,称地震烈度,以度表示。某一地区今后一定的时期内,可能遭到的最大地震烈度称基本烈度(一般为百年一遇的最大地震烈度)。各地区的基本烈度由国家制定并标明在全国地震烈度图上。工程结构抗震设计所采用的地震烈度称设计烈度,一般在桥梁结构的抗震设计中即按基本烈度取用,特别重要的结构要经过有关权限单位批准后可提高一度作为设计烈度。根据大量震害调查的事实表明,在基本烈度7度以下,桥梁震害极为轻微,因而,规范中规定桥梁结构抗震设防的一般起点为基本烈度7度,最高9度。7度以下,结构不必进行抗震设计,高于 9度或有特殊抗震要求的新型结构要专门研究它的抗震设计。 ③设计方法。对一般桥梁工程,则按规范所规定的简化方法进行结构抗震设计。中国规范是采用反应谱理论(见地震作用),即根据设计烈度,以简便的地震荷载系数计算地震惯性力,作为地震荷载,然后以一般结构静力设计计算步骤求得结构最大内力和变位,使其控制在规范容许值的范围内来确保结构的抗震安全。

对大跨度或特别重要的桥梁结构,应对结构进行地震动力分析(地震反应分析)。分析的方法一般是直接根据建桥地区在强震时地面运动的加速度记录,依照动力学的原理,应用电子计算技术,对结构作地震动力分析计算。对于已经建成的桥梁结构,如不满足现行规范抗震设防的要求,也可通过结构地震动力分析作进一步的抗震鉴定和决择最优加固方案。

在强烈地震区,为了经济,结构抗震设计可以容许结构局部出现不太严重影响使用和易于修复的塑性变形、裂缝或损坏;但为了安全目的,则要力求主要承重结构即使遭受严重损坏也不致倒塌,以减少生命财产的损失。

桥梁结构抗震措施::①对结构抗震的薄弱环节在构造上予以加强;②对结构各部加强整体联结;③对梁式桥,要在墩台上设置防止落梁的纵、横向挡块,以及上部结构之间的连接件;④加强桥梁支座的锚固;⑤加强墩台及基础结构的整体性,增强配筋,提高结构的延性;⑥对桥位处的不良土质应采取必要的土层加固措施;⑦须特别重视施工质量,如施工接缝处的强度保证等;⑧在重要的大桥上,必要时需采用减震消能装置,如橡胶垫块,特制的消能支座等。

这是详细资料:

桥梁抗震的《桥梁抗震》(交通版)

书名:桥梁抗震(第2版21世纪交通版高等学校教材)作者:叶爱君//管仲国出版社:人民交通出版社ISBN:9787114093845开本:16开页数:143页出版时间:2011-09-01 第2版 《桥梁抗震(第2版21世纪交通版高等学校教材)》(叶爱君、管仲国编写)为21世纪交通版高等学校教材。全书以通俗易懂的语言,并借助大量的插图,系统地介绍了桥梁抗震的基础知识、桥梁抗震设计方法和具体过程,是桥梁抗震的入门用书。本书既有实用性,又有先进性。内容包括:地震概述、桥梁震害、桥梁抗震概论、桥梁结构地震反应分析、桥梁延性抗震设计,以及桥梁减隔震设计。《桥梁抗震(第2版21世纪交通版高等学校教材)》除作为高等院校道路桥梁与渡河工程专业和土木工程专业桥梁工程专业方向教学用书外,也可供桥梁工程技术人员学习参考。 第1章 地震概述1.1 地震的初步知识1.1.1 地球的构造1.1.2 地震的成因和类型1.2 地震震级与地震烈度1.2.1 地震震级1.2.2 地震烈度1.2.3 震级与震中烈度的关系1.3 地震波与地震动1.3.1 地震波1.3.2 地震动1.4 地震分布1.4.1 世界地震分布1.4.2 我国地震分布1.5 地震灾害1.5.1 直接灾害1.5.2 次生灾害本章参考文献第2章 桥梁震害2.1 上部结构的震害2.1.1 上部结构自身的震害2.1.2 上部结构的移位震害2.1.3 上部结构的碰撞震害2.2 支座的震害2.3 下部结构和基础的震害2.3.1 桥梁墩柱的震害2.3.2 框架墩的震害2.3.3 桥台的震害2.4 基础的震害2.5 桥梁震害的教训及对策2.5.1 支承连接部件失效2.5.2 碰撞引起的破坏2.5.3 桥墩、桥台破坏2.5.4 基础破坏本章参考文献第3章 桥梁抗震概论3.1 桥梁结构的抗震设防标准3.1.1 有关工程抗震设防的基本概念3.1.2 多级设防的抗震设计思想3.1.3 桥梁工程抗震设防标准的确定3.2 桥梁工程抗震设计流程3.3 地震动输入的选择3.3.1 中国地震动参数区划图3.3.2 桥梁场地地震安全性评价3.3.3 设计地震动参数选择3.3.4 地震动输入模式3.3.5 地震作用组合3.4 桥梁结构抗震概念设计3.4.1 桥梁结构合理抗震选型3.4.2 桥梁结构抗震体系选择本章参考文献第4章 桥梁结构地震反应分析4.1 结构动力学初步概念4.1.1 结构地震振动方程4.1.2 结构动力特性4.2 桥梁结构地震反应分析方法4.2.1 静力法4.2.2 动力反应谱法4.2.3 动态时程分析法4.3 一般桥梁结构的地震反应分析4.3.1 桥梁结构地震振动方程4.3.2 桥梁结构动力计算模型4.3.3 桥梁地震反应计算要点4.4 规则桥梁的地震反应简化分析4.4.1 规则桥梁的定义4.4.2 规则桥梁的地震反应简化分析方法本章参考文献第5章 桥梁延性抗震设计5.1 延性的基本概念5.1.1 延性的定义5.1.2 延性指标5.1.3 延性、位移延性系数与变形能力5.1.4 曲率延性系数与位移延性系数的关系5.1.5 桥梁结构的整体延性与构件局部延性的关系5.2 桥梁延性抗震设计基本理论5.2.1 能力设计方法5.2.2 延性构件与能力保护构件的选择5.2.3 潜在塑性铰位置的选择5.3 延性构件的强度设计与验算5.4 延性构件的延性设计与验算’5.4.1 横向箍筋对混凝土的约束作用5.4.2 钢筋混凝土墩柱的延性验算5.4.3 钢筋混凝土墩柱的延性构造设计5.5 能力保护构件的强度设计与验算5.5.1 塑性铰区超强弯矩5.5.2 延性构件的抗剪强度5.5.3 其他能力保护构件5.6 单柱墩桥梁延性抗震设计实例5.6.1 工程概况5.6.2 计算模型5.6.3 纵向地震作用下地震反应分析及抗震验算5.6.4 横向地震输入5.6.5 防落梁构造设计5.6.6 小结5.7 双柱墩桥梁延性抗震设计实例5.7.1 工程概况5.7.2 计算模型5.7.3 纵向地震作用下地震反应分析和抗震验算5.7.4 横向地震作用下地震反应分析和抗震验算5.7.5 防落梁构造设计5.7.6 小结本章参考文献第6章 桥梁减隔震设计6.1 减隔震技术的原理6.1.1 减隔震技术的工作机理6.1.2 减隔震技术与延性抗震设计的比较6.2 减隔震装置与系统6.2.1 减隔震系统的组成6.2.2 常用减隔震装置简介6.3 减隔震技术的应用6.3.1 减隔震技术在国外桥梁工程中的应用6.3.2 减隔震技术在我国桥梁工程中的应用6.3.3 减隔震桥梁的震害表现6.4 桥梁减隔震设计6.4.1 减隔震设计的一般原则6.4.2 减隔震装置的布置6.4.3 减隔震桥梁的地震反应分析6.4.4 减隔震体系的抗震验算6.4.5 其他构件和细部构造的设计6.5 减隔震桥梁设计实例6.5.1 工程概况6.5.2 基于单自由度反应谱方法的结构地震反应分析与验算6.5.3 基于非线性时程分析的结构地震反应分析与验算6.5.4 抗震验算6.5.5 防落梁构造设计本章参考文献

帮忙写个论文,关于土木工程概论的.要求不少于3000字

  对土木工程的发展起关键作用的,首先是作为工程物质基础的土木建筑材料,其次是随之发展起来的设计理论和施工技术。每当出现新的优良的建筑材料时,土木工程就 会有飞跃式的发展。

  人们在早期只能依靠泥土、木料及其它天然材料从事营造活动,后来出现了砖和瓦这种人工建筑材料,使人类第一次冲破了天然建筑材料的束缚。中国在公元前十一世纪 的西周初期制造出瓦。最早的砖出现在公元前五世纪至公元前三世纪战国时的墓室中。砖和瓦具有比土更优越的力学性能,可以就地取材,而又易于加工制作。

  砖和瓦的出现使人们开始广泛地、大量地修建房屋和城防工程等。由此土木工程技术得到了飞速的发展。直至18~19世纪,在长达两千多年时间里,砖和瓦一直是土木工程的重要建筑材料,为人类文明作出了伟大的贡献,甚至在目前还被广泛采用。

  钢材的大量应用是土木工程的第二次飞跃。 十七世纪70年代开始使用生铁、十九世纪初开始使用熟铁建造桥梁和房屋,这是钢结构出现的前奏。

  从十九世纪中叶开始,冶金业冶炼并轧制出抗拉和抗压强度都很高、延性好、质量均匀的建筑钢材,随后又生产出高强度钢丝、钢索 。于是适应发展需要的钢结构得到蓬勃发展。除应用原有的粱、拱结构外,新兴的桁架、框架、网架结构、悬索结构逐渐推广,出现了结构形式百花争艳的局面。

  建筑物跨径从砖结构、石结构、木结构的几米、几十米发展到钢结构的百米、几百米,直到现代的千米以上。于是在大江、海峡上架起大桥,在地面上建造起摩天大楼和高耸铁塔,甚至在地面下铺设铁路,创造出前所未有的奇迹。

  为适应钢结构工程发展的需要,在牛顿力学的基础上,材料力学、结构力学、工程结构设计理论等就应运而生。施工机械、施工技术和施工组织设计的理论也随之发展,土木工程从经验上升成为科学,在工程实践和基础理论方面都面貌一新,从而促成了土木工程更迅速的发展。

  十九世纪20年代,波特兰水泥制成后,混凝土问世了。混凝土骨料可以就地取材,混凝土构件易于成型,但混凝土的抗拉强度很小,用途受到限制。 十九世纪中叶以后,钢铁产量激增,随之出现了钢筋混凝土这种新型的复合建筑材料,其中钢筋承担拉力,混凝土承担压力,发挥了各自的优点。 二十世纪初以来,钢筋混凝土广泛应用于土木工程的各个领域。

  从三十年代开始,出现了预应力混凝土。预应力混凝土结构的抗裂性能、刚度和承载能力,大大高于钢筋混凝土结构,因而用途更为广阔。土木工程进入了钢筋混凝土和预应力混凝土占统治地位的历史时期。混凝土的出现给建筑物带来了新的经济、美观的工程结构形式,使土木工程产生了新的施工技术和工程结构设计理论。这是土木工程的又一次飞跃发展。
  土木工程的特点

  建造一项工程设施一般要经过勘察、设计和施工三个阶段,需要运用工程地质勘察、水文地质勘察、工程测量、土力学、工程力学、工程设计、建筑材料、建筑设备、工程机械、建筑经济等学科和施工技术、施工组织等领域的知识 ,以及电子计算机和力学测试等技术。因而土木工程是一门范围广阔的综合性学科。随着科学技术的进步和工程实践的发展,土木工程这个学科也已发展成为内涵广泛、门类众多、结构复杂的综合体系。

  土木工程是伴随着人类社会的发展而发展起来的。它所建造的工程设施反映出各个历史时期社会经济、文化、科学、技术发展的面貌,因而土木工程也就成为社会历史发展的见证之一。

  远古时代,人们就开始修筑简陋的房舍、道路、桥梁和沟澶,以满足简单的生活和生产需要。后来,人们为了适应战争、生产和生活以及宗教传播的需要,兴建了城池、运河、宫殿、寺庙以及其他各种建筑物。

  许多著名的工程设施显示出人类在这个历史时期的创造力。例如,中国的长城、都江堰、大运河、赵州桥、应县木塔,埃及的金字塔,希腊的巴台农神庙,罗马的给水工程、科洛西姆圆形竞技场(罗马大斗兽场),以及其他许多著名的教堂、宫殿等。

  产业革命以后,特别是到了20世纪,一方面社会向土木工程提出了新的需求;另一方面,社会各个领域为土木工程的前进创造了良好的条件。因而这个时期的土木工程得到突飞猛进的发展。在世界各地出现了现代化规模宏大的工业厂房、摩天大厦,核电站、高速公路和铁路、大跨桥梁、大直径运输管道长隧道、大运河、大堤坝、大飞机场、大海港以及海洋工程等等。现代土木工程不断地为人类社会创造崭新的物质环境,成为人类社会现代文明的重要组成部分。

  土木工程是具有很强的实践性的学科。在早期,土木工程是通过工程实践,总结成功的经验,尤其是吸取失败的教训发展起来的。从17世纪开始,以伽利略和牛顿为先导的近代力学同土木工程实践结合起来,逐渐形成材料力学、结构力学、流体力学、岩体力学,作为土木工程的基础理论的学科。这样土木工程才逐渐从经验发展成为科学。

  在土木工程的发展过程中,工程实践经验常先行于理论,工程事故常显示出未能预见的新因素,触发新理论的研究和发展。至今不少工程问题的处理,在很大程度上仍然依靠实践经验。

  土木工程技术的发展之所以主要凭借工程实践而不是凭借科学试验和理论研究,有两个原因:一是有些客观情况过于复杂,难以如实地进行室内实验或现场测试和理论分析。例如,地基基础、隧道及地下工程的受力和变形的状态及其随时间的变化,至今还需要参考工程经验进行分析判断。二是只有进行新的工程实践,才能揭示新的问题。例如,建造了高层建筑、高耸塔桅和大跨桥梁等,工程的抗风和抗震问题突出了,才能发展出这方面的新理论和技术。

  在土木工程的长期实践中,人们不仅对房屋建筑艺术给予很大注意,取得了卓越的成就;而且对其他工程设施,也通过选用不同的建筑材料,例如采用石料、钢材和钢筋混凝土,配合自然环境建造了许多在艺术上十分优美、功能上又十分良好的工程。古代中国的万里长城,现代世界上的许多电视塔和斜张桥,都是这方面的例子。

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页