您当前的位置:首页 > 发表论文>论文发表

不动点毕业论文

2023-03-02 16:27 来源:学术参考网 作者:未知

不动点毕业论文

In mathematics, a fixed point theorem is a result saying that a function F will have at least one fixed point (a point x for which F(x) = x), under some conditions on F that can be stated in general terms. Results of this kind are amongst the most generally useful in mathematics.

Fixed point theorem in analysis
The Banach fixed point theorem gives a general criterion guaranteeing that, if it is satisfied, the procedure of iterating a function yields a fixed point.

By contrast, the Brouwer fixed point theorem is a non-constructive result: it says that any continuous function from the closed unit ball in n-dimensional Euclidean space to itself must have a fixed point, but it doesn't describe how to find the fixed point (See also Sperner's lemma).

For example, the cosine function is continuous in [-1,1] and maps it into [-1, 1], and thus must have a fixed point. This is clear when examining a sketched graph of the cosine function; the fixed point occurs where the cosine curve y = cos(x) intersects the line y = x. Numerically, the fixed point is approximately x = 0.73908513321516 (thus x = cos(x)).

The Lefschetz fixed-point theorem (and the Nielsen fixed-point theorem) from algebraic topology is notable because it gives, in some sense, a way to count fixed points.

There are a number of generalisations to Banach spaces and further; these are applied in PDE theory. See fixed point theorems in infinite-dimensional spaces.

The collage theorem in fractal compression proves that, for many images, there exists a relatively small description of a function that, when iteratively applied to any starting image, rapidly converges on the desired image.

Fixed point theorems in discrete mathematics and theoretical computer science
The Knaster-Tarski theorem is somewhat removed from analysis and does not deal with continuous functions. It states that any order-preserving function on a complete lattice has a fixed point, and indeed a smallest fixed point. See also Bourbaki-Witt theorem.

A common theme in lambda calculus is to find fixed points of given lambda expressions. Every lambda expression has a fixed point, and a fixed point combinator is a "function" which takes as input a lambda expression and produces as output a fixed point of that expression. An important fixed point combinator is the Y combinator used to give recursive definitions.

In denotational semantics of programming languages, a special case of the Knaster-Tarski theorem is used to establish the semantics of recursive definitions. While the fixed point theorem is applied to the "same" function (from a logical point of view), the development of the theory is quite different.

The same definition of recursive function can be given, in computability theory, by applying Kleene's recursion theorem. These results are not equivalent theorems; the Knaster-Tarski theorem is a much stronger result than what is used in denotational semantics.[1] However, in light of the Church-Turing thesis their intuitive meaning is the same: a recursive function can be described as the least fixed point of a certain functional, mapping functions to functions.

The above technique of iterating a function to find a fixed point can also be used in set theory; the fixed-point lemma for normal functions states that any continuous strictly increasing function from ordinals to ordinals has one (and indeed many) fixed points.

Every closure operator on a poset has many fixed points; these are the "closed elements" with respect to the closure operator, and they are the main reason the closure operator was defined in the first place.

张建军的已毕业博士生学位论文选题

2001级杨渝玲:《经济学、科学与情境: 当代西方经济学方法论论争的哲学审视》(研究方向:科学逻辑与科学方法论)李树军:《复杂性、范式与科技创新系统:科技发展观新探》(研究方向:科学逻辑与科学方法论)2002级顿新国:《归纳悖论研究》(研究方向:现代逻辑与逻辑哲学)李秀敏:《亚相容逻辑的历史考察和哲学审思》(研究方向:逻辑与辩证法)贾丹:《当代西方正义、平等观念的历史考察与方法论反思》(研究方向:社会科学方法论)2003级王习胜:《逻辑悖论与科学理论创新》(研究方向:科学逻辑与科学方法论)夏素敏:《道义悖论研究》(研究方向:现代逻辑与逻辑哲学)2004级贾国恒:《情境语义学及其解悖方案研究》(研究方向:现代逻辑与逻辑哲学)曾庆福:《必然、可能与矛盾:乔恩·爱尔斯特<逻辑与社会>解析》(研究方向:逻辑应用研究)2005级陈晓华:《逻辑全能问题研究》(研究方向:现代逻辑与逻辑哲学)张高荣:《普特南意义与真理理论研究》(研究方向:逻辑哲学)2006级付敏:《“真矛盾论”与悖论:普利斯特亚相容解悖方案研究》(研究方向:现代逻辑与逻辑哲学)李莉:《合理行动悖论研究》(研究方向:现代逻辑与逻辑哲学)2007级雒自新:《认知悖论研究》(研究方向:现代逻辑与逻辑哲学)夏卫国:《非单调司法论证模式研究》(研究方向:法律逻辑)2008级刘张华:《大卫·刘易斯模态哲学思想研究》(研究方向:逻辑哲学)付玉成:《约翰·塞尔意义理论研究》(研究方向:逻辑哲学)2009级冯立荣:《亚里士多德偶然模态理论研究》(研究方向:西方逻辑史)2010级朱敏:《集合论公理的选择与证立研究》(研究方向:现代逻辑与逻辑哲学)陈吉胜:《“金三角”的断裂与重建——查莫斯型二维语义学的批判性考察》(研究方向:逻辑哲学)2011级谢佛荣:《戴维森和达米特关于意义和真理理论之争研究》(研究方向:逻辑哲学)王洪光:《真与悖论:从减缩论与双真论的观点看》(研究方向:现代逻辑与逻辑哲学)2012级张亮:《不动点方法与动态真理论研究》(研究方向:逻辑哲学)

数学专业毕业论文选题怎么选

作者:唐家三公主
链接:
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

基于数学核心素养的教学设计——以“简单的线性规划问题”为例职前数学教师学科知识的调查研究——以小学“数与代数”内容为例向量数量积的多元表示及其应用在线教育平台用户行为研究数学分析中的函数表示苏教版小学数学教材中组合问题的内容编排高中生理解数学归纳法的障碍分析及应对策略SOLO分类理论在评价解题特征中的应用研究“中国学习者悖论”之解——基于学生数学学习态度的视角表征视角下的数形结合思想教学研究软集分析理论中的积分理论软度量空间下的软P-H-R 型压缩及软Meir-Keeler 压缩的不动点定理人教版、苏教版与北师版教材的对比分析——以初中教材《全等三角形》为例小学生对除法概念及性质理解水平的调查研究国际背景下中国学生数学观现状研究——基于淮海经济区初二学生的调查模糊软度量空间的性质及其上的不动点理论一类非线性微分方程的Hyers-Ulam稳定性关于苏教版和人教版教科书中数学核心素养的比较分析不动点原理及其应用2013-2017年江苏高考数学试题浅析基于综合风险评价模型对水资源短缺的预测 ---以徐州市为例新课程标准下的高中数学教学设计和试题编写相关研究基于小波降噪的HMM模型在沪深300指数择时中的应用C语言编程在小学数学教学中的初探浅谈极限思想在中小学的应用斯金纳的强化理论在数学课堂教学上的应用一类特殊函数的极限数学实验在初中数学教学中的应用从常微分方程的解到代数方程的根新课程标准下高中数学教学过程中如何培养学生的核心素养小学数学几何直观能力培养的教学策略研究常微分方程特殊形式转换成标准形式的应用几类数学思想在中学数学中的应用关于Fibonacci数列通项公式证明的数学方法分类中学数学翻转课堂实施情况及实现路径平面与球面三角形的比较具有多时滞的2型糖尿病血糖-胰岛素调节系统周期解的存在性及其稳定性研究常见统计流形的几何结构初中生几何证明认知障碍分析及对策研究数学错题本的教学价值和实现路径两类二阶差分方程解的渐近性质二元函数极值的充分条件新课标下小学数学教材中“综合与实践”的比较——以苏教版和人教版为例蝴蝶定理的证明、推广及其应用对《等周问题的一个初等证明》的报告中学阶段的数学启发式教学热方程在几何中的应用一类具有负反馈和抑制的反应扩散生态模型动力学行为的理论分析等宽曲面的构造高中不等式证明的对策研究比较视角下江苏高考"不等式"内容的综合难度研究线性变换思想在中学数学中的应用整数环上多项式的可约性数学分析中的部分问题初探对江苏近十年高考数学一卷最后一题的研究黎卡提方程与二阶齐次线性微分方程的解法探究三阶常系数线性微分方程的常数变易法一类二阶线性微分方程的常数变易法BKP方程的十类解用方程思想解决中学数学问题浅谈微元法在数学中的应用管状曲面上的特殊曲线一类函数列的积分中值点列的收敛子列的渐进性数学文化在数学教学中的渗透研究悬链面上的渐近线一类二阶非线性微分方程的解法昆虫爬行最短路径问题黄金椭圆的若干优美性质

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页