1896年,荷兰物理学家塞曼使用半径10英尺的凹形罗兰光栅观察磁场中的钠火焰的光谱,他发现钠的D谱线似乎出现了加宽的现象。这种加宽现象实际是谱线发生了分裂。随后不久,塞曼的老师、荷兰物理学家洛仑兹应用经典电磁理论对这种现象进行了解释。他认为,由于电子存在轨道磁矩,并且磁矩方向在空间的取向是量子化的,因此在磁场作用下能级发生分裂,谱线分裂成间隔相等的3条谱线。塞曼和洛仑兹因为这一发现共同获得了1902年的诺贝尔物理学奖。1897年12月,普雷斯顿(T.supeston)报告称,在很多实验中观察到光谱线有时并非分裂成3条,间隔也不尽相同,人们把这种现象叫做为反常塞曼效应,将塞曼原来发现的现象叫做正常塞曼效应。反常塞曼效应的机制在其后二十余年时间里一直没能得到很好的解释,困扰了一大批物理学家。1925年,两名荷兰学生乌仑贝克(G.E.Uhlenbeck,1900--1974)和古兹米特(S.A.Goudsmit,1902--1978)提出了电子自旋假设,很好地解释了反常塞曼效应。应用正常塞曼效应测量谱线分裂的频率间隔可以测出电子的荷质比。由此计算得到的荷质比数值与约瑟夫·汤姆生在阴极射线偏转实验中测得的电子荷质比数量级是相同的,二者互相印证,进一步证实了电子的存在。塞曼效应也可以用来测量天体的磁场。1908年美国天文学家海尔等人在威尔逊山天文台利用塞曼效应,首次测量到了太阳黑子的磁场。1912年,帕邢和拜克(E.E.A.Back)发现在极强磁场中,反常塞曼效应又表现为三重分裂,叫做帕邢-拜克效应。这些现象都无法从理论上进行解释,此后二十多年一直是物理学界的一件疑案。正如不相容原理的发现者泡利后来回忆的那样:"这不正常的分裂,一方面有漂亮而简单的规律,显得富有成果;另一方面又是那样难于理解,使我感觉简直无从下手。"1921年,德国杜宾根大学教授朗德(Landé)发表题为:《论反常塞曼效应》的论文,他引进一因子g代表原子能级在磁场作用下的能量改变比值,这一因子只与能级的量子数有关。1925年,乌伦贝克与哥德斯密特"为了解释塞曼效应和复杂谱线"提出了电子自旋的概念。1926年,海森伯和约旦引进自旋S,从量子力学对反常塞曼效应作出了正确的计算。由此可见,塞曼效应的研究推动了量子理论的发展,在物理学发展史中占有重要地位。洛伦兹在物理学上最重要的贡献是发展了经典电子论。1878年,他发表了光与物质相互作用的论文,把以太与普通的物质区别开来,认为以太是静止的,无所不在,而普通物质的分子则都含有带电的谐振子;在这个基础上,他导出了分子折射率的公式(即洛伦兹-洛伦茨公式)。1892年,他开始发表电子论的文章,他认为一切物质的分子都含有电子,阴极射线的粒子就是电子,电子是很小的有质量的刚球,电子对于以太是完全透明的,以太与物质的相互作用归结为以太与物质中的电子的相互作用。在这个基础上,1895年他提出了著名的洛伦兹力公式。另外,1892年他研究过地球穿过静止以太所产生的效应,为了说明迈克耳孙一莫雷实验的结果,他独立地提出了长度收缩的假说,认为相对以太运动的物体,其运动方向上的长度缩短了。1895年,他发表了长度收缩的准确公式,即在运动方向上,长度收缩因子为 。1899年,洛伦兹讨论了惯性系之间坐标和时间的变换问题,并得出电子质量与速度有关的结论。1904年,他发表了著名的洛伦兹变换公式和质量与速度的关系式,并指出光速是物体相对于以太运动速度的极限。洛伦兹1853年7月18日出生于荷兰的阿纳姆,少年时就对物理学感兴趣并且熟练地掌握多门外语。1870年洛伦兹考入莱顿大学,自数学、物理和天文。1875年获博士学位。1877年,莱顿大学聘请他为理论物理学教授,其时洛伦兹年仅23岁。他在莱顿大学任教长达35年。1911年-1927年间洛伦兹多次担任索尔维会议主席。在国际物理学界享有崇高的名望。此外,洛伦兹在经典物理学的许多领域里也有很深的造诣,在热力学、物质分子运动论和引力理论等方面,都有过贡献。洛伦兹受到爱因斯坦、薛定谔和其他很多物理学家的尊敬,爱因斯坦就曾说过,他一生中受洛伦兹的影响最大。
1976年诺贝尔物理学奖授予美国加利福尼亚州斯坦福直线加速器中心的里克特(Burton Richter,1931—)和美国马萨诸塞州坎伯利基麻省理工学院的丁肇中(SamuelC.C.Ting,1936—),以表彰他们在发现一种新型的重的基本粒子中所作的先驱性工作。粒子物理学的发端可以从1932年正电子的发现说起,到了50年代,陆续发现了反质子、π介子、反Λ粒子等等三十多种新粒子,其中稳定的有七种。寿命大多长于10-16秒。后来又发现了许多寿命更短的粒子,这些粒子也叫做强子共振态,是通过强相互作用衰变的。盖尔曼的夸克模型理论,解释了这些强子共振态,其预言的Ω-粒子又被实验证实。这时粒子物理学似乎已经达到了顶峰,没有什么事情可做了。然而,正是在这一短暂的沉静时期,1974年同时有两个实验小组,宣布发现了一种寿命特别长,质量特别大的粒子。这项发现的宣布,打破了沉闷的空气,使物理学家大为惊讶,推动粒子物理学迈向新的台阶。这项新的发现就是由里克特领导的SLAC-LBL合作组所发现的ψ粒子和由丁肇中领导的MIT小组所发现的J粒子。人们统称之为J/ψ粒子。SLAC是斯坦福直线加速器中心的简称,LBL是劳伦斯伯克利实验室的简称。两家共同组成一个合作组,为SLAC正负电子对撞机(SPEAR)配制了一台取名为MarkI的磁探测器,目的是探测4GeV的正负电子束对撞后生成的新粒子,探测范围可从2.4GeV直到4.8GeV。这是当时能量最高的电子对撞机。1974年初,里克特小组发现在3.2GeV处截面比反常,比邻近约高30%,当时并未引起注意。同年10月,又发现在3.1GeV处有一反常。后来还陆续有高出3~5倍的截面。这促使他们下决心把机器调回到3.1GeV附近进行精确测量,11月9日终于取得了在3.1GeV处存在狭共振的确切证据,并命名为ψ粒子。接着,又在3.7GeV处发现了ψ粒子的姐妹态,ψ'粒子。里克特1931年3月22日出生于纽约。1948年进入麻省理工学院,大三时曾参加正电子素实验,开始接触到电子-正电子系统。大学的毕业论文题为“氢的二次塞曼效应”,成绩优异。研究生期间,里克特测量了水银同位素位移及其超精细结构。他在工作中要用到回旋加速器,让短寿命的Hg197同位素和氚核束轰击金。因此更加激发了对核物理和粒子物理以及所使用的加速器的兴趣。他的博士论文题目是“由氢光生π介子”。然后他在斯坦福高能物理实验室找到工作。他在这里和同事们合作,建造了一台碰撞束机器,并于1965年开始实验,结果使量子电动力学的适用性延展至小于10~11cm。在这之前,里克特就在考虑高能电子-正电子碰撞束机器能用来做些什么。他特别想研究强相互作用粒子的结构。1963年里克特来到SLAC,在SLAC主任潘诺夫斯基的鼓励下,里克特组织了一个小组制定高能电子-正电子机器的最后设计。1964年完成了初步设计,1965年向美国原子能委员会提交了一份经费申请报告,当然这只是申请经费的漫长过程的第一步,以后还为之作过多次奋斗,直到1970年才得到经费。在这期间,他和小组成员又做了其它实验,设计并制造了大型磁谱仪的整套装置的一部分,并利用它进行了一系列π介子和K介子的光生实验。里克特为了以后制作存储环作准备,下了很大力气以求保住已经成立的小组。有了经费之后,工程立即上马,着手制作大型磁探测器。1973年开始做实验,终于得到了满意的成果。如果说里克特和他的小组是以他们的执著追求精神取得了引人注目的成绩,那么,丁肇中和他的小组更是以其严谨踏实、一丝不苟的作风得到了科学上的回报。丁肇中是华裔美籍科学家,1936年1月27日出生于美国密执安州安亚柏市,父亲丁观海是工程学教授,母亲王隽英是心理学教授,他们在访美期间,生下了丁肇中,于是丁肇中从小就成了美国公民。出生后两个月,与母亲一起回到中国。由于战争的原因,直到十二岁才受到传统的教育。1956年丁肇中得奖学金入美国密执安大学,三年后获得了数学和物理学位,1962年获得物理博士学位。关于丁肇中的经历,请读他的自述:“当我20岁时,我决定到美国去接受较好的教育,我父母的朋友、密执安大学工程学院的院长G.G.布朗,告诉我父母他很欢迎我去那儿,并到他家住宿。当时我只懂一点儿英语,而且对在美国的生活费用毫不了解,在中国,我通过看书了解到美国许多学生是通过自己劳动挣钱进入大学的,于是,我对父母说我也要这么做。1956年9月6日,我到达了美国底特律机场,身边带了100美元,当时好像已很富裕了。我感到有些害怕,因我不认识任何人,而且通信也很困难。”“由于我是靠得奖学金入学的,故我不得不努力学习以继续取得奖学金。我在三年内使自己在密执安大学获得了数学和物理学位,在1962年,在琼斯和泊尔博士指导下获得物理学博士学位。”“我作为一个福特基金会的研究员到了欧洲核子研究中心(CERN)。在那儿我很荣幸能跟柯可尼教授一起搞质子同步加速器,从他那儿学到许多物理知识。他能以简单的方法对待一个复杂的问题,做实验相当仔细,这些都给我留下了深刻的印象。”“1965年春天,我回到美国,在哥伦比亚大学任教。在那些年月里,哥伦比亚大学的物理系是一个很有刺激性的地方,我有机会观察到如:莱德曼、李政道、拉比、施瓦茨、斯坦博格、吴健雄以及其他教授的工作。他们在物理学上都具有各自的风格和相当突出的鉴别力。我在哥伦比亚短暂的几年,收益很大。”“在我到达哥伦比亚大学的第二年,在坎伯利基电子加速器上进行一项由光子同核靶碰撞产生电子正电子对的实验。看来好像有点违反量子电动力学。于是我仔细地研究了该项实验,决定重做一次。我与搞西德电子同步加速器的韦伯教授和杰茨凯商量是否可在汉堡进行正负电子对产生的实验。他们都很热情地鼓励我马上就开始实验,1966年3月,我离开了哥伦比亚大学到汉堡去进行这个实验。自那时起,我以全部精力投入到电子对及μ介子对物理、研究量子电动力学和类光粒子的产生和衰变、寻找能衰变成电子对或μ介子对的新粒子。这类实验的特点是需要高强度入射通量,需要绝对排除大量不需要的背景条件,同时又需要质量分辨率高的探测器。”“为了寻找较大质量的新粒子,我于1972年带了实验小组回到了美国,在布鲁克海文国立实验室进行实验。1974年秋,我们发现了一种新的、完全出乎意料的重粒子——J粒子的证据。自那以后,找到了整族新粒子。”关于电子-正电子实验的缘起,丁肇中在领诺贝尔奖的演说词中作了如下说明:“1957年夏天,我是纽约暑期班的学生,偶然得到了赫兹堡的经典著作《原子光谱和原子结构》(1937年),从书中我第一次了解到光量子的概念和它在原子物理学中的作用,大学毕业前夕,我收到父亲送给我的圣诞礼物:阿希耶泽和贝律茨基合著的《量子电动力学》(1957年)一书的英译本。在密执安大学学习期间,我仔细读了这本书,并自己推导了书中的某些公式,后来我在哥伦比亚大学任教的年代,很有兴趣地读了特雷尔1958年的一篇论文。他指出用高能电子加速器在短距离上对量子电动力学(QED)所做的各种检验的含义。对于怎样把某一类费因曼图从3μ介子的μ介子产生中分离出来,我同布洛茨基合作进行了理论计算。”为此丁肇中和布洛茨基联名于1966年发表了一篇论文。1965年10月,丁肇中受德国汉堡德意志电子同步加速器研究中心(DESY)主任詹希克的邀请,做了e+e-对产生的第一个实验。他和他的小组使用的探测器具有如下特性:1.能利用负载循环2%~3%的10-11/s的入射光子流;2.接受度很大,不被磁铁的边缘或屏蔽物所限制,仅受闪烁计数器决定;3.所有的计数器并不直接面对靶体;4.为了排除强子对,切连科夫计数器为磁铁所分隔,使π介子与第一对计数器中的气体辐射源相互作用而放出的电子被磁铁排除,不进入第二对计数器。从第二对计数器放出的低能电子则被簇射计数器排除。这个实验的结果表示出量子电动力学正确地描述了粒子对产生过程直到10-14cm。然后,丁肇中小组转动谱仪的磁铁,使最大的粒子对质量接受区的中心在750MeV附近,他们观察到e+e-对的数量有很大的上升,明显地破坏QED。这种对QED的偏离,事实上是由强作用对e+e-产生的贡献增加而引起的。这时入射的光子产生重的类光粒子ρ介子,它再衰变为e+e-。它的衰变几率为α2的量级,为了证明情况确实是这样,他们做了另外一个实验,增加e+e-的张角,发现与QED的偏离更大。这是可以预计到的,因为当增加e+e-的张角时,QED过程比强作用过程减少得更快。约为5MeV,因此丁肇中小组研制了一个质量分辨率约为5MeV的探测器。丁肇中小组的成员们面对的是极其单调的测量工作,可是这不是一般的测量,请继续听丁肇中教授的回忆:“在有些测量中,事件率低,特别在研究大于ρ和ω介子质量范围的e+e-质谱的实验里,当加速器全负载时,e+e-对的产额约为每天一个事件。这就是说,整个实验室大约有半年光景一直专门只做这个实验,每天一个事件的事件率还意味着,往往2、3天没有事件,而在另外的日子里我们却得到2、3个事件。正是在这个实验的过程中,我们形成了每30分钟把全部电压检查一遍和每24小时通过测量QED产额来校准一次谱仪的传统。为了确保探测器工作稳定,我们还建立了物理学家跟班的惯例,甚至当加速器关机维修时也跟班,我们还从不切断电源。这样做的最终效果是,我们的计数室多年来有着与实验室的其它部分不同的基础体制。”“我们经过多年的工作后,学会了怎样操纵具有负载循环2%~3%,每秒约1011γ的高强度粒子束。同时采用具有大的质量接受度和好的质量分辨率△M≈5MeV的探测器,它能以>>108的倍数将ππ从e+e-中辨别出来。”“我们现在可以提出一个简单的问题:有多少重光子存在?它们的性质怎样?对我来说,不能想像只有三种重光子,而且它们的质量都是1GeV左右,为了解答这些问题,我同小组成员反复讨论了怎样进行实验。最后我决定1971年在布洛克海文国立实验室的30GeV质子加速器上首先做一个大型实验,把探测质量提高到5GeV,探测重光子的e+e-衰变来寻找更多的重光子。”在诺贝尔奖演说词中,丁肇中这样形容准备阶段的工作:“在建造我们的谱仪过程,及整个实验过程中,我受到很多的批评。问题在于为了达到良好的分辨率,必须要造一个非常昂贵的谱仪。一位有名望的物理学家批评说:这种谱仪只适用于寻找窄共振——但并不存在窄共振。尽管这样,我还是决定按我们原来的设计创造,因为我一般不太相信理论论证。”“1974年4月我们完成了实验的布置工作,并开始引入强大的质子束流到实验区。我们立刻发现,我们计数室里的辐射强度达每小时0.2伦琴。这就是说,我们的物理学家24小时内将要受到最大允许的辐射年剂量。我们花了二、三个星期艰苦地寻找原因,大家为能否继续进行这项实验而担忧。”“一天,自1966年以来一直同我共事的贝克尔博士带着盖革计数器在踱步时,突然发现,辐射的大部分来自屏蔽区的一个特定的地方。经过仔细研究后,发现即使我们已经用了10000吨混凝土屏蔽块,但最重要的区域——束流制动器的顶部——却仍然根本没有被屏蔽!经此纠正之后,辐射强度降到了一个安全值,这样我们就可以进行实验了。“从4月到8月,我们做了例行的调节工作,探测器工作性能符合设计要求。我们能够利用每秒1012个质子,小型电子对谱仪也工作正常,这使我们能用纯电子束来校正探测器。”经过严格认真的反复核对,奇迹终于出现了。丁肇中回忆说:“1974年初夏,我们在4Gev~5GeV的大质量区域里测定了一些数据。然而,对这些数据所做的分析表明,只存在极少的电子-正电子对。”“在8月底,我们调整了磁铁使它能接受2.5GeV~4GeV的有效质量。我们立即看到了干净的、真正的电子对。”“最令人惊奇的是,大部分e+e-对在3.1GeV处形成一个狭峰。更详细的分析表明,它的宽度小于5MeV。”经过多方核对后,丁肇中小组确认他们发现了一个当时质量最大的新粒子。后来得知,里克特小组也发现了这一粒子。他们的实验各有特点。里克特小组是让e+e-对湮没以形成矢量介子,是一种形成实验,而丁肇中小组是利用质子束轰击铍靶,产生矢量介子,然后测量矢量介子的衰变产物,则是一种产生实验。里克特小组和丁肇中小组用不同的设备、经不同的反应过程几乎同时地发现了同一粒子,使物理学界大为惊喜。他们的发现把高能物理学带到了新的境界,因此,两年后里克特和丁肇中就分获诺贝尔物理学奖。
正常塞曼效应的条件是,S=0,即2S+1=1是独态,也即电子为偶数并形成独态的原子,才能有正常的塞曼效应. 依据条件,氦、铍、镁、钙会出现正常塞曼效应。
1902年诺贝尔物理学奖 ¾¾塞曼效应的发现和研究
1902年诺贝尔物理学奖授予荷兰莱顿大学的劳伦兹(Hendrik Antoon Lorentz,1853¾1928)和荷兰阿姆斯特丹大学的塞曼(Pieter Zeeman,1865¾1943),以表彰他们在研究磁性对辐射现象的影响所作的特殊贡献。
磁性对辐射现象的影响也叫塞曼效应,是塞曼在1896年发现的。它是继法拉第效应和克尔效应之后又一项反映光的电磁特性的效应。塞曼效应更进一步涉及了光的辐射机制,因此被人们看成是继X射线之后物理学最重要的发现之一。
劳伦兹是荷兰物理学家,他的主要贡献是创立了古典电子论,这一理论能解释物质中一系列电磁现象,以及物质在电磁场中运动的一些效应。由於塞曼效应发现时及时地从劳伦兹理论得到解释,由此所确定的电子荷质比与J.J.汤姆森用阴极射线所得数量级相同,相互间得到验证,因此1902年劳伦兹与塞曼共享诺贝尔物理学奖。
塞曼也是荷兰人,1885年进入莱顿大学后,与劳伦兹多年共事,并当过劳伦兹的助教。塞曼对劳伦兹的电磁理论很熟悉,实验技术也很精湛,1892年曾因仔细测量克尔效应而获金质奖章,并於1893年获博士学位。他在研究磁场对光谱的影响时,得益於劳伦兹的指导和劳伦兹理论,从而作出了有重大意义的发现。下面介绍塞曼效应的发现经过。
塞曼首先是从法拉第的工作得到启示的。1845年,法拉第将平面偏振光通过强磁场作用下的玻璃,发现光的偏振面发生旋转,后来进一步确定这是许多物质具有的普通性质。1876年,克尔(Kerr)继1875年发现玻璃片在强电场下对光有双折射的作用(即克尔电光效应)之后,又发现平面偏振光垂直射在电磁铁的磨光电极上时,反射得到的光变为椭圆偏振光(即克尔磁光效应)。这些效应对於光的电磁性质当然是极好的佐证。因此,电、磁和光之间的相互作用就成了19世纪末叶物理学家密切关注的对象。
1895年前后,塞曼暂停克尔磁光效应的研究,想试一试磁场对钠焰的光谱有没有影响。这个实验虽然没有成功,但是后来知道法拉第晚年曾亲自做过这个实验,他想法拉第这样伟大的科学家都重视这个实验,一定值得认真去做,於是就下决心用当时最好的设备再次进行实验,他当时产生了一个想法,究竟磁力作用於火焰时,火焰发出的光周期会不会改变。这样的事情果然发生了。塞曼用石棉条粘以食盐,放在电磁铁磁极间的氢氧焰中,用罗兰光栅(Rowland grating)(注:即凹面光栅、是当时最好的分光仪器)检验火焰光。当电磁铁电路接通时,D的两条谱线(注:即钠黄光谱线D1与D2)都看到增宽的现象。
谱线增宽也许会认为是磁场对火焰的某种已知作用,引起钠蒸气的密度和温度发生变化,塞曼就采用了一个方法,把钠放在一素瓷管中强烈加热,瓷管两端以平行玻璃板密封,其有效面积为1平方厘米。管子水平地置於磁场中,与磁力线垂直。弧光灯的光线穿之而过。吸收光谱显示出D双线。瓷管不断沿轴旋转,以避免温度变化。通电励磁,立即使谱线变宽。证明正是磁场使钠光的周期和频率发生了变化。
最初有人向塞曼提出,光的频率变化可能是由於原子与以太分子旋涡之间的加速和减速的作用力;后来,凯尔文勋爵向塞曼提出,或许可以用快速旋转系统和双摆结合在一起的例子,来解释频率变化。然而,这些解释都不够满意,於是塞曼转而从劳伦兹教授的电子理论寻求解释。这一理论认为:一切物体都有带电的小分子单元;一切电学过程都来自这些“离子”(注:即指电子,当时尚未发现电子)的平衡和运动,光波就是“离子”的振动引起的。在塞曼看来,“离子”在磁场中直接受到的作用力足以对这一现象作出解释。
塞曼将这个想法写信告诉劳伦兹教授,劳伦兹指点塞曼计算离子的运动。他还向塞曼指出,如果这个理论用得正确,就应该有下列结果:从增宽的谱线边缘发出的光,沿磁力线方向观察应是圆偏振光,再进而可导致求出离子所带电荷与其质量的比值e/m。塞曼用四分之一波片和检偏器,发现在加磁场后增宽的谱线边缘,从磁力线方向看去果然是圆偏振光。
相反地,如果从与磁力线成直角的方向观察,增宽了的钠谱线的边缘显示是平面偏振光,果然与劳伦兹理论相符。塞曼还根据谱线的增宽,估算了这一带电粒子的荷质比e/m,数量级为107CGSM/克,这时正好是J.J.汤姆森宣布发现电子之前几个月。J.J.汤姆森从阴极射线也测量了荷质比,和塞曼测量所得数量级相同,这一结果就成了电子存在的重要证据。
就这样,塞曼既对他所发现的光谱增宽现象作出了合理的解释,又证明了离子(注:即电子)的存在,对劳伦兹电子论提供了令人信服的实验验证。
1896年,塞曼进一步根据圆偏振光的旋光方向,判断产生辐射的“离子”所带电荷的正负,起先他曾误判为带正电,一年后改正为带负电。
根据劳伦兹的电磁理论,还可推断出如下结果:从垂直於磁场的方向观察,谱线应分裂为三条;从平行於磁场的方向观察,谱线应分裂为两条。塞曼把磁场加大到3万高斯左右,终於观察到了二重线和三重线。
塞曼能进一步证实劳伦兹的理论预见是非常幸运的,因为后来知道,只有单态(singlet)的谱系,才能得到劳伦兹理论预期的结果。
塞曼的结果与劳伦兹理论相符,不但是劳伦兹理论的一大成功,也使塞曼的工作很快得到公认。然而,由於塞曼和他的同代人对这一理论过於相信,也造成了一些困难。困难主要来自与理论不符的反常塞曼效应(anomalous Zeeman effect)。
塞曼自己在实验中也曾看到四重分裂和六重分裂,他没有正视这些与劳伦兹理论不符的现象,而是一心想将这些现象纳入劳伦兹理论的轨道。例如:他解释四重线,是三重线中间的一条“自蚀”为两条,而六重线是三重线的每一条都“自蚀”为两条
1897年,塞曼转到阿姆斯特丹大学任教,用那里的设备继续进行实验,主要的仪器还是凹面光栅。但因为整套设备装设在木质支座和地板上,无法避免振动的干扰,实验非常困难。据他自己说,拍三十张照片,往往只有一张可用,因此只好暂停试验。就在以后这段时间裏,其他许多同时进行这项工作的物理学家纷纷取得了重要成果。
这些人中间值得特别提到的有:1897年,美国的迈克耳逊用他自己发明的干涉仪观察到光谱线在磁场中分裂为二重线。后来迈克耳逊又发明了分辨本领更高的阶梯光栅(echelon grating)(1899年),他用阶梯光栅获得了更为精细的结果。英国人普列斯顿(T. Preston)紧接著对塞曼效应做了深入的研究工作。他在1898年发表的论文中详细叙述了各种磁致分裂图像,并且指出劳伦兹理论不能完全解释塞曼效应。随后发现了普列斯顿定律。根据这条定律可以判定谱线的归属。
德国人龙格(Runge)和帕申(Paschen)也对塞曼效应进行了大量的实验研究。1902年,他们列举了大量数据,叙述磁致分裂之间存在某种共同的规律。
1912年,帕申和巴克(E. E. A. Back)发现在极强磁场中,反常塞曼效应又表现为三重分裂,叫做帕申-巴克效应。这些现象都无法从理论上进行解释,此后二十多年一直是物理学界的一件疑案。正如不相容原理的发现者鲍利后来回忆的那样:“这不正常的分裂,一方面有漂亮而简单的规律,显得富有成果;另一方面又是那样难於理解……,使我感觉简直无法下手。”
1921年,德国杜宾根大学教授朗德(Landé)发表题为:《论反常塞曼效应》的论文,他引进一因子g代表原子能阶在磁场作用下的能量改变比值,这一因子只与能阶的量子数有关。
1925年,乌伦贝克(Uhlenbeck)与哥德施密特(Goldschmidt)“为解释塞曼效应和复杂谱线”提出了电子自旋的概念。1926年,海森堡和乔丹(Jordan)引进自旋S,从量子力学对反常塞曼效应作出了正确的计算。由此可见,塞曼效应的研究推动了量子理论的发展,在物理学发展史中占有重要地位。
劳伦兹1853年7月l8日出生於荷兰的阿纳姆,少年时就对物理学感兴趣并且熟练地掌握多门外语。l870年劳伦兹考入莱顿大学,学习数学、物理和天文。1875年获博士学位。1877年,莱顿大学聘请他为理论物理学教授,当时劳伦兹年23岁。他在莱顿大学任教长达35年。1911-1927年间劳伦兹多次担任索尔维会议主席。在国际物理学界有崇高的名望。
劳伦兹在物理学上最重要的贡献是发展了古典电子论。1878年,他发表了光与物质相互作用的论文,把以太与普通的物质区别开来,认为以太是静止的,无所不在,而普通物质的分子则都含有带电的谐振子;在这个基础上,他导出了分子折射率的公式(即劳伦兹-洛伦茨公式)。l892年,他开始发表电子论的文章,他认为一切物质的分子都含有电子,阴极射线的粒子就是电子,电子是很小的有质量的刚性球体,电子对於以太是完全透明的,以太与物质的相互作用归结为以太与物质中的电子的相互作用。在这个基础上,1895年他提出了著名的劳伦兹力公式。另外,l892年他研究过地球穿过静止以太所产生的效应,为了叙述迈克耳逊-莫雷实验的结果,他独立地提出了长度收缩的假说,认为相对於以太运动的物体,其运动方向上的长度缩短了。1895年,他发表了长度收缩的准确公式,即在运动方向上,长度收缩因子为 。l899年,劳伦兹讨论了惯性系之间坐标和时间的变换问题,并得出电子质量与速度有关的结论。1904年,他发表了著名的劳伦兹变换公式和质量与速度的关系式,并指出光速是物体相对於以太运动速度的极限。
此外,劳伦兹在古典物理学的许多领域裏都有很深的造诣,在热力学、物质分子运动论和重力理论等方面,都有过贡献。劳伦兹受到爱因斯坦、薛丁格和其他很多物理学家的尊敬,爱因斯坦就曾说过,他一生中受劳伦兹的影响最大。
摄影:本杰明库普利
地点:比利时布鲁塞尔国际索尔维物理研究所
时间:1927年10月
此张就是摄于国际索尔维物理研究所,号称汇集全球三分之一智慧的照片。此次会议主题为“电子和光子”,世界上最著名的物理学家聚在一起讨论重新阐明的量子理论。会议上最出众的角色是爱因斯坦和波尔。前者以“上帝不会掷骰子”的观点反对海森堡的测不准原理,而波尔反驳道,“爱因斯坦,不要告诉上帝怎么做” ——这一争论被称为波尔—爱因斯坦论战。参加这次会议的二十九人中有十七人获得或后来获得诺贝尔奖。
照片中人物名(从左至右):
第三排:奥古斯特·皮卡尔德、亨里奥特、保罗·埃伦费斯特、爱德华·赫尔岑、顿德尔(en:Théophile de Donder)、埃尔温·薛定谔、维夏菲尔特(en:E. Verschaffelt)、沃尔夫冈·泡利、维尔纳·海森堡、拉尔夫·福勒、里昂·布里渊
第二排:彼得·德拜、马丁·努森、威廉·劳伦斯·布拉格、亨德里克·安东尼·克雷默、保罗·狄拉克、阿瑟·康普顿、路易·德布罗意、马克斯·玻恩、尼尔斯·玻尔
第一排:欧文·朗缪尔、马克斯·普朗克、玛丽·居里、亨德里克·洛伦兹、阿尔伯特·爱因斯坦、保罗·朗之万、查尔斯·欧仁·古耶、查尔斯·威耳逊、欧文·理查森
第一排,坐着的都是当时老一辈的科学巨匠,中间那位当然谁都认识,那就是爱因斯坦,他其实应该算一个“跨辈份”的人物(以当时最小年龄参加了第一届索尔维会议)。左起第三位那个白头发老太太就是居里夫人,她是这张照片里唯一的女性。在爱因斯坦和居里夫人当中那位老者是真正的元老级人物洛伦兹,电动力学里的洛伦兹力公式,是与麦克斯韦方程组同等重要的基本原理,爱因斯坦狭义相对论里的“洛伦兹变换”也是他最先提出的。左起第二位则是量子论的奠基者普朗克,他在解释黑体辐射问题时第一次提出了“量子” 的概念。这一排里还有提出原子结合能理论的郎之万、发明云雾室的威尔逊等,个个堪称德高望重。
第二排,右起第一人是与爱因斯坦齐名的“哥本哈根学派”领袖尼尔斯·玻尔,玻尔第一个提出量子化的氢原子模型,后来又提出过互补原理和哲学上的对应原理,他与爱因斯坦的世纪大辩论更是为人们津津乐道。玻尔旁边是德国大物理学家玻恩,他提出了量子力学的概率解释。再往左,是法国“革命王子”德布罗意,他提出了物质波的概念,确立了物质的波粒二象性,为量子力学的建立扫清了道路。德布罗意左边,是因发现了原子的康普顿效应而著称的美国物理学家康普顿。再左边,则是英国杰出的理论物理学家狄拉克,他提出了量子力学的一般形式以及表象理论,率先预言了反物质的存在,创立了量子电动力学。这一排里,还有发明粒子回旋加速器的布拉格等。
第三排,右起第三人,就是量子力学的矩阵形式的创立者海森堡,测不准原理也是他提出来的。他的左边,是他的大学同学兼挚友泡利,泡利是“泡利不相容原理 ”和微观粒子自旋理论(泡利矩阵)的始作俑者。两人同在索末菲门下学习时,经常不遵老师的要求循序渐进,而是自搞一套,老师竟也完全同意并鼓励他们这样做。右起第六人,就是量子力学的波动形式的创立者薛定谔,量子力学里薛定谔方程,就像经典力学里的牛顿运动方程一样重要。薛定谔还是最早提出生物遗传密码的人。 左起第三人埃伦费斯特是爱因斯坦的朋友,浸渐原理的发现者.对量子力学的发展起过积极的作用。
以上这些人物,是二十世纪物理科学的最杰出代表,他们在量子论和相对论两个方向上所做的贡献,不仅彻底改变了人们的物质生活,而且改变了人类的思维方式和时空观念。
部分物理学家简介
1.彼得.德拜 美国物理化学家。1884年出生于荷兰。1901年进入德国亚琛工业大学学习电气工程, 1905年获电子工程师学位,因他通过偶极矩研究及x射线衍射研究对分子结构学科所作贡献而于1936年获诺贝尔化学奖金。1966年逝世。
2.威廉.亨利.布喇格(w.h.bragg,1862-1942)是现代固体物理学的奠基人之一,他早年在剑桥三一学院学习数学,曾任利兹大学、伦敦大学教授,1940年出任皇家学会会长。由于在使用x射线衍射研究晶体原子和分子结构方面所作出的开创性贡献,他与儿子w.l.布喇格分享了1915年诺贝尔物理学奖。父子两代同获一个诺贝尔奖,这在历史上恐怕是绝无仅有的。同时,他还作为一名杰出的社会活动家,在二三十年代是英国公共事务中的风云人物。
3. 爱因斯坦是20世纪最伟大的科学家,被公认为人类历史上最具有创造性才智的人物之一。他的名字与相对论密不可分,其实,相对论包括两种理论:其一是他1905年提出声狭义相对论;其二是他1915年提出的广义相对论。后者,我们最好称之为爱因斯坦引力论。
4.埃伦费斯特 ( p. ehrenfest, 1880-1933) ——荷兰物理学家
5.1930年,英国物理学家保罗.狄拉克(paul adrien maurice dirac,1902~1984)用数学方法描述电子运动规律时,发现电子的电荷可以是负电荷、也可以是正电荷的。狄拉克猜想,在自然界中可能存在一种“反常的”带正电荷的电子。
6.薛定谔(erwin schrodinger,1887-1961)奥地利理论物理学家,与爱因斯坦、玻尔、玻恩、海森伯等一起于20世纪20年代后期,发展了量子力学。因建立描述电子和其他亚原子粒子的运动的波动方程,获得1933年诺贝尔物理奖。
7.1922—1923年间,康普敦(a.h.compton l892—1962)研究了x射线经金属或石墨等物质散射后的光谱。
8.美籍奥地利科学家沃尔夫冈.泡利(wolfgang e.pauli,1900~1958),是迎着20世纪一同来到世界的,父亲是维也纳大学的物理化学教授,教父是奥地利的物理学家兼哲学家。
9.海森伯,w.k.(werner karl heisenberg 1907~1976)德国理论物理学家,量子力学第一种有效形式(矩阵力学)的创建者。
10.玻恩,m.(max born 1882~1970)德国理论物理学家,量子力学的奠基人之一。
11.尼尔斯.玻尔(bohr,niels)1885年10月7日生于丹麦首都哥本哈根,父亲是哥本哈根大学的生理学教授.从小受到良好的家庭教育.1903年进入哥本哈根大学学习物理,1909年获科学硕士学位,1911年获博士学位.大学二年级时研究水的表面张力问题,自制实验器材,通过实验取得了精确的数据,并在理论方面改进了物理学家瑞利的理论,研究论文获得丹麦科学院的金奖章.
12.普朗克.m.(max planck 1858~1947)近代伟大的德国物理学家,量子论的奠基人。
13.居里夫人(1867-1934〕是最著名的女物理学家。她曾两次获诺贝尔奖,1903年的物理奖,1911年的化学奖。她受教育较晚,于1893年获物理学位,1894年获数学学位,1903年获博士学位。局里夫人以放射性作为论文题目,她研究了很多物质,发现钍及其化合物的特性与铀相同。研究沥青铀矿时,她发现了镭和仆。1910年她成功的分离了纯镭。居里夫人对巴黎的局里实验室的建立作出很大贡献。
14.洛仑兹(hendrik antoon lorentz 1853~1928)与塞曼(pietr zeeman 1865~1943)因研究磁场对辐射现象的影响、发现塞曼效应,分享了1902年度诺贝尔物理学奖。
15.朗之万:1872年1月23日生于巴黎,法国著名的物理学家 。