药学毕业论文开题报告篇3
题 目 名 称: 番泻叶对小鼠尿量的影响
研究现状:
一、普鲁兰酶
普鲁兰酶(Pullulanase,EC.3. 2. 1. 41)是一种能够专一性切开支链淀粉分支点中的α-1.6糖苷键,从而剪下整个侧枝,形成直链淀粉的脱支酶。普鲁兰酶还可以分解普鲁兰多糖,普鲁兰酶来源于微生物,R-酶则来源于植物。普鲁兰酶最初是由Bender和Wallenfels于1961年通过产气气杆菌Aerobacter. aerogenes}(典型菌为肺炎克雷伯氏杆Klebsiella.pneumoniae)发酵获得,他们报道了该酶良好的酶学性能。之后,各国的科研人员经过广泛深入研究,从不同的地区、微生物中获得该酶,掀起了开发普鲁兰酶的高潮。
在淀粉加工工业中,α淀粉酶最为常用,它的功能是水解淀粉的α-1,4糖苷键,单独用它时,产物中含有大量分支结构的糊精,其中就含有大量的α-1,6糖苷键。假如不把淀粉的α-1,6糖苷键彻底分解的话,势必会造成很大的浪费。自然界中,存在有能分解淀粉的α-1,6糖苷键的酶,通称为解支酶。如寡α-1,6葡萄糖苷酶( E.C3.2.1.68, Oligo-l,6-glucosidase ),普鲁兰酶(E.C3.2.1.41Pullulanase ),异淀粉酶( E.C3.2.1.68, Isoamylose ),支链淀粉一6-葡聚糖酶( E.C3.2.1.69,Amylopectin-6-gluanohydrase ),其中普鲁兰酶要求的底物分子结构最小,故而可以将最小单位的支链分解,导致可以最大限度的利用淀粉,所以在淀粉加工工业中有着重要的用途和良好的市场前景。故而许多国家都争相开发,但是到现在为止,只有丹麦的NOVO公司具有普鲁兰酶的生产能力。我国只有向其进口,但是其价格昂贵,限制了普鲁兰酶在我国的应用。其实,我国早在七十年代就开发普鲁兰酶的产生菌,但是该菌的酶学性质不适合生产,至今我国在普鲁兰酶的国产化方面还没有报道。
在淀粉的加工行业上,对普鲁兰酶的酶学性质的要求是耐酸耐热,其原因是因为通常使用外加酶化法,由于所用酶类的限制,普鲁兰酶的添加可以在两步反应的任何一步,但必须满足上述的反应的条件。因此所开发的普鲁兰酶的酶学性质必须满足现有的酶法水解制糖的条件,也就是耐酸耐热。
二、普鲁兰酶的研究现状
1.产普鲁兰酶的微生物
普鲁兰酶最初是由Bender和Wallenfels于1961年通过产气杆菌(Aerobacter
aerogenes)发酵获得。他们报道了该酶的良好性能之后,各国的科研人员经过广泛深入的研究,从不同的地区的微生物中获得该酶,掀起了开发普鲁兰酶的高潮。但是迄今为止,尽管发现许多微生物能够产普鲁兰酶,但是由于当今工业生产条件(酸性,温度),大多数微生物所产的普鲁兰酶并无商业价值。以下便介绍一下普鲁兰酶的生产菌种。
1.1蜡状芽抱杆菌覃状变种(Bacillus cereus Var.mycodes)
由日本的ToshiyukiTakasaki于1975年发现。该菌同时产生两种淀粉酶:β-淀粉酶和普鲁兰酶。最佳作用条件为pH6~6.5,温度50℃,最大转化率(淀粉水解产生麦芽糖)大约为95%.酶学研究中发现,此酶在pH5,温度60℃依然保持大部分活性,该菌的营养细胞呈棒杆状,聚集成长短不等紊乱链状,无运动性,格兰氏阳性,产芽抱时细胞无明显膨胀。该菌最适生长温度30℃~37℃ ,最高生长温度在41℃~45℃,可以利用葡萄糖,甘露糖,麦芽糖,海藻糖,淀粉和糖原。
1.2嗜酸性分解普鲁兰多糖芽抱杆菌(BaciIluS.Acidopullulyticus)
上世纪八十年代初,丹麦Novo公司获得此菌,此菌所生产的普鲁兰酶耐热
(60℃),耐酸(pH4.5)。该公司经过投入巨资开发研究,1983年Nov。公司在日本和欧洲市场同时商业化销售,商品名Prornozyme。如今,它是应用最广,产量最大的普鲁兰酶。Bacillus.Acidopullrrlyticus呈棒状,深层发酵几小时后,可观察到类原生质体的膨胀细胞,较稳定,饱子呈圆柱体或椭圆体。格兰氏反应阳性,37℃生长良好,45℃以上和pI-1高于6.5以上不长,在以普鲁兰糖为碳源的培养基((pH4.8 ~5.2)上生长良好。
1.3枯草芽饱杆菌(Bacillus subtilis)
1986年,日本的Yushiyuki Takasaki报道了一株能产生耐热耐酸普鲁兰酶的菌种,被命名为Bacillus subtilis TU。此菌种所产生的酶为普鲁兰酶和淀粉酶的混合物,可水解淀粉为麦芽三糖和麦芽搪.水解普鲁兰糖为麦芽三糖,其中普鲁兰酶最佳作用pH为7.0~7.5,但在pH5.0时亦有约50%的酶活,此普鲁兰酶最佳作用温度60℃。
1.4耐热产硫梭菌(Clostridum Themosulfurogenes)
1987年.德国的E.madi等报道了一株能同时产a淀粉酶、普鲁兰酶和葡萄糖淀粉酶的菌种:耐热产硫梭菌。该菌种所产普鲁兰酶有较广的温度适应范围(40℃~85℃),在pH4.5~6.0有较高的活性,在如此广的范围内都有较强活力无疑将扩大该普鲁兰酶的应用领域.
1.5 Bacillusnaganoensis,Bacillus deramificans,Bacillus.Acidopullulyticus
上世纪九十年代,Deweer发现了普鲁兰酶产生菌Bacillus naganoensis;Tomimura筛选出Bacillus deramifrcans。这两株菌所产的普鲁兰酶的酶学性质与Bacillus. Acidopullulyticus的酶学性质相似。这两株菌都是中度嗜酸菌,在pH6.5以上就不生长,温度超过45℃以上同样也不生长。这两株普鲁兰酶产生菌的发现,进一步拓宽了普鲁兰酶的应用。
1.6产普鲁兰酶的高温菌菌种
自上世纪八十年代以来,人们逐渐意识到在通常的自然条件下,很难筛选得到极端耐热的普鲁兰酶生产菌种,于是各国的科学家便把目光转移到温泉嗜高温细菌的筛选,而且现在已经取得较多的成果。Bacillus如vorcaldarius所产普鲁兰酶的最适温度和pH分别是75~85℃, pH6.3, Thermotoga maritime的最适温度和pH分别是90℃, pH6.0, Thermurs caldopHilus的最适温度和pH分别是75℃,pH5.5, Fenidobacterion pernnavoran最适温度和pH分别是80~85℃, pH6.0o
2.普鲁兰酶的分子结构
至今为止,许多普鲁兰酶的基因己经被克隆,但是还没有见到任何有关普鲁兰酶结构的报道,但是在根据序列相似性对糖普键水解酶的分类,普鲁兰酶属于第13家族,α淀粉酶家族,这个家族中包含了30多种酶,可以分为水解酶,转移酶。异构酶三大类。这些酶能够水解和合成α~1.4,α~1.6,α~1.2,α~1.3,α~1.5,α~1.1糖苷键。其中很多酶的结构已经被报道,它们都采取了(β/α)8的结构,通过生物信息学的研究,这个家族的蛋白都有一个共同的结构,酶的活性中心都是(β/α)8折叠筒的结构,命名为结构域A。第13家族的大多数酶还具有结构域B,它是位于(β/α)8折叠筒中,第三个β片层与第三个α螺旋之间的一段序列,其特点是结构和长度差异较大,推测其功能是与底物的结合有关。在紧接着(β/α)8折叠筒后,还有C结构域,紧接C结构域,部分家族成员还有结构域D。
3.普鲁兰酶的应用
普鲁兰酶,在食品工业中是一种用途广泛的酶制剂和加工助剂。它能专一性分解淀粉中的支链淀粉和糖原分子及其衍生的低聚糖分支中的α~l, 6糖苷键,使分支结构断裂,形成长短不一的直链淀粉。因此,将该酶与 其它 淀粉酶配合使用时,可使淀粉糖化完全。近年来,普鲁兰酶己作为淀粉酶类中的一个新酶种,应用于淀粉为原料的食品等工业部门,在食品工业中有如下几方面的作用:
3.1单独使用普鲁兰酶,使支链淀粉变为直链淀粉
直链淀粉具有凝结成块,易形成结构稳定的凝胶的特性,因此,可作为强韧的食品包装薄膜。这种薄膜对氧和油脂有良好的隔绝性,又因涂布开展性好,故适合于作为食品的保护层。它还适合于淀粉软糖制造,也可用作果酱增稠剂,用于装油脂含量高的食品,以防止油的渗出以及肉食品加工。近年来在食品工业中提倡使用可被生物降解的薄膜,直链淀粉在这些方面具有较大的发展前途。豆类直链淀粉含量较高,因此绿豆淀粉制成的粉丝韧性比其它淀粉好,如果用普鲁兰酶处理谷物淀粉,再制成直链淀粉后,可以制成高质量的粉丝。一般谷物淀粉中,直链淀粉含量仅占20%,支链淀粉含量约为80%。工业上每生产1吨直链淀粉就有4吨副产品的支链淀粉。美国虽然通过遗传育种的方法.得到含直链淀粉60%玉米新品种,但不大适于大量生产。国外已采用普鲁兰酶改变淀粉结构,可使支链淀粉变为直链淀粉。据报道,采用此法收率可达100%.制造直链淀粉的方法为,先采用普鲁兰酶分解经液化的分支部分,使其转变为直链淀粉,并以丁醇或缓慢冷却法沉淀淀粉。再回收含少量水分的晶型沉淀物,最后通过低温喷雾干燥法制成粉状的直链淀粉。
3.2普鲁兰酶与β~淀粉酶配合使用生产麦芽搪
饴糖是我国传统的淀粉糖产品,其中所含部分麦芽糖,广泛用于糖果、糕点等食品工业。目前生产方法是以α~淀粉酶进行液化,再用β~淀粉酶水解支链淀粉,这样只能水解侧链部分。接近交叉地位的α~1.6糖苷键时,水解反应停止。但如果使用普鲁兰酶共同水解,便能使分支断裂,提高淀粉酶水解程度,降低了β极限糊精的含量,大大提高了麦芽糖的产率,有利于生产麦芽搪浆。目前对加普鲁兰酶进行糖化己作了较大规模的试验。
试验条件为。每批投料量约为900公斤碎米,粉浆浓度为15~16Be°数皮用量1.5%(对碎米计),β~淀粉酶活性2,000单位/克以上,pH5.8;普鲁兰酶活性45,000~55,0 00单位/克,系由产气气杆菌生产,每批用量为1公斤。试验结果表明,加入普鲁兰酶糖化的试验糖与对照糖品相比,还原糖平均增加14.8,麦芽糖含量平均增加了45.6,糊精含量平均减少了26.7高浓度麦芽糖浆较之高浓度葡萄搪浆,具有不易结晶,吸湿性小的特点,所以高浓度麦芽糖浆在食品工业中有着广泛的用途。采用普鲁兰酶与p一淀粉酶配合使用,成本低廉,麦芽糖收率达到70%左右,其至更高。
3.3用于啤酒外加酶法糖化
啤酒生产中麦芽,既是酿造啤酒的主要原料,也为酿造过程提供了丰富的酶源。在啤酒酿造的糖化过程中,麦芽中分解淀粉的主要酶是α~淀粉酶、β~淀粉酶和分解淀粉α~1. 6糖瞥键的R一酶(植物普鲁兰酶或植物茁霉多糖酶)。β~淀粉酶与另两种淀粉酶协同作用,可使淀粉分解成麦芽糖(也包括少量的麦芽三糖和极少量的葡萄糖)和低分子糊精。使麦芽汁有比较理想的糖类组成。在工业生产中为了节约麦芽用量,采用所谓外加酶法糖化,即在减少麦芽用量的前提下,增加淀粉质辅助原料的比率,并加入适当种类的酶制剂进行搪化。要使大麦及其它辅助原料糖化完全,需要外加a一淀粉酶和分解α~1.6糖苷键的普鲁兰酶制剂等。单独使用a一淀粉酶时产生麦芽糖和麦芽三搪是很不完全的。假如分解淀粉α~1.6糖苷键的酶活性不足,淀粉分解就不完全,其结果是可发酵性糖含量低,制成的啤酒发酵度达不到要求。若采用能分解α~1.4和α~1.6糖苷键的糖化型淀粉酶,则其反应产物为葡萄糖,容易使酒味淡薄。采用普鲁兰酶与α~淀粉酶协同,效果良好,其分解产物主要是麦芽糖和少量的麦芽多糖。采用外加酶法糖化时,加入酶制剂的用量为:淀粉酶6~7单位/克大麦及大米:蛋白酶,60-80单位/克,并配合以菠萝蛋白酶10ppm,普鲁兰酶50单位/克大麦。以上三种酶制剂均添加于糖化或酒化开始。
总之,普鲁兰酶无论作为酶制剂和食品工业的加工助剂均有广阔的发展前途。
研究目的和意义:
酶制剂工业是上世纪七十年代就己经形成的一个重要的产业,目前世界酶制剂总产值达100亿美元,我国的产值约为100亿人民币,并且随着其应用领域的不断扩大以及新酶种的开发,这一市场正在迅猛发展。但是全球酶制剂产业几乎被几家外国公司所垄断,其中丹麦的NOVO公司几乎占全球总销售额的一半。本研究对普鲁兰酶的开发,对酶制剂产业的发展有重要的意义。
其次我国自从七十年代开始便对普鲁兰酶进行研究开发,但是所开发得到的普鲁兰酶,既不耐热也不耐酸,这就使其在工业化应用中受到了局限。为了改变我国对进口产品的依赖,填补我国这一领域的空白,寻找一条国产化的道路,本研究的目的是利用自然微生物资源,普鲁兰酶,提高我国淀粉原料的利用率,从而提高整个淀粉加工行业的生产率,这对我国淀粉加工产业的意义是不言而喻的。
研究内容(内容、结构框架以及重点、难点):
一.普鲁兰酶产生菌的筛选
(1)样品的采集;
(2)菌种初筛;
(3)菌种复筛;
(4)菌种保藏方法;
(5)酶活力测定方法的建立。
二.产普鲁兰酶菌株的产酶条件的研究
(1)碳源,氮源对发酵产酶的影响;
(2)初始PH对发酵产酶的影响;
(3)接种量对发酵产酶的影响;
(4)发酵温度对产酶的影响;
(5)金属离子对产酶的影响。
重点或关键技术:
(1)纯菌株的分离;
(2)菌株的鉴定方法的选择。
研究方法、手段:
一.普鲁兰酶产生菌的筛选
(1)样品的采集:选择适合产生的地点(面粉厂.菜地.果园等)采集土样
(2)菌种初筛:在采集的土样用无菌水稀释后,在含有淀粉类的培养基中做平板涂步, 37℃培养48h后,用碘液进行显色反应,将有淀粉酶产生的菌落接于斜面中保存。
(3)菌种复筛:将前期分离的能产生淀粉酶的菌株涂步于普鲁兰糖平板上,37℃培养48h后用95%乙醇进行透明圈实验。有透明圈产生说明菌株产生普鲁兰酶,将产生透明圈的菌落挑于斜面培养基培养。
(4)菌种保藏方法: 采用4℃低温保藏。
(5)酶活力测定方法的建立:采用发酵培养液经过离心后利用DNS显色法 520nm测定吸光值,测定标准葡萄糖标准曲线,利用标准曲线计算普鲁兰酶酶活大小。
二.产普鲁兰酶菌株的产酶条件的研究
(1)碳源,氮源对发酵产酶的影响:采用不同碳源,氮源培养基培养一段时间,测定酶活力。(其他条件相同:接种量,装瓶量,初始PH值,转速,培养时间。)
(2)初始PH对发酵产酶的影响:采用相同发酵培养基,在不同初始PH下接种等量种子液。在相同条件下培养,测定发酵液的酶活。(其他条件相同:接种量,装瓶量,转速,最佳培养温度,最佳培养时间。)
(3)接种量对发酵产酶的影响:在发酵培养基中分别接入2%,4%,6%,8%,
10%,14%,18%的种子培养液于最佳碳源,氮源,最佳初始PH的培养基中,在相同条件下培养,分别检测酶活。(采用以上确定的最佳碳源,氮源,最佳初始PH。)
(4)发酵温度对产酶的影响:采用相同培养基,在不同温度下(25℃,30℃,35℃,40℃,45℃)培养一定时间,测定酶活力。
(5)金属离子对产酶的影响:在基础培养基中加入少量不同金属离子,发酵后测酶活。(金属离子有: 锰离子,钙离子,锌离子,镁离子,铁离子,铜离子。)
研究进度
:完成项目总体进度30%,样品土样的采集及前期的准备工作,菌株的初筛,包括(样品土样原液的涂步培养及摇床培养,产支链淀粉酶菌株的挑选及斜面培养)。
:完成项目总体进度50%,菌株的复筛,包括(产普鲁兰酶菌株的筛选及斜面培养),葡萄糖标准曲线的测定,酶活测定方法的建立,并以酶活大小对菌株进行再次筛选。
:完成项目总体进度80%,产酶条件的研究。包括:碳源,氮源,初始PH值,接种量,发酵温度,金属离子。并通过各中单因素试验确定发酵培养基的最佳碳源,氮源,初始PH值,接种量,发酵温度,金属离子。
2009、4—2009、5 :完成项目总体进度100%,课题总结,撰写论文。
文献综述(包括:国内外研究理论、研究方法、进展情况、存在问题、参考依据等)
自从1961年Bender H.等人在研究一株产气气杆菌Aerobacter aerogenes(典型菌为肺炎克雷伯氏杆菌Klebsiella.pneumoniae)时首次发现普鲁兰酶后,国际上对产生这种酶的微生物进行了广泛研究,发现许多微生物可以产生此酶,并筛选出一些适用于工业化生产的优良菌株。随着该酶的应用发展,对耐热性普鲁兰酶的研究也逐渐增多,已成功克隆并表达了该酶的基因。国内1976年开始对一株产气气杆菌(Aerobacteraerogenes 10016)的普鲁兰酶进行研究,对该菌株的产酶条件、酶的分离提取及酶学性质作了报道,并研究了该酶的食品级提取技术。此外,陈朝银、刘涛等人从云南温泉水样中筛选到一株产普鲁兰酶高温栖热菌菌株,通过诱导等实验将该酶的酶活从0.069u/mL提高到170u/mL,酶产量提高了近2500倍左右,酶的最适作用温度及pH分别是75℃和4.5,具有一定的耐热和耐酸特性。
陈金全等从温泉水样中筛选到一株产耐热耐酸普鲁兰酶的野生菌株,并根据形态、生理生化特征、细胞化学组分分析及16SrDNA序列比对、基因组DNA的G+C摩尔百分含量、同源性比对等实验,鉴定其为脂环酸芽抱杆菌属(Alicyclobacillus)的一个新种,所产酶最适作用温度为60℃,最适pH值4.0,具有较好的耐热耐酸特性。杨云娟等利用毕赤酵母成功构建了普鲁兰酶表达量较高的基因工程菌,摇瓶发酵酶活可达350.8U/mL,最佳发酵条件下产量可达504.5-510.1U/mL .酶的最适作用温度为600C,最适pH值4.5,具有较好的耐热耐酸性。目前我国仍没有具备独立生产普鲁兰酶能力的厂商,要实现低成本、国产化的生产,还有很长的路要走。
技术应用于耐热脱支酶的研究,使耐热异淀粉酶的研究有了很大发展。Coleman等人将嗜热厌氧菌T. brockii普鲁兰酶基因克隆到B.subtilis中得到的克隆子分泌的普鲁兰酶数量高于出发菌株,Okada等人将Bacillus Steanther, onhiu:中编码热稳定异淀粉酶的基因克隆到B.subtilu:中,得到的转化菌株其异淀粉酶能在60 ℃稳定15分钟。Burchadf将。ostridium thermosulf urogenes DSM38%的嗜热异淀粉酶基因克隆并在E.coli中表达,所得酶的最适pH和最适温度与出发菌相同,而且在高温下仍能保持活性.Antranikiam等人将Pyrococcus舟riousous的异淀粉酶基因克隆到E.coli中并分离得到了酶蛋白。尽管如此,目前尚未有已将转基因的耐热性异淀粉酶工程菌应用到工业生产中的报道。众所周知,利用物理和化学诱变剂单独或复合处理微生物细胞是选育高产变种菌株行之有效的经典方法,它在为培育多种抗生素、氨基酸、核苷酸激酶(尤其是蛋白酶和淀粉酶)的高产变种菌株方面曾经起过极为重要的作用,至今仍然是方便易行和行之有效的方法之一。
主要参考文献:
[1][美]惠斯特勒等编王雏文等译.淀粉的化学与工艺学[M].北京:中国食品出版社,1988
[2]张树政.酶制剂工业[M]. 北京: 科学出版社,1998
[3]邬显章.酶的工业生产技术[M]. 吉林: 吉林科学技术出版社,1988
[4]Taniguchi H, Sakano Y, Ohnishi M, Okada G(1985) Pullulanase[J].TanpakushitsuKakusan Koso. Ju1;30(8):989-992. Japanese
[5] Jensen, B. F., and B. E. Norman. 1984. Bacillus acidopullulyticus pullulanase[J].:application and regulatory aspects for use in the food industry. Process Biochem.19:351-369
[6]Tomimura E, Zeman NW, Frankiewicz JR, Teague WM. [J]. Description of Bacillus
naganoensis sp. nov.Int J Syst Bacteriol. I 990 Apr; 40(2):123-125
[7]吴燕萍,等. 微生物法生产普鲁兰酶的研究[J]. 生物学技术, 2003,8(6):14-17
[8]金其荣,等. 普鲁兰酶初步研究[J]. 微生物学通报, 2001,28(1):39-43
[9]程池. 普鲁兰酶Promozyme 200L. 及其生产菌种[J].食品与发酵工业,1992 ,(6)
[10]唐宝英等.耐酸耐热普鲁兰酶菌株的筛选及发酵条件的研究[J].微生物学通报,2001 28(1):39-43
猜你喜欢:
1. 关于医学开题报告范文
2. 药学论文开题报告
3. 生物制药毕业论文开题报告范文
4. 药理学开题报告范文
5. 药品市场营销毕业论文开题报告
6. 药学论文题目大全
超市的商品分类有如下几类: 熟食类:比如鸡鸭鱼肉; 日用品类:卫生纸卫生巾等; 调料类:油盐酱醋; 饮料类:果汁饮料; 乳制品类:豆奶牛奶; 粮食类:五谷杂粮; 糕点类:蛋糕; 菸酒类:香菸酒类; 冷冻类:冷冻的鱼虾肉类。
超级市场以满足消费者对基本生活用品一次性购足需要为经营宗旨,是一种经营品项较多的零售业态。对品种繁多的商品进行分类,是超市科学化、规范化管理的需要,它有利于将商品分门别类进行采购、配送、销售、库存、核算,提高管理效率和经济效益。超市公司可以在商品分类基础上,根据目标顾客的需要,选择并形成有特色的商品组合,体现自身的个性化经营特色,求得超市经营的成功。 商品分类可以根据不同的目的,按不同的分类标准来进行。如商品群分类,就是按不同类别商品在卖场销售中的比重与作用来划分的,其目的是通过经营单位或经营区域的组合,促进卖场整体销售业绩。而在超级市场实际商品管理中,商品分类一般采用综合分类标准,将所有商品划分成大分类、中分类、小分类和单品四个层次,目的是为了便于管理,提高管理效率。虽然超市各种业态经营品种存在较大差异,如小的便利店经营品种不到3000个,而超大型综合超市有30 000多种,但商品分类都包括上述四个层次,且每个层次的分类标准也基本相同,只不过便利店各层次类别相对较少,而大型综合超市各层次类别相对较多而已。 一、大分类 大分类是超级市场最粗线条的分类。大分类的主要标准是商品特征,如畜产、水产、果菜、日配加工食品、一般食品、日用杂货、日用百货、家用电器等。为了便于管理,超级市场的大分类一般以不超过10个为宜。 二、中分类 中分类是大分类中细分出来的类别。其分类标准主要有: (1)按商品功能与用途划分。如日配品这个大分类下,可分出牛奶、豆制品、冰品、冷冻食品等中分类。 (2)按商品制造方法划分。如畜产品这个大分类下,可细分出熟肉制品的中分类,包括咸肉、熏肉、火腿、香肠等。 (3)按商品产地划分。如水果蔬菜这个大分类下,可细分出国产水果与进口水果的中分类。 三、小分类 小分类是中分类中进一步细分出来的类别。主要分类标准有: (1)按功能用途划分。如“畜产”大分类中、“猪肉”中分类下,可进一步细分出“排骨”、“肉米”、“里肌肉”等小分类。 (2)按规格包装划分。如“一般食品”大分类中、“饮料”中分类下,可进一步细分出“听装饮料”、“瓶装饮料”、“盒装饮料”等小分类。 (3)按商品成份分类。如“日用百货”大分类中、“鞋”中分类下,可进一步细分出“皮鞋”、“人造革鞋”、“布鞋”、“塑料鞋”等小分类。 (4)按商品口味划分。如“糖果饼干”大分类中、“饼干”中分类下,可进一步细分出“甜味饼干”、“咸味饼干”、“奶油饼干”、“果味饼干”等小分类。 四、单品 单品是商品分类中不能进一步细分的、完整独立的商品品项。如上海申美饮料有限公司生产的“355毫升听装可口可乐”、“1.25升瓶装可口可乐”、“2升瓶装可口可乐”、“2升瓶装雪碧”,就属于四个不同单品。 需要说明的是,商品分类并没有统一固定的标准,各超市公司可根据市场和自身的实际情况对商品进行分类。但商品分类应该以方便顾客购物、方便商品组合、体现企业特点为目的。
超市商品分类冷冻食品类| 冷冻家禽 | 冷冻肉类 | 冷冻水产品 | 速冻蔬菜 | 冷冻制品 | 熟肉制品 | 冷饮 | 新鲜豆奶 | 其它冷冻副食品类 |饮料食品类碳酸饮料 | 果汁 | 茶饮料 | 饮用水 | 纯奶 | 奶制品饮料 | 其它饮料 | 咖啡类 | 麦片 | 胶囊,片类,冲剂 | 酸奶 | 其它饮料补品 |糖果糕点类| 奶糖 | 夹心糖 | 软糖,棉花糖 | 硬糖,咖啡,水果糖 | 棒棒糖 | 清凉,薄荷,润喉糖 | 其他小糖果 | 口香糖 | 礼盒装糖果 | 喜糖 | 散装糖果 | 排块巧克力 | 袋装巧克力 | 巧克力豆 | 夹心巧克力 | 礼盒巧克力 | 简易包装巧克力 | 散装巧克力 | 袋装果冻 | 布丁 | 散装果冻 | 梳打饼干 | 夹心饼干 | 巧克力饼干 | 曲奇 | 膨化食品 | 压缩饼干 | 小饼干 | 派 | 威化饼干 | 降糖饼干 | 饼干礼盒,礼包 | 简装饼干 | 散装饼干 | 薯片 | 其他饼干 | 锅巴 | 休闲食品(大包装) | 休闲食品(中包装) | 休闲食品(小包装) | 微波食品 | 中式糕点 | 西式糕点 | 沙琪玛 | 月饼 | 蛋卷 | 散装糕点 | 蛋糕 | 面包 | 汉堡 | 奶油,黄油 | 自产糕点 | 自产糕点(零) | 其它糖果,糕饼 |炒货蜜饯类香瓜子,葵花子 | 西瓜子 | 南瓜子,白瓜子 | 小瓜子 | 瓜子仁 | 花生 | 开心果 | 杏仁 | 豆子,蚕豆,豆酥 | 果子,果仁 | 松子 | 榛子 | 核桃,核桃仁 | 香榧子 | 炒货礼包 | 散装炒货 | 其他炒货 | 山楂 | 陈皮,果皮 | 梅 | 榄 | 桃 | 杏 | 李,奈 | 脯 | 果 | 丹 | 枣 | 葡萄干 | 应子 | 芒果 | 水果干,片,圈 | 蜜饯类糕饼 | 蜜饯类片,丝,条类 | 蜜饯礼包 | 散装蜜饯 | 其他蜜饯 | 其它炒货,蜜饯类调味品类| 盐 | 糖 | 烹呼叫酱油 | 调味型酱油 | 火锅调料底料 | 味精 | 鸡精 | 醋 | 糟醉料 | 炝料 | 蘸料 | 调味粉 | 调料粉 | 淀粉 | 汤羹料 | 色拉酱 | 花生酱 | 辣酱 | 其它酱 | 麻油 | 辣油烟酒茶类茶叶| 白酒 | 黄酒 | 啤酒 | 米酒 | 葡萄酒 | 洋酒 | 果酒 | 补酒 | 其它烟,酒,茶类软包装食品肉干类 | 鱼干类 | 真空包装肉制食品 | 真空包装素食类 | 海苔类 | 油面筋 | 肉松 | 火腿肠,其他肠类 | 豆腐干 | 粽子 | 即食海带,海蜇 | 肫 | 其它软包装食品粮食制品泡面(袋) | 泡面(碗,杯) | 快饭,粥,米糊 | 粉丝,米线 | 生粉 | 年糕,米块 | 卷面,面条 | 麦片(生),米片,米楂 | 面粉,糯米粉 | 大米,大西米 | 其它粮食制品 酱菜罐头类 补充: 酱菜类 | 果酱,果泥 | 八宝粥 | 腐乳 | 肉制罐头 | 糟醉食品 | 猫狗粮 | 水果罐头 | 素制罐头 | 零称酱菜 | 其它罐头类 南北货腌蜡制品 桂圆| 枣类 | 枸杞 | 木耳,银耳 | 菇类,笋类 | 莲心,百合 | 虾皮类,鱼制品类 | 豆类,仁类 | 海蜇,海带,紫菜 | 其他南北货 | 散装南北货 | 咸蛋,皮蛋 | 腌腊制品 | 散装腌腊制品 | 它腌腊制品 | 洗涤、化妆类 洗衣粉(罐装) | 洗衣粉(袋装) | 洗衣液 | 柔顺剂(袋装) | 柔顺剂(瓶装) | 专用衣物洗涤剂 | 洗洁精(袋装) | 洗洁精(瓶装) | 消毒液 | 玻璃清洁剂 | 厨房清洁剂 | 浴室清洁剂 | 地面(板)清洁剂 | 多用途清洁剂 | 洁厕用品 | 家俱护理剂(蜡) | 皮革护理剂(蜡) | 地板蜡 | 鞋面护理用品 | 空气清香剂 | 固体空气清香剂 | 防霉防蛀用品 | 蚊香及辅助用品 | 灭虫,杀虫剂 | 灭虫,害片(固体) | 洗发露(大规格) | 洗发露(中规格) | 洗发露(小规格) | 洗发膏 | 护发用品 | 发型定型用品 | 染发,局油剂 | 浴露(大规格) | 浴露(中规格) | 浴露(小规格) | 洗衣皁 | 香皂 | 特殊用途皁 | 洗手液 | 脸部清洁用品 | 化妆水 | 润肤霜 | 润肤露 | 润肤膏 | 润肤蜜 | 润肤油(包括甘油等) | 防晒用品 | 护手(足)霜 | 花露水(防蚊水) | 爽身粉 | 护理卫生用品 | 宠物洗涤用品 | 唇膏 | 彩装 | 礼品组合装 | 其它洗涤化妆类 补充: 小百货类 保鲜袋 | 保鲜膜 | 台布 | 浴帘(球,条) | 垃圾袋 | 地垫(毯),靠垫 | 尿布 | 护翼日用卫生巾 | 护翼夜用卫生巾 | 非护翼日用卫生巾 | 非护翼夜用卫生巾 | 综合装卫生巾 | 卫生护垫 | 杯 | 盆 | 刷 | 壶(桶,筒) | 碗 | 盘 | 筛(篮) | 罐(缸) | 奶嘴(瓶) | 夹 | 微波用品 | 扫(箕),(地)拖,擦 | 勺 | 柜(箱) | 雨披 | 棉签 | 竹席 | 草席 | 牙膏 | 牙刷 | 伞 | 牙签 | 衣架 | 护垫(套) | 一次性用品 | 溼纸巾 | 卷筒纸(卫生纸) | 盒装面巾纸 | 袋装面巾纸 | 小商品 | 热水袋 | 清洁布 | 卫生香 | 筷 | 椅,凳 | 餐具套装 | 手套 | 卫生棉条 | 其它百货,杂品,杂货 厨房用品小五金 厨房用品(锅碗盆壶) | 砧板 | 刀,剪,刨 | 各种垫子 | 玻璃制品 | 剃须工具 | 灯泡,灯管,灯 | 电池,充电器 | 插座,转换器 | 清扫工具 | 强力胶 | 钟 | 衣杆,丫叉,伸缩杆 | 梯子 | 架子 | 机油 | 其他小五金类 | 保温杯,真空杯 | 筷,叉 貌似纯洁 的感言: 谢谢。我想要的就是你说的这些,非常全面。真的非常感谢。
简单分就是两大类
食品和非食品。
详细分可以分的大类就多了。
可以从3大类至100大类。
比如:
小型超市管理系统是典型的资讯管理系统,其开发主要包括资料库的建立和维护以及应用程式的开发两个方面。对于前者要求建立起资料一致性和完整性强、资料安全性好的库。而对于后者则要求应用程式功能完备,易使用及维护等特点。经过系统分析情况,我们使用MICROSOFT公司的Visual Basic开发工具,利用其提供的各种面向物件的开发工具,尤其是资料视窗这一方便而简洁操纵资料库的智慧化物件,首先在短时间内建立系统应用原型,然后,对初始原型系统进行需求迭代,不断修正和改进,直到形成使用者满意的可行系统。 本次毕业论文题目为小型超市管理系统,主要目的是在超市进销存模组的基础上,对超市的经营、管理进行研究和探讨。 根据系统所需功能,决定以Windows XP 为开发平台,采用ACCESS做后台资料库,选择功能强大的VB 6.0为开发工具,利用软体工程思想和方法,总体上用结构化生命周期法进行系统分析和设计,采用快速原型法来实现系统。 本系统由进货管理模组、出库管理模组、销售管理模组、管理员模组等组成,对超市中的各种资讯进行分类管理、统筹规划,功能较为全面。 关键词:资讯管理系统;商品管理;资料库
一般小规模超市可划分几个大区: 1、食品区: 速食面/饼干/火腿肠/零散食品 2:饮料区: 啤酒/可乐/果汁/白酒及其它 3、日用品区: 毛巾/牙膏/牙刷/手纸/洗衣粉/洗发水/肥皂等 4、香菸专区 5、其它区: 根据各个超市不同情况定,有的还卖米、油,有的还卖熟食、有的还卖水果。
商品条码的编码结构 包括标准版商品条码(EAN—13条码)和缩短版商品条码(EAN—8条码)。 标准版商品条码:EAN-13 标准版商品条码的结构 标准版商品条码所表示的程式码由13位数字组成,其结构如下: 结构一:X13X12X11X10X9X8X7 X6X5X4X3X2 X1, 其中:X13 ……X7厂商识别程式码;X6 ……X2表示商品专案程式码;X1校验码。 结构二:X13X12X11X10X9X8X7 X6 X5X4X3X2 X1。其中:X13 ……X6厂商识别程式码;X5 ……X2表示商品专案程式码;X1校验码。当X13X12X11为690、691时,其程式码结构同结构一;当X13X12X11为692时,其程式码结构同结构二。 校验码计算 参见GB 12904《通用商品条码》国家标准规定的方法。 缩短版商品条码:EAN-8 缩短版商品条码由8位数字组成,其结构如下: X8X7 X6 X5X4X3X2 X1;其中:X8X7 X6:其含义同标准版商品条码的X13X12X11;X5X4X3X2:表示商品专案程式码,由EAN编码组织统一分配。在我国,由中国物品编码中心统一分配;X1:校验码。计算时,需在缩短版商品条码程式码前加5个“0”,然后按标准版商品条码校验码的计算方法计算. 希望蛋卷的回答对你有帮助。
不知道你问的是什么意思,可以再说细点不,(小超市,小食品,《泡面,火腿,面包,饼乾,》,小调料,小酒水,饮料,生活用品,小百货,)你问的是不是这个。
已传送,注意查收
心理学家把一些4岁左右的孩子带到一间陈设简陋的房子,然后给他们每人一颗非常好吃的软糖,同时告诉他们,如果马上吃软糖只能吃1颗;如果20分钟后再吃,将奖励1颗软糖,也就是说,总共可以吃到两颗软糖。 有些孩子急不可待,马上把软糖吃掉。有些孩子则能耐心等待,暂时不吃软糖。他们为了使自己耐住性子,或闭上眼睛不看软糖,或头枕双臂自言自语……结果,这些孩子终于吃到两颗软糖。 心理学家继续跟踪研究参加这个实验的孩子们,一直到他们高中毕业。跟踪研究的结果显示:那些能等待并最后吃到两颗软糖的孩子,在青少年时期,仍能等待机遇而不急于求成,他们具有一种为了更大更远的目标而暂时牺牲眼前利益的能力,即自控能力。而那些急不可待只吃1颗软糖的孩子,在青少年时期,则表现得比较固执、虚荣或优柔寡断,当欲望产生的时候,无法控制自己,一定要马上满足欲望,否则就无法静下心来继续做后面的事情。换句话说,能等待的那些孩子的成功率,远远高于那些不能等待的孩子。 这个实验给我们的启示是:人的自控能力大小,跟人的一生成功与否有着密切的关系。
(一)藻类的基本特征
关于藻类的概念古今不同。我国古书上说:“薻,水草也,或作藻”。可见在我国古代所说的藻类是对水生植物的总称。在我国现代的植物学中,仍然将一些水生高等植物的名称中贯以“藻”字(如金鱼藻、黑藻、茨藻、狐尾藻等),也可能来源于此。与此相反,人们往往将一些水中或潮湿的地面和墙壁上个体较小,粘滑的绿色植物统称为青苔,实际上这也不是现在所说的苔类,而主要是藻类。根据现代对藻类植物的认识,藻类并不是一个自然分类群,但它们却具有以下的共同特征:
1.植物体一般没有真正根、茎、叶的分化藻类植物的形态、构造很不一致,大小相差也很悬殊。例如众所周知的小球藻(Chlorella),呈圆球形,是由单细胞构成的,直径仅数微米;生长在海洋里的巨藻(Macrocystis),结构很复杂,体长可达200米以上。尽管藻类植物个体的结构繁简不一,大小悬殊,但多无真正根、茎、叶的分化。有些大型藻类,如海产的海带(Laminaria japonica)、淡水的轮藻(Chara),在外形上,虽然也可以把它分为根、茎和叶三部分,但体内并没有维管系统,所以都不是真正的根、茎、叶,因此,藻类的植物体多称为叶状体或原植体。
2.能进行光能无机营养 一般藻类的细胞内除含有和绿色高等植物相同的光合色素外,有些类群还具有共特殊的色素而且也多不呈绿色,所以它们的质体特称为色素体或载色体。藻类的营养方式也是多种多样的。例如有些低等的单细胞藻类,在一定的条件下也能进行有机光能营养、无机化能营养或有机化能营养。但从绝大多数的藻类来说,它和高等植物一样,都能在光照条件下,利用二氧化碳和水合成有机物质,以进行无机光能营养。
3.生殖器官多由单细胞构成 高等植物产生孢子的孢子囊或产生配子的精子器和藏卵器一般都是由多细胞构成的。例如苔藓植物和蕨类植物在产生卵细胞的颈卵器和产生精子的精子器的外面都有一层不育细胞构成的壁。但在藻类植物中,除极少数种类外,它们的生殖器官都是由单细胞构成的。
4.合子不在母体内发育成胚 高等植物的雌、雄配子融合后所形成的合子(受精卵),都在母体内发育成多细胞的胚以后,才脱离母体继续发育为新个体。但藻类植物的合子在母体内并不发育为胚,而是脱离母体后,才进行细胞分裂,并成长为新个体。如果用动物学的术语来说,高等植物是胎生,而藻类则是卵生。
总之,藻类植物是植物界中没有真正根、茎、叶分化,行光能自养生活,生殖器官由单细胞构成和无胚胎
几种具代表性的藻类发育的一大类群。
(二)藻类的分类
藻类植物的种类繁多,目前已知有3万种左右。早期的植物学家多将藻类和菌类纳入一个门,即藻菌植物门。随着人们对藻类植物认识的不断深入,特别是从巴暄(A.Pascher,1931)的平行进化学说发表以后,认为藻类不是一个自然分类群,并根据它们营养细胞中色素的成分和含量及其同化产物、运动细胞的鞭毛以及生殖方法等分为若干个独立的门。对于分门的看法,也有很大的分歧,我国藻类学家多主张将藻类分为12个门。由于本书所采用的是五界系统,除已将蓝藻门列入原核生物界外,现将其中9个主要门的特征简介如下:
1.金藻门 多产于淡水中,特别是在水温较低的软水水体中尤为常见。植物体多为单细胞或群体,少数为多细胞丝状体。运动细胞多具1—2条鞭毛。单细胞或群体的种类,细胞内多具有1—2个色素体,以胡萝卜素和叶黄素占优势,绿色色素只有叶绿素a一种,所以多呈金黄色或金褐色。同化产物主要是金藻多糖,或称为金藻糖,金藻淀粉, 又因它具有和海带糖相似的化学性质,所以亦称为金藻海带糖。此外,也含有脂类。繁殖方式主要是营养繁殖和孢子生殖,有性生殖极少见。常见的有合尾藻属和钟罩藻属。
2.黄藻门(Xanthophyta) 海产的种类很少,主要分布在淡水水体中,或生于潮湿的地面、树干和墙壁上。在水温较低的春季较多。植物体为单细胞、群体或多细胞体。所含的色素和同化产物与金藻门基本相同,但除叶绿素a外,尚含有叶绿素e,多呈黄绿色。运动细胞具有两条长短不一和结构不同的鞭毛,所以这一类群又称为不等鞭毛藻类(Heterocontae)。繁殖方式有营养繁殖、孢子生殖和有性生殖,但随种类的不同,也有不同的繁殖方法。肉眼常见的是植物体成丝状的黄绿藻属(Tribonema)和无隔藻属(Vauchcria)。(在部分近期国外教材分类方案中将该门作为金藻门的一个纲)。
3.硅藻门(Bacillariophyta)广布于海水和淡水中,多行浮游生活。植物体由单细胞构成或互相连接成群体。细胞壁由两个瓣片套合而成,上面具有花纹,其成分含有果胶质和硅质,而不含纤维素。细胞内具有一至数个金褐色的色素体。色素体中含有叶绿素a、c和多量的胡萝卜素和叶黄素,光合产物主要是脂类。硅藻可借助细胞分裂进行营养繁殖,但经数代后也能通过配子的接合或自配形成复大孢子,行有性生殖。)。(在部分近期国外分类方案中将该门作为金藻门的一个纲)。
4.甲藻门(Pyrrophyta) 多产于海洋中,行浮游生活,有时在海岸线附近大量繁殖,形成赤潮, 有些种类也常在池塘、湖泊中大量出现。植物体多数是单细胞的,少数为群体或丝状体。除少数种类裸露无壁外,多具有由纤维素构成的细胞壁。甲藻的细胞壁称为壳,是由许多具有花纹的甲片相连而成的。壳又分上壳和下壳两部分,在这两部分之间有一横沟,与横沟垂直的还有一条纵沟,在两沟相遇之处生出横、直不等长的两条鞭毛。色素体1个或多个,呈黄绿色或棕黄色,除含叶绿素a、c外,还含有多量的胡萝卜素和叶黄素。海产种类的光合产物多为脂类,淡水产的多为淀粉。繁殖方式主要是细胞分裂,或是在母细胞内产生无性孢子,行孢子生殖,有性生殖只在少数属、种中发现。常见的有角藻属(Ceralium)(见图)和多甲藻属(Peridinium)。
5.褐藻门(Phaeophyta)绝大多数为海产,营固着生活。在1,500多种褐藻中,产于淡水的仅有10种左右,其中有两种是在我国四川的嘉陵江中发现的。植物体均由多细胞构成,结构也比较复杂。色素体中除含有叶绿素a、c外,胡萝卜素和叶黄素的含量特别多,所以多呈褐色。同化产物不是淀粉,而是海带多糖和甘露醇。营养细胞均无鞭毛,游动孢子和雄配子则具有两条侧生、不等长的鞭毛。繁殖的方式有多种,都能行有性生殖,在生活史中,多有明显的世代交替。常见而且作为食用的有海带(Laminaria japonica)和裙带菜(Undaria pinnalifida)。
6.红藻门(Rhodophyta) 除少数属、种外,绝大多数产于海水中,行固着生活。植物体除个别属、种外,都是多细胞的,通常为丝状、片状或树枝状。色素体多呈红色或紫红色,其中除含有叶绿素、胡萝卜素和叶黄素外,还含有大量的藻红素和藻蓝素。同化产物为近似淀粉的红藻淀粉。红藻在生活史中没有具鞭毛的运动细胞。有性生殖均为卵式生殖。雌性生殖器官是与卵囊相似的果胞。果胞上具有叫做受精丝的毛状体。受精后产生一种特殊的孢子,叫做果孢子。常见的有紫菜属(Porphyra)和石花菜属(Gelidium)。
7.裸藻门(Euglenophyta) 裸藻又称眼虫或眼虫藻,多生于富含动物性有机质的淡水中,营浮游生活。大量繁殖时,常使水呈绿色、黄褐色或红色。除柄裸藻属(Colacium)外,全为顶端生有鞭毛,能运动而无细胞壁的单细胞种类。在裸藻中,除少数种类无色,行异养生活外,多含有与绿藻相似的光合色素,但贮藏物质主要是裸藻淀粉和少量的脂类。繁殖方式主要是细胞分裂,在不良的环境条件下,也能形成具有厚壁的孢囊,待环境条件好转时,原生质体即破壁而出,形成新个体。裸藻属(Euglena)基本门中常见的属。
8.绿藻门(Chlorophyta) 多生于淡水中,海产的种类较少,营浮游、固着或附生生活,还有少数种类为寄生或共生。植物体有单细胞或群体的,也有多细胞的丝状体或片状体。色素体的形状和数目也常随种类而不同,所含的光合色素成分、含量以及同化产物均与高等植物相似。运动细胞多具有2条、4条或多条等长、顶生的鞭毛。有各种各样的繁殖方式,有些种类在生活史中有世代交替现象。在绿藻中如植物体为单细胞的小球藻属(Chlorella),群体的栅藻属(Scenedesmus),多细胞成丝状的水绵属(Spirogyra)和刚毛藻属(Cladophora)等都是淡水中常见的种类。
9.轮藻门(Charophyta) 广布于淡水或半咸水中,均营固着生活。植物体都是由多细胞构成的,而且有类似根、茎、叶的分化,外形很象高等植物中的木贼和金鱼藻。体外多被有大量钙质,所以又有石草之称。光合色素成分及贮藏物都与绿藻相同,但生殖器官的结构和生活史比较特殊。轮藻在生活史中,都不产生无性孢子,有性生殖均为卵式生殖。藏卵器外面有5个左旋的螺旋细胞包被着,顶端还具有由 5个或10个冠细胞构成的冠。藏精器的外面是有由8个(罕4个)盾细胞镶嵌而成的外壁,里面是由许多精子囊组成的精子囊丝体和一些不育的头细胞组成的。实际上这种藏精器是由许多雄性生殖器官和不育细胞构成的聚合体,所以也把它叫做精囊球,它的藏卵器又叫做卵囊球。轮藻的营养体和生殖器官虽然结构很复杂,但在生活史中无世代交替,植物体都是单倍体,而且在受精卵萌发后,经过原丝体阶段才能发育为成体。我国常见的有轮藻属(Chara),丽藻属(Nitella)和鸟巢藻属(Tolypella)。(某些教材分类方案中将该门作为绿藻门内一个纲)。
[编辑本段]
(三)藻类的生活习性
大多数藻类都是水生的,有产于海洋的海藻;也有生于陆水中的淡水藻。在水生的藻类中,有躯体表面积扩大(如单细胞、群体、扁平、具角或刺等),体内贮藏比重较小的物质,或生有鞭毛以适应浮游生活的浮游藻类;有体外被有胶质,基部生有固着器或假根,生长在水底基质上的底栖藻类;也有生长在冰川雪地上的冰雪藻类;还有在水温高达80℃以上温泉里生活的温泉藻类。藻体不完全浸没在水中的藻类也很多,其中有些是藻体的一部分或全部直接暴露在大气中的气生藻类;也有些是生长在土壤表面或土表以下的土壤藻类。就藻类与其它生物生长的关系来说,有附着在动、植物体表生活的附生藻类;也有生长在动物或植物体内的内生藻类;还有的和其它生物营共生生活的共生藻类。总之,藻类的生活习性是多种多样的,对环境的适应性也很强,几乎倒处都有藻类的存在。
[编辑本段]
(四)藻类在人类生活中的意义
我国利用藻类作为食品,不但有悠久的历史,食用的种类和方法之多,也是世界闻名的。据初步统计,我国所产的大型食用藻类至少有50—60种,经常作为商品出售的食用藻类主要是海产藻类,如礁膜(Monostroma nilidum)、石莼(Ulva lactula)、海带(Laminaria japonica)、裙带菜(Undaria pinnatifida)、紫菜(Porphyra sp.)、石花菜(Gelidium amansii)等。商品食用淡水藻类有地木耳(Nostoc commume)和发菜(Nostoc commume var.flagelliforme)。我国云南景洪地区傣族同胞食用和出口缅甸等国的“岛”和“解”就是用淡水藻类中的水绵(Spirogy- ra)和刚毛藻(Cladophora)加工制成的。由于单细胞藻类中含有丰富的营养物质,又有繁殖快,产量高的特点,大面积培养单细胞藻类作为人类食用或家畜的精饲料,也早已引起人们的重视,而且有的(如小球藻、栅藻)已在国内外推广利用。
藻类对于医学和农业也有很密切的关系。有的直接作为药用,例如褐藻中的海带、裙带菜、羊栖菜(Sargassum fusiforme)等,都有防治甲状腺肿大的功效。红藻中的鹧鸪菜(Caloglos-sa leprieurii)和海人草(Digenea simplex)可作为驱除蛔虫的特效药。从褐藻中提取的藻胶酸、甘露醇和红藻中提取的琼胶也在医学中广泛应用,例如藻胶酸盐可作为制造牙模和止血药物的原料;甘露醇有消除脑水肿和利尿的效能,琼胶除作为轻泻药治疗便秘症外,还可用来作为制造药膏的药基,包药粉的药衣和细菌培养基的凝固剂。土壤藻类不但可以积累有机物质,刺激土壤微生物的活动,增加土壤中的含氧量,防止无机盐的流失,减少土壤的侵蚀,其中有些蓝藻还能固定空气中游离的氮素,在提高土壤肥力中起重要作用。此外,藻类是鱼类食物链的基础,鱼类的天然饵料,一般都直接或间接的来自浮游藻类,所以在淡水鱼类养殖中,多通过施肥,繁殖藻类,为鱼类提供饵料。但是,当浮游藻类大量繁殖发生水花的时候,由于水中缺氧或产生有毒物质,也往往引起鱼类大量死亡。
以藻类为原料所制成的产品,特别是藻胶酸盐,已广泛应用于工业生产中。例如琼胶在食品工业中可作为凝固剂和糖一起制成软糖,和淀粉一起制成包糖用的糯米纸,制面包时加入琼胶可以使面包保持长期的松软,加入果子露中,可制成冷冻果汁;制鱼、肉罐头时加入琼胶,可以保持鱼、肉的原形,不致在运输中散开;在日本和欧美各国,还用琼胶作为酿造酒、醋、酱油的澄清剂。在建筑业中,藻胶酸除用以粉刷墙壁、水泥加固、涂敷木材、金属品和工作母机外,还可以制成格子板和油毡的代用品。在纺织工业中,可以 藻类植物约有3万种,主要分布于淡水或海水中。植物体型多样,有单细胞、群体(由许多单细胞聚集而成,细胞没有紧密的生理联系)、多细胞的丝状体及叶状体。高等的藻类已有简单的组织分化。植物体(简称藻体)大小差别很大,小的只有几微米,必须在显微镜下才能看到;较大的肉眼可见,最大的体长可达100米以上。
藻类植物(Algae)
藻类植物一般都具有进行光合作用的色素,能利用光能把无机物合成有机物;供自身需 要,是能独立生活的一类自养原植体植物(autotrophic thallophyte)。藻类植物体在形态上是千差万别的,小的只有几微米,必须在显微镜下才能见到;体形较大的肉眼可见;最大的体长可达60米以上,藻体结构也比较复杂,分化为多种组织,如生长于太平洋中的巨藻(Macrocystis)。 尽管藻体有大的、小的、简单的、复杂的区别,但是,它们基本上是没有根、茎、叶分化的 原植体植物。生殖器官多数是单细胞,虽然有些高等藻类的生殖器官是多细胞的,但生殖器官中的每个细胞都直接参加生殖作用;形成袍子或配子,其外围也无不孕细胞层包围。藻类植物的合子不发育成多细胞的胚。有少数低等藻类是异养的或暂时是异养的,这可根据它们的细胞构造和贮藏的营养物质,与异养原植体植物(heterotrophic thallophyte)-- 真菌分开。
藻类在自然界中几乎到处都有分布,主要是生长在水中(淡水或海水)。但在潮湿的岩石上、墙壁和树干上、土壤,养面和下层,也都有它们的分布。在水中生活的藻类,有的浮游于水 中,也有的固着于水中岩石上或附着于其他植物体上。藻类植物对环境条件要求不高,适应环 境能力强,可以在营养贫乏,光照强度微弱的环境中生长。在地震、火山爆发、洪水泛滥后形成 的新鲜无机质上,它们是最先的居住者,是新生活区的先锋植物之一,有些海藻可以在100米 深的海底生活,有些藻类能在零下数十度的南北极或终年积雪的高山上生活,有些蓝藻能在高达85摄氏度的温泉中生活,有的藻类能与真菌共生,形成共生复合体(如地衣)。
用以修饰布料,浆丝等,如我国广东产的香云纱就是用海萝胶作浆料制成的。硅藻上在工业中的用途也很广,例如加入硝酸甘油后,可以防止爆炸,可作为制造耐火砖、滤器、牙粉的原料。
随着藻类认识的日益深入,利用的范围也不断扩大,从现在初步的研究成果来看,可以预料,藻类在解决人类目前普遍存在的粮食缺乏,能源危机和环境污染等问题中,将发挥重要作用。
在战国后期,张耳、陈余都是魏国有名的人士。自秦国灭魏以后,秦便悬赏追捕他们二人。于是,张耳与陈余都隐姓埋名逃到了陈国,在陈国做了个守卫里门的小职,用以糊口度日。
一次,因一小小过失得罪了一位小吏,这位小吏竟然鞭子抽打陈余。陈余顿时怒火中烧,欲起而反抗,此时张耳情急忙从旁边用脚故意踩了他一下,示意要陈余接受鞭打之刑。
待那小吏走了以后,张耳就把陈余叫到树下,批评他说:“越王勾践忍辱居于石室,韩信也曾受胯下之辱,这些人都能暂时屈忍于小小的侮辱,才在以后成就大功业。我当初是如何对你说的,如今受到一点小小的屈辱,就忍耐不住,难道你想死于一小吏之手吗?”
在后来的农民起义中,秦将章邯破项梁军后,渡河向张耳、陈余所率领的赵军进攻。张耳、陈余拥立赵国旧贵族赵歇为王。但是不久两个人分道扬镳,张耳辅佐刘邦成了开国之臣。陈余则一直辅佐赵歇王,被韩信、张耳打败,斩于泯水上。
张耳与除余的一成一败,实际上从两个人对待小吏的态度中就已经端倪初显。这种差别,正说明了自控能力对一个人的成功的重要影响。
人的自控能力等情商跟人生成功有密切的关系——斯坦福大学心理学研究专家迈克尔·米舍尔说。
在20世纪60年代迈克尔·米舍尔曾做过一个“果汁软糖实验”,它证明了自律对一个人的成功起到了何等重要的作用。
米舍尔把一些4岁左右的孩子带到一间陈设简陋的房子,然后给这些孩子每人一颗非常好吃的软糖,告诉他们:“我有事出去一会儿,你们可以马上吃掉软糖,但谁能坚持到我回来再吃,将奖励一颗软糖,也就是说总共可以吃到两颗软糖。”
结果有的孩子迫不及待地把糖吃了;有的孩子虽然犹豫了一会儿,但还是忍不住吃了;还有的孩子通过唱歌、做游戏甚至假装睡觉坚持到最后。20分钟后,米舍尔回来了,坚持到最后的孩子又得到了一块软糖。
这次实验过后,心理学家继续追踪研究参加这个实验的孩子们,一直到他们高中毕业,追踪研究时间长达14年。
研究者发现到中学时,这些孩子表现出了明显的差异:那些能等待并最后吃到两颗软糖的孩子,具有较强的适应能力和进取精神,到了青少年时期仍能等待机遇而不急于求成,他们具有一种为了更大的、更远的目标而暂时牺牲眼前利益的能力,即自控能力,而且表现得比较自信、合群、勇敢、独立;而那些急不可待只吃了一颗软糖的孩子,到了青少年时期表现得比较固执、虚荣或优柔寡断,往往会屈从于压力而逃避挑战。当欲望来的时候他们无法控制自己,一定要马上满足欲望,否则就无法静下心来继续做后面的事情。
不用多说,能等待的那些人的成熟程度和成功率远远高于那些不能等待的人。那么第一个问题是:在“果汁软糖实验”中孩子的表现为什么会有所不同?
纽约大学约瑟夫·勒杜克斯的研究发现,当人类经由眼睛与耳朵感应到信息时,首先将信息传达到丘脑。而丘脑除将信息通过正常程序往新皮质传送外,还可通过一条特殊情感神经路径,将信息传递到大脑。因此,假如新皮层的信息分析咀嚼较慢,则大脑可能率先做出情绪性反应,且这种情绪是自最原始、最强烈的心灵深处,未经理性修饰,这种现象,我们往往称之为情绪失控。因此,从大脑生理学的角度讲,一个人的情绪,可以影响一个人的行为。
“果汁软糖试验”的设计源于心理学家对传统智商的疑惑。智商一直被作为衡量个体智力的指标、筛选人才的基准,应用十分普遍。但是在研究和应用各种智力测验的过程中,对于智商究竟在多大程度上能预测一个人未来的成功与否,心理学家却一直深感困惑。大量事实表明,智商高者不一定就踏上了成功的坦途,而智商平平的人中也不乏卓越超群的成功者。
还有一个问题是:人的自控能力等情商跟人生成功是否有密切的关系?
心理学家经过长期研究认为,人与人之间的智商并没有明显的差别,但有的人之所以成功,有的人之所以未能成功,与各自的情商有密切关系:一个人的成功不仅要靠智商,更要靠情商。
研究显示,能够控制自己的情绪并富有洞察力的人更有可能获得成功。在马塞诸塞州,研究者对450名男孩进行了智商测试,其中1/3的人智商低于90。40年后对这些人进行调查后发现,智商的高低和他们所取得的成就几乎无关。那些善于控制情绪、能与他人和睦相处的人是做得最好的人。
加利福尼亚大学的博士生们也接受了类似的研究测试。他们在20世纪50年代接受了性格测试和智商测试。40年后,对这些人进行追踪调查,结果发现在决定职业成功方面,社交和情绪能力比智商重要4倍。另有心理学家在对上千名智商在130以上的智力超常孩子做了长达30年的追踪后,得到了一个令人惊异的发现:智商对个人成功所起的作用仅占20%。
哈佛大学教授、著名心理学家麦克里兰曾经找了一家全球餐饮公司,把领导者分成高情商和低情商两组进行研究。他发现,情商高的一组,有87%的人业绩突出。所领导的分部销售业绩高于指标的15%~20%;而情商低的一组,年终考评很少优秀,所领导的分部销售业绩低于指标的20%。
在美国,越来越多的公司认识到:一个能够让自己的奇思妙想被他人所接受,同时也能理解周围人的人,不仅仅是一个好人而且也会是一个优秀的员工。许多公司里的人事经理认为:智商高有可能被解雇,而情商高却会荣膺提拔。
也因此,对成年人能否改造先天的情商一直存在着争议。但大多数心理学家认为聆听、自我察觉、灵活的处事方法可以从后天的实践中学到。研究表明情商会随着年龄的增长而有所提高。加拿大的研究者对4000人进行情商方面的测试,发现年龄越大的人独立思考的能力越强,更能理解他人的感受并且更加善于管理。情商将在人们50岁时达到顶峰。
所以。我们每个人在漫漫的人生道路上要不断进行修炼,提高包括自控能力在内的情商。使自己能够更加成功,也更加快乐地生活。