极限与哲学的高等思维
还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考!
1、导数在不等式证明中的应用
2、导数在不等式证明中的应用
3、导数在不等式证明中的应用
4、等价无穷小在求函数极限中的应用及推广
5、迪克斯特拉(Dijkstra)算法及其改进
6、第二积分中值定理“中间点”的性态
7、对均值不等式的探讨
8、对数学教学中开放题的探讨
9、对数学教学中开放题使用的几点思考
10、对现行较普遍的彩票发行方案的讨论
11、对一定理证明过程的感想
12、对一类递推数列收敛性的讨论
13、多扇图和多轮图的生成树计数
14、多维背包问题的扰动修复
15、多项式不可约的判别方法及应用
16、多元函数的极值
17、多元函数的极值及其应用
18、多元函数的极值及其应用
19、多元函数的极值问题
20、多元函数极值问题
21、二次曲线方程的化简
22、二元函数的单调性及其应用
23、二元函数的极值存在的判别方法
24、二元函数极限不存在性之研究
25、反对称矩阵与正交矩阵、对角形矩阵的关系
26、反循环矩阵和分块对称反循环矩阵
27、范德蒙行列式的一些应用
28、方阵A的伴随矩阵
29、放缩法及其应用
30、分块矩阵的应用
31、分块矩阵行列式计算的若干方法
32、辅助函数在数学分析中的应用
33、复合函数的可测性
34、概率方法在其他数学问题中的应用
35、概率论的发展简介及其在生活中的若干应用
36、概率论在彩票中的应用
37、概率统计在彩票中的应用
38、概率统计在实际生活中的应用
39、概率在点名机制中的应用
40、高阶等差数列的通项,前n项和公式的探讨及应用
41、给定点集最小覆盖快速近似算法的进一步研究及其应用
42、关联矩阵的一些性质及其应用
43、关于Gauss整数环及其推广
44、关于g-循环矩阵的逆矩阵
45、关于二重极限的若干计算方法
46、关于反函数问题的讨论
47、关于非线性方程问题的求解
48、关于函数一致连续性的几点注记
49、关于矩阵的秩的讨论 _
50、关于两个特殊不等式的推广及应用
51、关于幂指函数的极限求法
52、关于扫雪问题的数学模型
53、关于实数完备性及其应用
54、关于数列通项公式问题探讨
55、关于椭圆性质及其应用地探究、推广
56、关于线性方程组的迭代法求解
57、关于一类非开非闭的商映射的构造
58、关于一类生态数学模型的几点思考
59、关于圆锥曲线中若干定值问题的求解初探
60、关于置信区间与假设检验的研究
61、关于周期函数的探讨
62、函数的一致连续性及其应用
63、函数定义的发展
64、函数级数在复分析中与在实分析中的关系
65、函数极值的求法
66、函数幂级数的展开和应用
67、函数项级数的收敛判别法的推广和应用
68、函数项级数一致收敛的判别
69、函数最值问题解法的探讨
70、蝴蝶定理的推广及应用
71、化归中的矛盾分析法研究
72、环上矩阵广义逆的若干性质
73、积分中值定理的再讨论
74、积分中值定理正反问题‘中间点’的渐近性
75、基于高中新教材的概率学习
76、基于最优生成树的'海底油气集输管网策略分析
77、级数求和的常用方法与几个特殊级数和
78、级数求和问题的几个转化
79、级数在求极限中的应用
80、极限的求法与技巧
81、极值的分析和运用
82、极值思想在图论中的应用
83、几个广义正定矩阵的内在联系及其区别
84、几个特殊不等式的巧妙证法及其推广应用
85、几个重要不等式的证明及应用
86、几个重要不等式在数学竞赛中的应用
87、几种特殊矩阵的逆矩阵求法
生命无极限
生命本是一泗清泉,只有勇于拼搏的人才能尝出它的甘洌。在奥运场上,四年一次的舞台,给了他们生命的展示。如果说只有冠军才能有王者的风韵。那么,这变是人类史上最大的遗憾。多少年来,人们为着同一个目标努力着。可是,金牌,只有一个,然而想拥有它的人,却有一群。但在我的心里,登上奥运战场,他们,便是王者。也许为了这最后的胜利,他们付出了毕生的努力,他们为了成功,牺牲了最动人的年华。我国的竞走运动员,为了奥运,离开了她仅4个月大的女儿。墙上多少个"正"字才能换回与女儿的相见一面。那是一种穿心的痛,作为一个母亲她将自己献给了体育。面对窗外出升的新月,却只能孤独地想象,我的亲人在哪儿,他们是否也在念挂着我。可是,为了奥运,我要拼搏,即使是最后一名,跑道上也要留有我的身影。留想奥运,那是一种拼搏的精神。
生命本是一米阳光,只有把握住机会的人才能体会它的灿烂。最后一枪,是扣人心弦的,也就是这最后一枪,改变了人一生的命运,最后一枪,使全世界知道了杜丽的名字。在最后一枪之前,还有0。6环的差距。可是对手没有把握住。杜丽,你赢了!奥运,是懂得怎样把握住机会的竞技场。
生命本是那坚硬的石头上的一颗小水珠,只有永不放弃的人才能拥有水滴石穿之时。21:23,在前三局中国以1:2败与俄罗斯,这是至关重要的一局,如果输了,中国只能跟金牌
擦身而过。许多人不想看到女排一败涂地的结局,纷纷转换了频道。然而,上帝在创造女排姑娘之前,为她们安装了一颗永不服输的心。就是这颗坚韧的心,陪着女排姑娘们度过了最艰难的一关。窗外发出一阵激烈的掌声。我知道,我们一定是赢了。是她们,顶着巨大的压力,在大比分落后的情况下,挽回了致命的一局。我注意到了这样一个镜头:在拦网过程中,李婷摔倒,她用双拳向地面使劲地一锤,是啊,每一分对于她们来说是多么重要。李婷站了起来,重新开始了她的征途。当时,我是用一颗感恩的心来看待这些姑娘的。感恩,感谢你们为祖国添加了本届奥运会第一枚团体金牌;感恩,感谢教练的微笑,给了她们莫大的支持;感恩,感谢上苍赐予她们一颗永不言弃的心。今天,是感恩节。是奥运健儿为我们带来了胜利的曙光,使自豪填满我们的胸膛。
在人生的旅途中,有太多的也许,也许曾经得到,也许就这样错过。蓦然会首中,依旧不变的,是一颗无悔的心。他们选择了体育,从此就等待希望。他们没有后悔,哪怕放弃拥有。他们创造了太多的奇迹,那是生命的真谛,那是生命的根源:生命无极限!
函数的导数表示函数在一点处(瞬时)随自变量变化快慢的程度。利用它,可以直接研究函数及其图像在一点处的变化性质(例如瞬时速度、切线斜率等)。为了应用导数研究函数在区间上的变化性质,先要熟悉微分学的中值定理。
1. 中值定理
微分学中有费马引理、罗尔定理和拉格朗日中值定理。
拉格朗日定理 如果函数 满足:
(ⅰ)在闭区间 , 上连续;
(ⅱ)在开区间 , 内可导,
则在 , 内至少存在一点 ,使
或
由图3容易理解,当函数 满足(ⅰ)、(ⅱ),即 是条连续曲线并且在 , 内的每点处有切线时,那么在曲线上(只要把弦AB平行移动)至少有一点P(在图中是 ),使得曲线在该点处的切线与弦AB平行,也就是说,P点处的切线斜率 和弦AB的斜率 相等。
需要注意的是,拉格朗日定理并没有给出求 值的具体方法,它只是肯定了 值的存在,并且至少有一个。如图3中的函数 ,在 , 有 与 两个。拉格朗日定理的意义是:建立了函数 在区间 , 上的改变量 与函数在区间 , 内某一点 处的导数之间的关系,从而为用导数去研究函数在区间上的性质提供了理论基础。
2. 用导数研究函数的性质
为了使论述方便,我们将使用记号 和 ,它们分别表示开区间 , 和闭区间 , 。
现在我们利用导数来研究函数的单调性。设函数 在 上连续,在 上可导。如果函数 在 上单调增加,那么,它的图形是一条沿 轴正向上升的曲线,如图(a)所示,这时曲线上各点的切线斜率大于等于零( );如果函数 在 上单调减少,那么,它的图形是一条沿 轴正向下降的曲线,如图(b)所示,这时曲线上各点的切线斜率小于等于零( )。由此可见,函数的单调性与其导数的符号有着密切的联系。
反过来,我们是否可以有导数的符号来判定函数的单调性呢?
一阶导数的符号
在 上任取两点 、 ,其中 < ,在区间[ , ]上应用微分中值定理,得到
( < < )
有上式可见,若 , ,就有 ,于是 , , 在区间 上单调递增。同理可以说明 在区间 上单调递减。
由此我们可以归纳出函数单调性的判别法。
设 在区间 上连续且在区间 上可导,则
(1) 如果函数 在区间 上满足 ,则函数 在区间 为递增函数;
(2) 如果函数 在区间 上满足 ,则函数 在区间 为递减函数。
(3) 如果函数 在区间 上满足 ,则函数 在区间 为常数。
此外,导数的绝对值告诉我们变化率的大小。当 绝对值较大时,函数曲线就陡峭一些; 绝对值较小时,函数曲线就平坦一些。记住这些,你就可以从一个函数的导数情况判断出函数的一些性态。
曲线的上下凹性
设 在某一区间内可微,一阶导数告诉我们,如果在某一区间内 ,那么 在该区间式递增的;
如果在某一区间内 ,那么 在该区间式递减的。
如果 在某一区间内递增,则它的函数曲线向上弯曲或称为上凹,如果 在某一区间内递减,则它的函数曲线向下弯曲或称为下凹。当 向上弯曲时,曲线切线的斜率随着 增加而增加,如图所示;当 向下弯曲时,曲线切线的斜率随着 增加而减少,
点 为函数 的拐点,即函数曲线在区域内点 的左边向上凹,在点 的右边向下凹,它是曲线由向上凹变为向下凹的分界点。
二阶导数的符号
函数曲线的向上凹或向下凹、曲线的拐点可以用函数的二阶导数来确定。
设 在区间 上连续且在区间 上可导,则
(1) 如果函数 在区间 上满足 ,则函数 在区间 为递增函数,函数曲线上凹;
(2) 如果函数 在区间 上满足 ,则函数 在区间 为递减函数,函数曲线下凹。
局部极值性
我们说 在点 达到极大值,指的是在 的领域内 为最大,如图所示。 在点 处达到极大值,虽然 = 在整个图像中不是最大,它只是在点 领域内为最大,另一个最大值是B= ,它只是函数在区间[ , ]端点 的函数值,而 = 则是整个图像的最大值。
同样, 在点 达到极小值,指的是在 的领域内 为最小,如图所示。 在点 处达到极小值,虽然 = 在整个图像中不是最小,它只是在点 领域内为最小,另一个最小值是A= ,它只是函数在区间[ , ]端点 的函数值,而 = 则是整个图像的最小值。
函数的极大值和极小值概念是局部性的。如果 是函数 的一个极大值(或极小值),那只是就点 附近一个局部范围来说, 是函数 的一个极大值(或极小值),如果就函数 整个定义域来说, 不见得是函数 极大值(或极小值)。
我们在微分中值定理一节曾经提到,如果函数 可导,并且点 是它的极值点,那么点 必定是它的驻点,但是函数的驻点未必是它的极值点。如函数 ,点 =0是它的驻点,但是在 内函数 是单调增加的,所以点 =0不是它的极值点,可见,函数的驻点只是可能的极值点。此外,函数在它不可导点处也可能取得极值,如函数 在点 =0处不可导,但是在该点取得极小值。
最大值与最小值
在前面讨论极值的基础上我们进一步讨论函数在一个区间上的最大值与最小值的求法。最大值与最小值的应用很广泛,人们做任何事情,小到日常用具的制作,大至生产科研和各类经营活动,都要讲究效率,考虑怎样以最小的投入得到最大的产出,这类问题在数学上往往可以归纳为求某一函数在某个区间内的最大与最小值的问题。
现在设函数 在闭区间 , 上连续,在开区间 , 可导,根据闭区间上连续函数的性质可知,函数 在闭区间 , 的最大值、最小值必定存在;其次,如果最大值或最小值在开区间 , 内的某一点 取得,那么这个最大值或最小值 必定是函数 的一个极大值或极小值。于是,点 必定为函数 的驻点;最后,函数 的最大值或最小值也可能是在 或 处取得。我们通过一个例子来看一看最大值或最小值的求法过程。
例5 求函数 在闭区间 , 上的最大值与最小值。
(一)确定论文提要,再加进材料,形成全文的概要
论文提要是内容提纲的雏型。一般书、教学参考书都有反映全书内容的提要,以便读者一翻提要就知道书的大概内容。我们写论文也需要先写出论文提要。在执笔前把论文的题目和大标题、小标题列出来,再把选用的材料插进去,就形成了论文内容的提要。
(二)原稿纸页数的分配
写好毕业论文的提要之后,要根据论文的内容考虑篇幅的长短,文章的各个部分,大体上要写多少字。如计划写20页原稿纸(每页300字)的论文,考虑序论用1页,本论用17页,结论用1—2页。本论部分再进行分配,如本论共有四项,可以第一项3—4页,第二项用4—5页,第三项3—4页,第四项6—7页。有这样的分配,便于资料的配备和安排,写作能更有计划。毕业论文的长短一般规定为5000—6000字,因为过短,问题很难讲透,而作为毕业论文也不宜过长,这是一般大专、本科学生的理论基础、实践经验所决定的。
(三)编写提纲
论文提纲可分为简单提纲和详细提纲两种。简单提纲是高度概括的,只提示论文的要点,如何展开则不涉及。这种提纲虽然简单,但由于它是经过深思熟虑构成的,写作时能顺利进行。没有这种准备,边想边写很难顺利地写下去。
编写要点
编写毕业论文提纲有两种方法:
一、标题式写法。即用简要的文字写成标题,把这部分的内容概括出来。这种写法简明扼要,一目了然,但只有作者自己明白。毕业论文提纲一般不能采用这种方法编写。
二、句子式写法。即以一个能表达完整意思的句子形式把该部分内容概括出来。这种写法具体而明确,别人看了也能明了,但费时费力。毕业论文的提纲编写要交与指导教师阅读,所以,要求采用这种编写方法。
详细提纲举例
详细提纲,是把论文的主要论点和展开部分较为详细地列出来。如果在写作之前准备了详细提纲,那么,执笔时就能更顺利。下面仍以《关于培育和完善建筑劳动力市场的思考》为例,介绍详细提纲的写法:
上面所说的简单提纲和详细提纲都是论文的骨架和要点,选择哪一种,要根据作者的需要。如果考虑周到,调查详细,用简单提纲问题不是很大;但如果考虑粗疏,调查不周,则必须用详细提纲,否则,很难写出合格的毕业论文。总之,在动手撰写毕业论文之前拟好提纲,写起来就会方便得多。