论文: Generative adversarial network in medical imaging: A review
这篇文章发表于顶刊Medical Imaging Analysis 2019上,文章细数了GAN应用于医学图像的七大领域——重建(图像去噪)、合成、分割、分类、检测、配准和其他工作,并介绍了包括医学图像数据集、度量指标等内容,并对未来工作做出展望。由于笔者研究方向之故,本博客暂时只关注重建、合成部分的应用。关于该论文中所有列出的文章,均可在 GitHub链接 中找到。
GAN在医学成像中通常有两种使用方式。第一个重点是生成方面,可以帮助探索和发现训练数据的基础结构以及学习生成新图像。此属性使GAN在应对数据短缺和患者隐私方面非常有前途。第二个重点是判别方面,其中辨别器D可以被视为正常图像的先验知识,因此在呈现异常图像时可以将其用作正则器或检测器。示例(a),(b),(c),(d),(e),(f)侧重于生成方面,而示例 (g) 利用了区分性方面。下面我们看一下应用到分割领域的文章。
(a)左侧显示被噪声污染的低剂量CT,右侧显示降噪的CT,该CT很好地保留了肝脏中的低对比度区域[1]。 (b)左侧显示MR图像,右侧显示合成的相应CT。在生成的CT图像中很好地描绘了骨骼结构[2]。 (c)生成的视网膜眼底图像具有如左血管图所示的确切血管结构[3]。(d)随机噪声(恶性和良性的混合物)随机产生的皮肤病变[4]。 (e)成人胸部X光片的器官(肺和心脏)分割实例。肺和心脏的形状受对抗性损失的调节[5]。 (f)第三列显示了在SWI序列上经过域调整的脑病变分割结果,无需经过相应的手动注释训练[6]。 (g) 视网膜光学相干断层扫描图像的异常检测[7]。
通常,研究人员使用像像素或逐像素损失(例如交叉熵)进行分割。尽管使用了U-net来组合低级和高级功能,但不能保证最终分割图的空间一致性。传统上,通常采用条件随机场(CRF)和图割方法通过结合空间相关性来进行细分。它们的局限性在于,它们仅考虑可能在低对比度区域中导致严重边界泄漏的 pair-wise potentials (二元势函数 -- CRF术语)。另一方面,鉴别器引入的对抗性损失可以考虑到高阶势能。在这种情况下,鉴别器可被视为形状调节器。当感兴趣的对象具有紧凑的形状时,例如物体,这种正则化效果更加显着。用于肺和心脏mask,但对诸如血管和导管等可变形物体的用处较小。这种调节效果还可以应用于分割器(生成器)的内部特征,以实现域(不同的扫描仪,成像协议,模态)的不变性[8、9]。对抗性损失也可以看作是f分割网络(生成器)的输出和 Ground Truth 之间的自适应学习相似性度量。因此,判别网络不是在像素域中测量相似度,而是将输入投影到低维流形并在那里测量相似度。这个想法类似于感知损失。不同之处在于,感知损失是根据自然图像上的预训练分类网络计算而来的,而对抗损失则是根据在生成器演变过程中经过自适应训练的网络计算的。
[10] 在鉴别器中使用了多尺度L1损失,其中比较了来自不同深度的特征。事实证明,这可以有效地对分割图执行多尺度的空间约束,并且系统在BRATS 13和15挑战中达到了最先进的性能。 [11] 建议在分割管道中同时使用带注释的图像和未带注释的图像。带注释的图像的使用方式与 [10] 中的相同。 [10] 和 [12] ,同时应用了基于元素的损失和对抗性损失。另一方面,未注释的图像仅用于计算分割图以混淆鉴别器。 [13] 将pix2pix与ACGAN结合使用以分割不同细胞类型的荧光显微镜图像。他们发现,辅助分类器分支的引入为区分器和细分器提供了调节。
这些前述的分割训练中采用对抗训练来确保最终分割图上更高阶结构的一致性,与之不同的是, [14] -- code 中的对抗训练方案,将网络不变性强加给训练样本的小扰动,以减少小数据集的过度拟合。表中总结了与医学图像分割有关的论文。
参考链接:
[1] X. Yi, P. Babyn. Sharpness-aware low-dose ct denoising using conditional generative adversarial network. J. Digit. Imaging (2018), pp. 1-15
[2] J.M. Wolterink, A.M. Dinkla, M.H. Savenije, P.R. Seevinck, C.A. van den Berg, I. Išgum. Deep MR to CT synthesis using unpaired data International Workshop on Simulation and Synthesis in Medical Imaging, Springer (2017), pp. 14-23
[3] P. Costa, A. Galdran, M.I. Meyer, M. Niemeijer, M. Abràmoff, A.M. Mendonça, A. Campilho. End-to-end adversarial retinal image synthesis IEEE Trans. Med. Imaging(2017)
[4] Yi, X., Walia, E., Babyn, P., 2018. Unsupervised and semi-supervised learning with categorical generative adversarial networks assisted by Wasserstein distance for dermoscopy image classification. arXiv:1804.03700 .
[5] Dai, W., Doyle, J., Liang, X., Zhang, H., Dong, N., Li, Y., Xing, E.P., 2017b. Scan: structure correcting adversarial network for chest x-rays organ segmentation. arXiv: 1703.08770 .
[6] K. Kamnitsas, C. Baumgartner, C. Ledig, V. Newcombe, J. Simpson, A. Kane, D. Menon, A. Nori, A. Criminisi, D. Rueckert, et al. Unsupervised domain adaptation in brain lesion segmentation with adversarial networks International Conference on Information Processing in Medical Imaging, Springer (2017), pp. 597-609
[7] T. Schlegl, P. Seeböck, S.M. Waldstein, U. Schmidt-Erfurth, G. Langs Unsupervised anomaly detection with generative adversarial networks to guide marker discovery International Conference on Information Processing in Medical Imaging, Springer (2017), pp. 146-157
[8] K. Kamnitsas, C. Baumgartner, C. Ledig, V. Newcombe, J. Simpson, A. Kane, D. Menon, A. Nori, A. Criminisi, D. Rueckert, et al. Unsupervised domain adaptation in brain lesion segmentation with adversarial networks International Conference on Information Processing in Medical Imaging, Springer (2017), pp. 597-609
[9] Dou, Q., Ouyang, C., Chen, C., Chen, H., Heng, P.-A., 2018. Unsupervised cross-modality domain adaptation of convnets for biomedical image segmentations with adversarial loss. arXiv: 1804.10916 .
[10] Y. Xue, T. Xu, H. Zhang, L.R. Long, X. Huang Segan: adversarial network with multi-scale l 1 loss for medical image segmentation Neuroinformatics, 16 (3–4) (2018), pp. 383-392
[11] Y. Zhang, L. Yang, J. Chen, M. Fredericksen, D.P. Hughes, D.Z. Chen. Deep adversarial networks for biomedical image segmentation utilizing unannotated images International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer (2017), pp. 408-416
[12] Son, J., Park, S.J., Jung, K.-H., 2017. Retinal vessel segmentation in fundoscopic images with generative adversarial networks. arXiv: 1706.09318 .
[13] Y. Li, L. Shen. CC-GAN: a robust transfer-learning framework for hep-2 specimen image segmentation IEEE Access, 6 (2018), pp. 14048-14058
[14] W. Zhu, X. Xiang, T.D. Tran, G.D. Hager, X. Xie. Adversarial deep structured nets for mass segmentation from mammograms 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), IEEE (2018)
[15] D. Yang, D. Xu, S.K. Zhou, B. Georgescu, M. Chen, S. Grbic, D. Metaxas, D. Comaniciu. Automatic liver segmentation using an adversarial image-to-image network International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer (2017), pp. 507-515
[16] Dou, Q., Ouyang, C., Chen, C., Chen, H., Heng, P.-A., 2018. Unsupervised cross-modality domain adaptation of convnets for biomedical image segmentations with adversarial loss. arXiv: 1804.10916 .
[17] Rezaei, M., Yang, H., Meinel, C., 2018a. Conditional generative refinement adversarial networks for unbalanced medical image semantic segmentation. arXiv: 1810.03871 .
[18] A. Sekuboyina, M. Rempfler, J. Kukačka, G. Tetteh, A. Valentinitsch, J.S. Kirschke, B.H. Menze. Btrfly net: Vertebrae labelling with energy-based adversarial learning of local spine prior International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, Cham (2018)
[19] M. Rezaei, K. Harmuth, W. Gierke, T. Kellermeier, M. Fischer, H. Yang, C. Meinel. A conditional adversarial network for semantic segmentation of brain tumor
International MICCAI Brainlesion Workshop, Springer (2017), pp. 241-252
[20] P. Moeskops, M. Veta, M.W. Lafarge, K.A. Eppenhof, J.P. Pluim. Adversarial training and dilated convolutions for brain MRI segmentation Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Springer (2017), pp. 56-64
[21] Kohl, S., Bonekamp, D., Schlemmer, H.-P., Yaqubi, K., Hohenfellner, M., Hadaschik, B., Radtke, J.-P., Maier-Hein, K., 2017. Adversarial networks for the detection of aggressive prostate cancer. arXiv: 1702.08014 .
[22]Y. Huo, Z. Xu, S. Bao, C. Bermudez, A.J. Plassard, J. Liu, Y. Yao, A. Assad, R.G. Abramson, B.A. Landman. Splenomegaly segmentation using global convolutional kernels and conditional generative adversarial networks Medical Imaging 2018: Image Processing, 10574, International Society for Optics and Photonics (2018), p. 1057409
[23]K. Kamnitsas, C. Baumgartner, C. Ledig, V. Newcombe, J. Simpson, A. Kane, D. Menon, A. Nori, A. Criminisi, D. Rueckert, et al. Unsupervised domain adaptation in brain lesion segmentation with adversarial networks International Conference on Information Processing in Medical Imaging, Springer (2017), pp. 597-609
[24]Z. Han, B. Wei, A. Mercado, S. Leung, S. Li. Spine-GAN: semantic segmentation of multiple spinal structures Med. Image Anal., 50 (2018), pp. 23-35
[25]M. Zhao, L. Wang, J. Chen, D. Nie, Y. Cong, S. Ahmad, A. Ho, P. Yuan, S.H. Fung, H.H. Deng, et al. Craniomaxillofacial bony structures segmentation from MRI with deep-supervision adversarial learning International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer (2018), pp. 720-727
[26] Son, J., Park, S.J., Jung, K.-H., 2017. Retinal vessel segmentation in fundoscopic images with generative adversarial networks. arXiv: 1706.09318 .
[27]Y. Li, L. Shen. CC-GAN: a robust transfer-learning framework for hep-2 specimen image segmentation IEEE Access, 6 (2018), pp. 14048-14058
[28] S. Izadi, Z. Mirikharaji, J. Kawahara, G. Hamarneh. Generative adversarial networks to segment skin lesions Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE (2018), pp. 881-884
Close
[29]W. Zhu, X. Xiang, T.D. Tran, G.D. Hager, X. Xie. Adversarial deep structured nets for mass segmentation from mammograms 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), IEEE (2018)
提出了DOMINANT(Deep Anomaly Detection on Attributed Networks)用于graph上的异常检测,核心想法:1)用GCN综合graph的结构信息和节点属性信息来获得节点的embedding。2)通过autoencoder来重构original data从而检测出异常节点。
文中指出网络中的异常节点由网络的拓扑结构和节点属性共同决定。
文中把属性图上的异常检查定义为一个ranking问题,即根据异常的程度评分排序。
Dominant由三部分组成:
1)attributed network encoder. 通过GCN综合网络结构信息和节点属性信息来获得节点的embedding。
2)structure reconstruction decoder. 通过节点的embedding重构网络拓扑结构。
3)attribute reconstruction decoder. 通过节点的embedding重构节点属性。
最终通过重构误差来评判节点的异常程度。
文中使用了GCN来作为encoder,同时考虑了网络结构信息和节点属性信息。
用A~ 表示重构的邻接矩阵,结构重构误差Rs=A-A~ .(Rs是一个矩阵)
这里的想法是,如果一个节点的连接关系不能被很好的重构,说明它的结构信息不符合大多数正常节点的pattern。
Rs(i,:)表示Rs的第i行对应的向量,即node i对应的结构信息。如果该向量的2范数越大,说明从拓扑结构的角度,节点i是异常节点的概率更高。
文中预测节点i和节点j之间是否有link使用的是node i的embedding与node j的embedding的内积加sigmoid,内积本质就是近似的相似度,即node i与node j的latent representation越像,越有可能有link.
于是有
和带conv层的autoencoder一样,conv的逆操作仍然是conv。
因此,使用另一个图卷积层来预测原始的节点属性
重构误差为RA=X-X~.
最终的目标函数定义为
α为超参数。
完成模型的训练后,通过每个节点的重构误差,来衡量其异常程度。
节点vi的异常score定义为
最后,对所有节点的异常score做ranking,得到各个节点的异常程度。
医学影像的处理是临床的实用技术,也是计算机在影像学科应用的一个方面。下面是我为大家整理的浅谈医学影像学 毕业 论文,供大家参考。
医学影像学毕业论文篇一:《医学影像技术学实验教学改革》
【摘要】
医学影像技术学是医学领域中的一门重要的基础性学科,同时也是一门较强的实践性学科。但是由于 教育 条件的限制,现在很多高校的医学影像技术学教学手段都还停留于单纯的理论授课方式,对于学生的实践能力培养不够全面。基于此,本文我们的主要研究重点就是关于医学影像技术学的改革问题,了解当前教学模式中存在的主要问题,从而有针对性的提出具体的解决 措施 ,以有效的提高医学影像技术学的教学效果。
【关键词】医学影像技术学;实验教学;改革创新;分析研究
随着社会的快速发展,人们对医学技术的要求标准也越来越高,影像诊断技术作为现代医学领域中的一门重要学科,必须随着社会的发展而不断的更新完善。在这样的严酷现实之下,我们对医学影像技术学的实验教学模式提出了更高的标准,教学模式必须要打破传统的常规模式,向着更加科学化、数字化和信息化的方向发展。
一、医学影像实验教学的特殊性
医学影像技术学是一门基础性的医学科目,其在医学领域中具有着重要的地位,对于学生将来更好的适应岗位需求具有着决定性的作用。总的来说,医学影像实验教学的特殊性主要表现在以下几个方面:
1.实践应用性强。
他是一门实践性非常强的学科,单纯的理论学习并不能够让学生充分的掌握技术的要求,必须要通过有效的实验课程,让学生将理论知识与实际操作相结合,提高动手能力和临床工作能力。
2.新技术推广应用快、广。
医学影像技术学是医学中的新兴学科,它的发展速度非常的快,科研究的领域与空间十分的广,每当有新的技术手段被应用到临床医疗之中的时候,实验教学都必须要紧跟其步伐,避免出现于临床脱节的现象。
3.和其他学科联系较多。
医学影像学技术是其他多种临床疾病诊断的重要依据,它与其他的学科之间存在很多的联系。因此对于医学影像学的实验教学不仅要让学生学会操作的技能,而且还要学会应对各种疾病检查的 方法 。
二、当前医学影像技术学实验教学模式存在的主要问题
医学影像技术学有其独特的特殊性,因此对此的学习也应该具有针对性。但是就当前医学院校的教学实际来看,很多的学校在这一学科的教学模式上还存在着很多的不足,归纳来看主要可以归结为以下几个方面:
1.实验大纲与实验教材相对滞后。
近年来,随着医学影像技术的飞速发展,很多的技术和设备都发生了巨大的变化,但是目前国内的高校使用书籍中并没有一些新技术、新理论的内容,对于医学影像技术学方面的实验指导也非常的少,涉及的新技术方面非常的窄,甚至一些教材中仍然沿用已经淘汰的技术教材,这对于学生的学习产生了很大的负面影响。
2.实验课学时相对较短。
医学影像技术学是一门实践性非常强的学科,对于他的学习主要应该采用实验教学的方式,但是由于受传统教学模式的影响,当前很多高校对于这门课程的教学模式采用的还是纯理论授课的方式,对于实验教学的课时安排的相对较少,这使很多学生虽然学到了理论知识,但却不能够切实的应用到实际之中,造成他们的岗位适应能力差。
3.实验教学手段单一落后。
以往我们的医学影像技术学实验课主要是在实验室进行的,但是由于实验室的教学条件有限,能够联系的实验内容也就不充足,一般只能够进行一些基础性的实验实践,对于当前临床医学中常用的大型数字化的设备认识不足。
三、医学影像技术学实验教学改革的措施
随着社会的发展进步,人们对医疗水平的要求越来越高,医学影像技术学作为医疗诊断方式中的重要方式其在医疗领域中的应用越来越广,总的来说,根据当前的教学实际,进行医学影像技术学实验教学改革的措施主要可以分为以下几点:
1.学习实践活动多样化,注重在训练中学习医学影像技术。
医学影像技术的学习不是纯理论的,实验教学也具有着非常重要的地位。因此今后教学改革的方向之一就是要加强实践教学的改革,不断的引进先进的设备技术,充实教育资源,让学生能够及时的了解最新的技术手段,从而有效的提高实际操作技能。
2.注重人才的引进,加强实验教学人员队伍建设。
师资能力的不足是当前影像教学效果的主要原因之一,原来一名实验教学需要带一个班级的学生,这大大的增加了教师的工作量,也弱化了对学生的时时指导强度。通过人才引进培养的方式,加强实验教学人员的队伍建设,提高实际的教学人数可以大大的改善教学的环境,让学生更加充分的享受教师资源。
3.健全实验教学教材和资料库。
随着一系列的改革发展,我们要根据技术发展的实际,不断的将最新的医学影像技术编撰到教材用书之中,让学生及时的了解当前的技术形式,从而更好的掌握技术能力。同时我们也要逐步的完善资料库,保证每一个学生都有充足的资料来源。
结语
综上所述,医学影像学实验教学有其独特的特殊性,这决定了它需要不断的进行发展,根据当前各医学高校的实际教学情况,结合临床实际需求和医学影像技术的新进展,不断的进行实验教学改革,为学生走上临床工作岗位打下坚实的基础。
参考文献:
[1]汪百真,俞曼华,张俊祥,曹明娜.医学影像检查技术学实验课程的改革与创新[J].蚌埠医学院学报,2013,07:919-921.
[2]王惠方,梁长华,杨瑞民,陈杰,岳巍,刘儒鹏.医学影像诊断学实验教学模式改革[J].中国医药指南,2013,21:774-775.
[3]邱建峰,谢晋东,王晓燕,王鹏程,侯庆峰.医学影像物理学(医学影像成像理论)教学与实验改革的探讨[J].中国医学物理学杂志,2008,03:700-702.
[4]陈晓光,任伯绪,柯茜茜,陈奕.医学影像技术学实验教学的改革与实践[J].中国高等医学教育,2011,11:55-56+69.
医学影像学毕业论文篇二:《临床医学影像在泌尿系统结石中的应用》
泌尿系统结石病属于临床泌尿外科中最寻常的病症之一,主要包含了肾结石、输尿管结石、膀胱结石与尿道处的结石。本组抽取了84例泌尿系统结石患者作为研究对象,其目的是根据红外光方法测量泌尿体系结石组分当成根本规范,探讨CT值关于结石组分的诊断作用,现将研究成果报道如下。
1资料与方法
1.1一般资料
本组研究84例泌尿系统结石患者均符合WHO相关诊断标准。其中,男55例、女29例;年龄8月~82岁,平均年龄是(40.2±6.7)岁;其中结石有54例,输尿管结石有19例,膀胱尿道结石有11例。单发结石有54例,多发结石有20例,鹿角形结石有10例。肾结石的最大直径为8公分,输尿管结石的最大直径为3公分。临床症状表现当中包含了肾绞痛主诉患者有49例(60.59%),含有肉眼血尿或者尿隐血患者一共是11例(11.8%),含有腰部酸胀不适主诉的患者一共是18例(22.6%),含有尿频尿急主诉的患者一共是6例(13.2%)。
1.2CT扫描的常态检测方式
使用美国制造的GECardiacLightSpeedVCT63排扫描机还有Toshiba15排扫描机。其中美国制造的GECardiacLightSpeedVCT63排扫描机还有Toshiba15排扫描机都设立好了下面的参量,即:扫描电压在90~135KV之间扫描层厚度为:3或者2.7mm,完成泌尿系统的全方位扫描。患者完成检测前不再需要完成肠道的预备,但是探究关于肠道内食物或者气体等给扫描后果也许会形成较大干扰,在不变化医疗安全条件允可的情况中,建议患者禁食在7个小时以上。一般在扫描前要嘱咐患者喝清水500ml~1100ml之间,在1个小时大致的时间里患者自觉带有尿意觉得尿液充满膀胱的时候再完成扫描,扫描中要求病人的双手抱住头,平仰式卧躺,凝注呼吸,扫描范畴在肾上部至耻骨结合的下部,大至持续4分钟。
2结果
本组调查所收入的84例结石患者的情况大致是:84结石病例的均衡CT值依次是:尿酸铵有230.37HU、无水尿酸有243.28HU、碳酸磷灰石有860.61HU、一水草酸钙有639.03HU、二水草酸钙有673.61HU、二水尿酸有279.57HU、二水磷酸氢钙有1565.72HU、六水磷酸铵镁有230.35HU。当中的尿酸铵、无水尿酸、碳酸磷灰石、一水草酸钙、二水草酸钙CT值差异拥有统计学意义(P<0.05);二水尿酸、二水磷酸氢钙、六水磷酸铵镁结石的CT值差异不具备统计学意义(P>0.05)。
3讨论
关于结石的医治,这些年来,伴随泌尿外科腔中手术道具还有手术科技的快速进步,腹腔镜技术,经皮肾镜科技(PCNL),各式的腔内内镜器械的发展,引发了泌尿系统结石的医治水准拥有显著的提高,其中超过八成的泌尿系统结石不再应用传统的开放手术医治[2-3]。然而虽然这样,手术治疗后结石的遗留与反复,也给病人带来了很大的痛感。因此探究讨论泌尿系结石的因素还有指引结石的预防措施拥有关键的意义。泌尿体系结石不仅发病率很高,较高的反复率也是困惑临床主疗医生医疗的困难其一。
结石处理的科技还有设施的进步,仅仅是关于整体因素所带来的结果完成处理。然而患者出院后造成结石构成的危险因子并未获得改善。复发结石是说以前利用自行排除结石、腔内镜手术取出石或体外冲击波碎化石让结石引出体外后,在其以往病理因素干预下泌尿系统结石再一次行成。
患者到医院进行随访时[5],尿液代谢探究可以给医治带来参照依据,尿液标本必须测量钙、镁、磷、钠、尿酸还有肌酐的浓值、草酸与梓檬酸的浓值、pH度和总值,有利于尽快找寻引法尿路结石的机理内部原素。选用血液标本需测量血清里的钙、镁、磷、钠、尿酸与肌酐的浓值。
结合此次研究结果,可以得出结论:对于泌尿系统结石的患者,CT值确诊碳酸磷灰石、一水草酸钙结石的精准度对比其他较高,有关 其它 组分结石的判断精准度不清楚。如果需要临床上提高判断精准度,一定要深入化的参照其它方法,例如尿液代谢探讨等可以提高其判断精准度。
医学影像学毕业论文篇三:《护理在医学影像检查中的作用》
随着现代医学的迅速发展,医学影像学已由过去单纯的辅助检查逐渐向造影诊疗与介入性治疗等领域扩展。护理人员要适应影像检查的特殊性,配合好影像医师的各项工作,使患者顺利安全地达到诊疗目的而不发生意外情况,在熟练掌握临床基本护理知识及操作技能的同时,还要努力掌握影像专业的一些理论知识和技术操作能力,了解更多的新知识、新方法,提高护理技能,才能适应这项工作。现就护理工作在影像检查中的作用介绍如下。
1 心理护理
到影像科室检查的患者受认知程度的影响对增强扫描往往感到紧张,尤其是增强扫描还需要先行告知增强扫描的目的和危险,这更加重了患者的紧张情绪。而精神过度紧张是一种应激反应,可导致肾上腺素分泌增加,引起心率加快、手足冷汗、头晕等多种负性反应,诱发或加重对比剂的不良反应,因此减轻患者的紧张恐惧心理是保证增强扫描顺利完成的一个重要环节。为了取得患者的理解和充分配合,作为护理人员必须耐心地向患者和家属详细介绍增强的目的、过程、安全性、术后可能出现的不良反应以及应注意的事项,使患者对增强扫描过程有比较全面的了解,以 消除紧张 恐惧等不良心理,积极配合,保证增强扫描的顺利进行。
2 普通X线平片及造影检查的患者准备及护理
2.1 X线平片
腹部、腰椎、骶尾椎、骨盆平片均应先行清洁灌肠或检查前晚上服缓泄剂,以便清洁肠内粪便,消除因此而造成的X线漏误诊。
2.2 造影检查
造影检查在X线中占有重要地位,随着各种设备的日趋完善和造影药物的不断改进,临床造影项目逐渐增多。为减少患者的痛苦,避免不必要的重复检查, 做到一次成功,需要放射科护士认真细致地做好术前准备。
2.2.1 造影前应向患者讲明造影检查的重要性及检查过程中应注意的事项和方法,努力消除患者的恐惧和忧虑。
2.2.2 熟练掌握各种造影检查药物的剂量和应用;全面了解各种造影检查的目的、方法以及适应证、禁忌证,掌握各种检查前患者的准备。
2.2.3 做好麻醉剂、碘剂 、磺胺类药物过敏试验,并记录结果;准备好抢救药品和设备。
2.2.4 造影中密切观察患者的各种变化,熟练掌握过敏反应的临床表现以及防治措施、急救药品与设备的应用,一旦发生过敏反应需及时处理,必要时请相关科室医师配合。
2.2.5 检查后患者的护理
对于各种X线造影检查后的患者要求观察2~4h,要密切注意患者的反应,定时随访,必要时留院观察。对放置引流管的患者要保持引流管通畅,对有明显感染症状者应用抗生素治疗或收往院。
3 CT增强检查的患者准备及护理配合
3.1 检查前患者准备及特殊患者的护理
护士应了解CT扫描检查的全过程,做好患者检查前的准备工作,如头颅检查4h前禁食,腹部各种脏器检查前1周内不应吃含金属的药物,不做胃肠造影检查,扫描前6~12h禁食。
3.2 检查前,对精神紧张的患者要进行必要的心理安慰,使其稳定情绪;对小儿采取耐心积极的态度,鼓励他们完成检查,另一方面要轻移、轻放、尽量少动,必要时需临床医生陪同,以便病情有变化时及时抢救和治疗。
3.3 过敏反应的抢救及护理
CT检查时给患者静脉注射碘对比剂,以增加不同组织间的对比度,进一步提高诊断准确率。由于在CT检查中给药的方式快、剂量大、浓度高,因此,碘过敏反应的发生率高于其它造影检查。护理人员应在使用过程中引起高度警惕,严密观察不良反应。
3.4 用药时详细询问有无过敏史。
3.5 有无严重的心、肝、肾脏疾病,对高热、心衰、 严重肝肾疾病患者应慎用或不用。
3.6 向患者说明造影目的及过程,减少患者的恐惧心理。
3.7 注药过程中严密观察患者,发现有异常反应立即停止注射,必要时给予处理。如发生轻度反应一般不用特殊处理,让患者大量饮水。必要时可静脉注射地塞米松10mg。对个别重度反应者,应及时抢救处理,并及时给吸氧等措施,必要时请相关专科医生来科共同抢救。
4 磁共振患者受检前的准备与护理
4.1 在进入磁共振检查室之前,护士应对患者做好适当的解释工作,以消除其思想顾虑。
4.2 详细询问现病史与既往史,结合申请单上临床医师查出的症状、体征、实验室检查及拟诊,确定扫描部位及层面选择,以便更准确地查出病变的部位、范围与性质。
4.3 掌握绝对禁忌证及相对禁忌证:询问并检查患者是否有心脏起搏器、神经刺激器、人工心脏瓣膜、眼球异物及动脉瘤夹,发现这些物品者不能进行检查。进入检查室以前取下患者身上的一切金属物品,如假牙、发卡、戒指、耳环、钥匙、钢笔、手表、硬币等,这些物体会造成金属伪影,影响成像质量。磁盘、磁带也应取下,否则会因为去磁而损坏。
检查眼部前应洗掉眼影等化妆品,检查胸椎、乳腺以及盆腔、腰椎应去除乳罩及取出避孕环,否则也会因伪影而影响诊断。
4.4 幼儿、烦躁不安与幽闭恐惧症患者应给予适量镇静剂,如水合氯醛、安定等。对心脏患者,精神紧张者,可用棉花球塞外耳道, 减少噪音的刺激。
4.5 使患者尽量舒适地平卧在检查床上,盖上棉毯以保持温暖。
4.6 护士应预先向患者解释检查过程中的一切现象,如梯度场启动会有噪声,使患者能安心静卧,平稳呼吸,如有不适可用话机与医生交谈。
4.7 中风、脑瘤伴颅高压者应先采取降颅压措施,否则患者仰卧会因喷射性呕吐而造成窒息与吸入性肺炎。由于检查时间较长,为预防意外,可侧卧扫描。
4.8 注射MRI造影剂时,应在治疗室将药液抽入注射器并连接无菌塑料头皮针,将注射器和头皮针放在无菌塑料盘内,备好棉签、胶布、止血带等进入磁体房,不宜将金属针头、镊子治疗盘等带入磁体房。
5 介入放射科的护理管理
5.1 做好术前、术中、术后的各项准备工作及护理
5.1.1 术前患者按要求备皮,术前4~6h禁食。
5.1.2 做好患者的思想工作,使其消除顾虑,取得配合必要时给予镇静、 止吐剂,避免患者术中躁动或呕吐,影响手术的进行。工作人员进人介入室,需换专用鞋、帽及口罩。
5.1.3 术中严格执行操作规程,导管、导线等注意盘好放顺,防止污染。荧光增强器用消毒罩罩住,加强无菌操作的监督。
5.1.4 术后应严密观察患者体温及穿刺口情况,发现出血及病情变化及时处理,必要时应用抗生素预防感染。
5.2 增强无菌观念,严格无菌操作。努力做好介入放射室的无菌管理工作,是减少感染和并发症,使介入诊疗术顺利进行的重要保证。而术中造影投照时挪动机器等因素,增加污染机会,易造成并发症。
5.2.1 树立严格的无菌观念,充分认识无菌操作的重要性和必要性。
5.2.2 加强对无菌知识理论的学习和操作的训练,对操作人员进行必要的培训,熟悉无菌操作的要求,使其达到操作规范化。
5.2.3 认真督促,检查无菌操作执行情况,发现问题,及时纠正与补救。
5.2.4 操作房间要有专职护士管理,保持肃静和整洁。门窗装置要严密。
5.2.5 术前、术后房间要用紫外线灯照射2h,每周用福尔马林熏蒸1次。
5.2.6 对术中器械使用之前,金属器材高压消毒,导管等塑料制品,均为一次性使用,用后必须剪断,送处理处进行焚烧。
总之,放射科的护理工作在整个检查与诊疗工作中越来越受到人们的重视,作为放射科的护理人员不但要熟练掌握基础护理各项操作的技能,而且要掌握放射专业的一些理论知识和技术操作。这就要求护理工作者,要不断更新知识。提高本身的业务素质,全面提高护理质量,全心全意为伤病员服务。
猜你喜欢:
1. 分析医学影像职称论文
2. 关于超声医学论文精选
3. 医学影像论文范文
4. 放射技术论文
5. 病例分析论文范文