数模论文的写作在比赛中可能是你论文质量好坏,得奖与否的最重要的因素。据初步的调查,很多同学在准备比赛时,把自己的主要精力放在阅读往年优秀论文,精通某种软件和算法上面。不可否认,这会使你的建模水平得到提高,但在比赛时,你的想法再好,如果文字表达不清楚,很有可能使你的论文前功尽弃,因此学会如何写数模论文就很有必要了。关于怎么样写论文已经有了很多的介绍文章,这些都足以说明论文写作的重要性。
一、充分重视论文摘要的写作
摘要在整个数模论文中占有及其重要的地位,它是评委对你所写论文的第一印象。在全国大学生数学建模竞赛中,组委会对论文摘要提出了专门的要求,再三明文提醒参赛者要注重摘要的写作。在论文的评阅中,摘要是你的论文是否取得好名次的决定性因素,评委们通过你的摘要就决定是否继续阅读你的论文。换句话说,就算你的论文其他方面写得再好,摘要不行,你的论文也不会得到重视或者根本上就没有评委来阅读你的论文。
在摘要中一定要突出6个方面:问题,方法,模型,算法,结论,特色。简而言之,摘要应该体现你用什么方法,解决了什么问题,得出了什么结论。避免有主观评论,一定要突出重点,让人一看就知道这篇论文的目的是什么,做了什么工作,用的什么方法,得到了什么结果,有什么创新和特色。只有这样的摘要才是成功的。
具体写摘要的时间一般安排在论文基本完成以后,由一个队员具体负责,在写出初稿后由其他队员交替阅读提出修改,直到大家满意为止。
好的摘要都包含了两个共同的特点:简单与清晰。篇幅在一页之内。
范例一:公交车调度方案的优化模型
摘 要
本文建立了公交车调度方案的优化模型,使公交公司在满足一定的社会效益和获得最大经济效益的前提下,给出了理想发车时刻表和最少车辆数。并提供了关于采集运营数据的较好建议。
在模型Ⅰ中,对问题1建立了求最大客容量、车次数、发车时间间隔等模型,运用决策方法给出了各时段最大客容量数,再与车辆最大载客量比较,得出载完该时组乘客的最少车次数462次,从便于操作和发车密度考虑,给出了整分发车时刻表和需要的最少车辆数61辆。模型Ⅱ建立模糊分析模型,结合层次分析求得模型Ⅰ带给公司和乘客双方日满意度为(0.941,0.811)根据双方满意度范围和程度,找出同时达到双方最优日满意度(0.8807,0.8807),且此时结果为474次50辆;从日共需车辆最少考虑,结果为484次45辆。
对问题2,交待了综合效益目标模型及线性规划法求解。
对问题3,采集方法是遵照前门进中门出的规律,运用两个自动记录机对上下车乘客数记录和自动报站机(加报时间信息)作录音结合,给出准确的各项数据,返站后结合日期储存到公司总调度室。
关键词:公交调度 模糊优化法 层次分析 满意度
范例二:彩票发行方案的最优决策
摘 要
目前,彩票在我国得到了迅速健康的发展,并且为我国的福利公益事业的发展做出了很大 贡献。本文针对目前流行的各种不同彩票发行方案,综合分析了各种奖项出现的可能性、奖项和奖金额的设置以及对彩民的吸引力等因素对各方案的影响,建立了三个模型。
模型I:利用超几何分布原理,建立了头奖期望模型。依照此模型,得出传统型彩票中方案 、乐透型彩票中方案 (即 )设计较为合理;总体而言,乐透型彩票的方案 头奖期望最大,方案设计最为合理。
模型II:综合考虑影响方案合理性的各种因素,建立了高项奖中奖概率、总中奖概率、奖项的设置以及奖金分配的多目标决策模型,求解得到:①方案19的加权目标函数值最大,在所有方案中它是最合理的一个方案;②“传统型”彩票方案1~4中,方案4较为合理;③“传统型”彩票方案(1~4)的加权目标函数值总体上小于“乐透型”方案(5~29),从普遍意义上讲,“乐透型”方案相对优于“传统型”; ④对于 (从 中选 )型的方案, 相同时, 为35、30、32、33、34时它们的合理性依次递减。
模型III:考虑到彩票市场供给与需求的关系,并结合彩票管理部门与彩民双方的满意度,建立了多目标最优决策模型。通过彩票市场供给、需求随销售的走势,找到了均衡点,同时利用计算机编程,搜索出了更优的彩票发行方案。
本文还从 的变化对模型的灵敏性作了准确分析,以及从单式投注向复式投注、适当提高总奖金额等方面为设置彩票发行方案作了进一步讨论。
最后据此模型,向彩票管理部门提出了更为积极、实用的彩票发行建议;并从充分认识彩票、入市动机及心态、策略和技巧等三个方面对彩民摸彩、投彩提出了科学的参考意见。
关键词: 机率 期望 多目标决策 超几何分布 满意度
范例三:奥运会临时MS超市网点设计的数学模型
摘 要
本文对调查数据进行了统计分析,在此基础上求出各商区人流量百分比和分布规律,然后进行MS网点的设计,建立了三个模型,并进行了仿真检验。
对问题一,分析得到不同年龄段观众在出行、就餐、消费等方面存在较大差别,因此依照年龄段按照性别的不同,分别对出行、就餐、消费等三个方面总结出观众概率分布的8条规律。
对问题二,利用BP神经网络原理,按照年龄段-性别-商区-进出口将网络分为三级,从就餐习惯和出入场馆两个方面进行链条分析,建立了各场馆最短路径下的人流量模型,编程求解得到20个商区的人流量分布(%):A1到A10商区分别为11.887、7.621、8.540、10.378、18.963、7.621、8.540、8.036、10.378;B1到B6商区分别为11.686、 13.932、 18.760、 11.686、 13.932、 30.004; C1到C4商区分别为18.75、 20.9843、 18.75、 41.5157。在人流量分布求出后,总结出对称性定理,即人流量以场馆进出口连线为轴斜对称,并给出了详细证明。
在问题三中,对观众购买欲望的相关因素进行了细致分析,建立了购买欲望与年龄、消费额的数学表达式,得到欲望矩阵 ,并对购买能力进行了模糊计算。然后,由两个基本限制条件:满足奥运会期间的购物需求和分布基本均衡,建立了数学表达式,建立了以赢利为目标函数的非线性多目标决策模型:
用Lingo编程求解,得到了一种可参考的MS网点设计方案:A1到A10商区建立大MS个数分别为3、1、0、0、1、3、1、0、0、1,小MS个数分别为0,1,2,2、1、1、1、2、2、1;B1到B6商区建立大MS个数分别为1、2、3、1、2、3,小MS个数分别为2、1、1、2、1、1;C1到C4商区建立大MS个数分别为2、4、2、1,小MS个数分别为2、0、2、1。
考虑到奥运赛程的安排,实际人流量、消费额、赢利等将随时间而发生变化,为进一步优化网点设计方案,根据系统动力学原理,基于Venple5.3技术用计算机对人流量与收益模型进行了系统仿真,并通过调式,对模型进行了检验和评估,从而验证了模型的合理性、科学性和实用性。
最后,对北京2008年奥运会从经济收入、旅游和硬件建设等方面提出了几点建议。
关键词:概率 人流量 对称性 欲望矩阵 多目标决策 系统动力学 系统仿真
范例四:长江水质的综合评价与预测控制
摘 要
本文根据调查数据的统计分析,对近两年的长江水质做出了全方位的综合评价,找到了高锰酸盐和氨氮污染源所在主要地区,并对未来10年水质污染进行了预测,提出了控制方案,给出了一系列较为科学的防污建议。
首先对近两年来长江流域17个主要监测断面的水质抽样,按照时间-空间的先后交互顺序进行统计,建立概率统计评判模型,结果发现:2003-2005年,长江85%的断面满足Ⅰ~Ⅲ类水质要求,12%的断面属Ⅳ、Ⅴ类水质,劣Ⅴ类水质占3%。两年来,长江水质局部变化较大,整体较为平稳,但优质水正在下降,超标水质呈上升趋势。为了寻找污染源,我们以长江干流7个断面作为基本观察点,根据水流量、水流速和降解系数,确立了污染源反馈指标:
经计算发现:江苏南京、湖南岳阳高锰酸盐污染最为严重,湖南岳阳同时又是氨氮污染源的主要地区,较为次之的是安徽安庆和江苏南京,但同比之下相差较大。
其次,对近10年的主要统计数据,按照GM(1,1)灰色原理,建立灰色预测模型,归一化处理后,通过DPS数学统计软件的计算,得到了水质类别的预测值和趋势函数,分析认为:长江 I、II、Ⅲ类水质总量呈现下降趋势,其中 I、Ⅲ类水质急剧下降,劣Ⅴ类水质上升幅度较大,到2014年超标水质总量百分比将达到45.88%,长江水质全面恶化,水生态环境严重失去平衡。为了有效控制污染恶化趋势,防止超标水质的上升,运用二次多项式逐步回归分析,得到废水排放总量关于各类水质百分比的函数,经编程运算,我们提出了长江污水处理方案。未来10年需要处理的污水量依次是:0,0,2.66,5.14,5.76,8.21,10.86,13.71,16.77,20.07(单位:10亿吨)。
最后,基于对长江水质状况的综合评价和未来污染趋势的预测,根据“保护长江万里行”考察团的实践调查,我们深刻意识到:长江流域水生态环境破坏日益严重,前景不容乐观。为防止长江“癌变”,我们提出了几种水环保理念:做到教育先行,努力唤起民众环境保护意识;坚持依法治水,为保护长江立法;实行科学规划,走可持续发展之路;提倡人文环保,构建和谐的生态系统和人居环境。
关键词 监测断面;概率统计评判;污染源反馈;灰色预测;逐步回归;人文环保;
二、论文主体要鲜明、结构要完整
按照数模论文的特点,其论文主体部分就包括以下内容:
(1)问题提出——明确问题
这一部分没有过多的说明,一般是直接 copy 赛题的原文就行了,但我认为在时间充裕情况下可以适当归纳总结;因此可以写点这个问题的一些背景知识。
明确问题即建模的准备阶段,要建立现实问题的数学模型,第一步是要对解决的问题有一个明确清晰的提法,通常我们遇到的某个实际问题,在开始阶段是比较模糊的,又带实际背景,因此在建模前必须对问题进行全面深入细致的了解和调查,查阅有关的文献,同时要着手收集有关的数据,收集数据时事先应考好数据的整理形式,例如利用表格或图形等。在这期间还应仔细分析已有的数据和条件,使问题进一步明确化。即从数据中得到什么信息?数据来源是否可靠?所给的条件有什么意义?那些条件是本质?那些条件是变动的等。对数据和条件的分析会进一步增强我们对问题的了解,使我们要更好地抓住问题的本质及特征,为下一步建模打下好良好的基础。
(2)模型假设——合理的假设
作为题目的原型都是复杂的,具体的,是质和量、现象和本质、偶然和必然的统一体。这样的原型如果不抽象和简化,人们对其认识是困难的,也是很难把握它的本质属性,而建模假设就是根据建模的目的对模型进行抽象,简化。把那些反映问题本质属性的形态,量及其关系抽象出来,简化掉那些非本质的因素,使之摆脱原型的具体复杂形态,形成对建模有用的信息资源和前提条件。
但如何对问题提出合理的假设是一个比较困难的问题,这是因为作得过于简单,则使模型远离现实,无法用来解决现实问题,假设做得过于详细,试图把各个方面的因素都想进去,模型就会十分复杂,甚至难以建立,也对我们计算带来复杂化,一般模型假设遵从以下原则:
①目的性原则,从原型中抽象出与建模目的有关的因素,简化掉无关的因素或关系不大的因素。
②简明性原则,所给的假设条件要简单,精确,有利于构造模型。
③真实性原则,假设条款要符合情理,简化带来的误差应满足实际问题所允许的范围内。
④全面性原则,在对事物原型本身作出的假设的同时,还要给出原型所处的环境条件。
最简单的作法:假设的条件一般可以从题目中挖掘。
(1)根据题目中条件作出假设
(2)根据题目中要求作出假设
需要值得注意的是:
①对我们所解决问题本身没有影响(或影响比较小)但可以使模型得到简化的因素应该在假设中体现。
②不能为了简化问题而大量假设(使求解问题本身与原题意不符),因此应注意假设的量与度。
(3).符号说明——不可缺少
在你的论文中不可避免的会出现大量的数学符号,因此在这部分里应把这些符号做一个简要的说明,可以从符号,类型(变量,常量),单位,含义几个方面来说明(如下表):
符号
类型
单位
含义
需要注意的是单位量纲要统一,含义解释要准确,清楚。
(4).问题分析——思路清晰、图文并茂
从题目到模型是一种从具体到抽象的思维过程,本部分即是这一过程的体现。这部分应是论文主体的一个亮点,建议在文字说明的同时用图形或图表列出思维过程,这会使你的思维显得很清晰,让人觉得一目了然。另外,这部分应对题目做整体分析,充分利用题目中的信息和条件,确定用什么方法来建立什么模型。经验告诉我们可以从题目中得到问题的一些初步的判定:比如说可以得到在极限情况下的最大产量,花费的最少时间等,使我们最后得到的方案不能超过(或低于)我们这里分析的量。在这部分应能体现我们解决原问题的雏形。总之,问题分析在整个论文中的作用在于承上启下,也很能反应出参赛者的综合水平。
(5).模型建立——数学语言
数学模型就是:数学公式、图表、方案等。
模型的建立是将原问题抽象成用数学语言的表达式,其建立方式会由于对问题的理解和着眼点不同而不同。近年来的数学建模竞赛出题主要有两个方向:一是概率统计问题;一是运筹优化问题。因此掌握好以上两方面的知识对于建立模型来说是十分重要的。
另外,我还觉得应注意对每个模型式子的解释一定要清楚到位,其中的数学符号一定要与前面的说明保持一致。
其基本方法为:
在建模的假设的基础上,进一步分析建模假设的条款,首先区分那些是常量,哪些是变量,哪些已知、未知,然后查出各种量所处的位置、作用和它们之间的关系 ,选择恰当的数学工具和构造模型的方法对其进行表征,构造出刻划实际问题的数学模型。
这里要注意两点:其一,构造一具体问题的模型是要尽可能地简单的模型,然后把它与实际问题进行比较,再把其次要的因素加进去,逐渐逼近现实来修改模型,使之趋于完善,这样应形成了由模型一,到模型二,再模型三,……,这样逐步逼迫现实的数学模型。其二,要善于借鉴已有的数学模型,许多的实际问题,尽管现象和背景都不同却有相同的模型。例如,力学中描述的力,质量和加速度之间的关系的的牛顿第二定律F= M a ,经济学中描述单价、销售金额和销售量之间的关系的公式C= p q等,数学模型都是y= k x ,要学会观察和分析,看到问题的本质,抓住本质特征,对我们已有的模型进行修正。
(6).模型求解——软件帮忙
不同的模型要用到不同数学工具求解,如可以采用解方程,画图形,证明定理,逻辑运算,数值运算等传统的方法和近代的数学方法,建模发展到现代,多数场合的模型一般多用软件编程求解。三大软件(Matlab,Maple,Mathematic)至少应熟悉一种,另外应学会一些专用软件。比如说解概率统计问题的DPS,SAS,SPSS;解运筹优化问题的 Lingo,Lindo 等。熟练利用这些数学软件会为我们求解带来快捷和方便。其次尽量用不同方法求解,这既能反应出你的思维比较开阔,也能间接地验证你所求解结果的正确性。另外应给出主要算法的一些简要步骤,处理或简化问题的方式,并适当应用表格或图像说明。
最后需要提醒大家的是在必要时可以给出数学上的证明,这会使你的论文增色不少。
(7).模型(结果分析)——检验与修正
建立数学模型的目的在于解决实际问题。因此必须把模型解得的结果返回到实际问题,如果模型的结果与实际问题状况相符合,表明模型经检验是符合实际问题的,相反则不行,它就不能直接应用于实际问题。这时数学模型建立如果没有问题,就需要考虑建模时关于所假设的是否合理,检验是否忽略了不应该忽略的因素或还保留了不应该保留的因素。对假设给出必要的修正,重复前面的建模过程,直到使模型能够反映所给的实际问题。
通常的作法是:
由于在模型假设中,忽略了一些对问题影响的次要因素,这或多或少的使问题得到了简化,但必然会产生一些误差;另外解决问题的方法是很多的,在论文中可能只用了其中的一两种方法,思维可能显得比较局限;而模型本身也会有它的优势和缺陷。因此,我们在这部分应该做的工作主要有下面三点:
A.是否能用其他方式或方法解决。
B.模型的优缺点分析。
C.模型的误差分析或灵敏度分析。
做好上面的工作,既是对原问题的补充说明,更表现一种思维的严谨和逻辑的严密,使你的论文一气呵成,显得很完备。
(8).模型的评价与推广
什么样的数学模型是好的呢?一般来说一个好的模型应该具备以下五点:
(1)对所给的问题有较全面的考虑。在一个实验问题中往往有许多的因素同时对所研究的对象发生作用,进行数学描述时,应该全面地对这些因素加以考虑。这项工作可分为三步进行:
①列举各种因素;
②选取主要因素计入模型;
③考虑其他因素的影响,对模型进行修正。
(2)在已有的模型上进行创造性的改进。数学模型是现实对象的抽象化,理想化的产物。它不为对象所属领域所独有,可以转移到另外的领域。在生态,经济,社会等领域内建模就常常借用物理领域中的模型,能否对已有的模型作为创造性的改造,是考虑一个数学模型的优劣的重要标志
(3)善于抓住问题的本质,简化变量之间的关系。数学模型应当是实际问题的本质刻画,模型过于复杂,则无法求解或求解困难,反之则不能客观的反映客观实际。
(4)注重结果分析,考虑其在实际中的合理性。数学模型是一个从实际到数学,再从数学到实际问题的过程。由于现在的模型仅仅依赖题中的数据,如果从模型中得到的结果与实际吻合,模型是成功的,反之则失败,要求我们进一步修改。
(5)具有较好的稳定性。数学模型是依赖已有的数据和其他的信息建立起来的,他的价值在于能够从已知的信息预测到未知的东西。因此,一个好的数学模型的结果对原始的数据有较好的依赖性,即原始的数据和参数有微小的变化不会引起结果很大的变动,这是模型适应性和有效性的保证。
由于论文本身的局限性,在这里可以对一些问题做更深入的探讨,这是文章又一亮点,实力比较强的队伍可以在这一块充分发挥。这部分对于整个论文的作用在于画龙点睛。另外,我们对问题的探讨与延拓方式是多种多样的:可以把假设的条件适当放宽了来考虑问题;可以对你的算法做出改进等等,但我认为在这里做做定性的分析就够了,最后主要对问题的横向和纵向两方面进行发散。因为评委的评阅工作至此已经基本结束了。
(9).参考文献
这里注意一下格式问题,参赛要求有明确规定:
A.书籍的表述方式为:[编号] 作者,书名,出版地:出版社,出版年。
B.参考文献中期刊杂志论文的表述方式为:[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。
C.参考文献中网上资源的表述方式为:[编号] 作者,资源标题,网址,访问时间。
至于附录,附上相关程序及运行结果,数学上的证明即可,
最后注意一下论文的整体感,特别是文字表述是否准确严密。
三、用数学通用软件编写程序
在编写计算机程序时,基本原则是使用通用的、自己使用最熟悉的软件进行编写,这样可以尽快出结果,即使出错也能很快查出并进行改正。数学通用软件是建立在一定的理论基础和算法基础上的,其计算结果具有一定的可信度,因此,尽量使用matlab、mathematicas、lindo、lingo等数学软件编写的程序,能增加模型结果的可信度。另外,也可利用一些二次开发程序。如TSP,EXCEL,DPS等。
四、要善于合理使用图表
在论文写作中一定要注意能用图表的地方尽量用图表来表示,用图表比用文字阐述要来得清楚直接,一张图表往往能代替一大段干巴巴文字,并且图文并茂也可以为论文增加更多色彩。要知道评委们大都是老教授老专家,为了教授专家们的眼睛,减轻他们受文字的折磨,多用图表绝对是不错的选择。须注意的是图表的引用要规范,在交叉引用的时候一定要小心,不要错位,为此应给每一张图、每一个表都编上号,而且整篇文章的图、表的号码应该连续。图和表在论文中应尽量交替出现,同时排版时也应该让它们处于页面的中部,尽量避免出现在最顶端,这样可以增加文章的视觉美。
五、充分发挥团队的作用
在比赛中,队员之间的配合很重要,每个人对自己这个组的特长,要有一个比较清醒而统一的认识,擅长做哪种类型的题,不擅长做哪种。这样,在选题的时候才不会耽误太多时间。
分工的原则:
•建模:推导数学模型,数学能力强
•编程:计算机能力强
•论文写作:写作能力强
其次,参赛队中应有核心队员,他的作用就相当于计算机中的CPU,核心队员发挥好了,就能带动一个队正常有效开展工作。无论是选题、讨论、写作、协调甚至情绪等,核心队员都应该充分发挥好,起领导作用,才能使整个队伍充满信心地、高效地完成比赛,否则可能导致队伍的情绪低落,没有信心,甚至前功尽弃。
六、合理控制写作进度
做任何事情,合理的时间安排非常重要,建模也是一样,事先要做好一个规划,论文一般分十个大的板块:摘要,问题提出,模型假设,问题分析,模型假设,模型建立,模型求解,结果分析,模型的评价与推广,参考文献,附录。要求我们的队员每天要做完哪几个板块的工作一般先要确定好,这样做才会使工作临阵不乱,保证在规定时间内完成论文写作,以避免由于时间已经用完而任务没有完成的被动局面,严重的最后无法完成论文。
通常的竞赛时间安排:
第一天:上午:确定题目,并查阅文献
下午:开始分析,建立初步模型
晚上:编程,得到初步计算结果 12:00 PM 休息
•第二天:上午:得到第一个模型的合理结果
下午:开始写论文,并考虑对第一个模型的改进
晚上:得到第二个模型的初步结果 12:00 PM 休息
•第三天:上午:得到第二个模型的合理结果
下午:考虑对前二个模型的进一步优化,得到第三个数学模型,
或对前二个模型的正确性进行验证
晚上:得到最后结果,完成整篇论文
独一无二的竞争优势有很多种,为了更加易于理解“什么是好股”,我归纳了主要的六种,可能互相之间会有点重合或者互为因果。
第一,垄断优势。按照经济学上的“垄断”的含义,是指单一的出卖人或少数几个出卖人控制着某一个行业的生产或销售。我用自己的话说,就是独家生意。或者说得长一点,是独家经营,或者重要产品、服务的最先推出和独家拥有。香港交易所和澳大利亚交易所就是独家生意,在本地区本国独此一家,别无竞争。美国辉瑞药厂的伟哥刚推出来的时候,也是独霸天下。当然,垄断除了独家生意以外,还有一种叫寡头垄断,我们在市场上经常能发现,80%的市场和利润被两至三家最大的生产组织所拥有。银行信用卡大部分必须通过万事达或维萨两家国际组织的网络,世界上的碳酸性饮料的市场基本上就被可口可乐和百事可乐所垄断。国内牛奶的市场最大的两家是蒙牛和伊利。不过,我更推崇的是独家垄断。
第二,资源优势。资源就是与人类社会发展有关的、能被利用来产生使用价值并影响劳动生产率的诸要素。很多公司都拥有各自的资源。资源的关键在于稀缺,按照稀缺的程度可以分成不同的等级。比如江西铜业拥有铜矿,但却还不具备独占的优势,因为很多铜业公司也有铜矿,不能算是最高等级。中国石油的等级就要高一些,南非的黄金钻石等级更高一些,而盐湖钾肥所拥有的钾盐矿,则占全国总量的近90%,这种资源的优势就具有独一无二的性质。又比如离开了茅台镇就生产不了茅台酒,那么茅台酒厂资源优势就具有独占性质。我最喜欢的是具有独占性质的资源优势的公司。
第三,品牌优势。有品牌的企业很多,有了品牌并不等于有了独一无二的优势。品牌优势的独一无二简单地说就是要强大,强大到行业第一。茅台号称国酒,同仁堂号称国药,耐克公司那简单的一勾,就是世界最好的体育用品公司和运动产品的标识,已深深为全世界特别是年轻一代消费者所喜爱。这种优势也是巴菲特的最爱,他叫做消费独占,我有时把它叫做消费者心理霸占,就是把消费者的魂勾去了。比如同样的产品,人家就要买这个牌子的,哪怕这个牌子贵了一大截。
第四,能力技术优势。也就是大家讲得最多的核心竞争力。能力指的是公司团队在决策、研发、生产、管理、营销等方面的技能,比如万科公司,它在品牌强大之前,主要是管理团队极为优秀,能力太强,堪称地产界第一。烟台万华的MDI制造技术独家拥有。微软的技术优势简直是世界老大,任何软件产品不适用WENDOWS系统,你就麻烦了。1997年我第一次接触到招商银行的一卡通时,就深为他们的专业能力、创新能力和服务能力所震动。一张卡片,居然可以活期定期本币外币全包含,而且比存折易带,又不暴露存款数字。这在当时可是全国领先。其后他们还不断推出金融服务创新品种,一直在同业中处于领先地位,这就是能力技术优势最直观的例证。
第五,政策优势。政策优势主要是指政府为加强相关产业的战略位置,制订有利于发展的行业政策与法规,使相关产业形成某种具有限制意义的优势。除了专利保护和减免税优惠政策外,有个原产地域保护政策也很有意思。例如香槟酒。香槟是法国一个地方,只有这个地方生产的气泡酒才能叫香槟,别的地方就不行。政策优势,就是指这种具有限制性质的优势。云南白药,片仔癀,马应龙三个公司的产品被列为国家一类中药保护品种,在很长时间内别人都不能生产,甚至也不能叫这个名字。茅台镇上也有别的酒厂,但只有茅台酒厂的酒才能叫茅台这个名字。
最后,行业优势。行业分析是投资者作出投资抉择很重要的一步,有时甚至是投资成功的先决条件。因为有些行业牛股成群,投资的赢面高;有些行业却牛股稀少,投资获胜的概率低。这是因为基本面确实如此:有些行业就是有先天优势,有些行业注定要吃亏。有些行业就是稳定增长,没有周期性,比如食品饮料业;有些行业就是门槛高,大部分企业进不来,比如航天业;有些行业就是有提价能力,不会你杀价我也杀价,比如奢侈品行业;有些行业的产品就是不怕积压,甚至越积压越值钱,比如白酒葡萄酒;有些行业就是集中度高,它们的优势就是竞争对手少,比如银行业、保险业,更不要说交易所和银行卡国际组织。有专家喜欢用行业利润永远趋向平均化的经济学理论与我辩论,意思是当一个行业拥有暴利的时候必然会引起更多的人和企业进入,从而带来行业利润最后平均化。其实这只是一般而论,很多情况并不如此,因为行业壁垒是客观存在的。
当然,拥有其中一种独一无二的竞争优势,还不能构成买入这家公司的充分条件。有了其中一种独一无二的竞争优势就有了关注的前提。接下来要考虑的是这种优势能不能形成极强的赢利能力?比如自来水、电力、燃气、桥梁、高速公路、铁路等公用事业公司,虽然具有明显的垄断优势,可是价格受管制,没有自主定价权,能赚大钱的不多。在美国上市的中国公司中,广深铁路表现不佳,11年只涨了一倍多。铁路是高度垄断行业,业务好的不能再好,它不太赚钱就是因为事关民生票价不能乱提。张小泉是著名的剪刀品牌,当没有能干的管理层去经营去继续开发的时候,它根本就赢不了利。很多公司拥有资源优势,但当国际商品资源价格处于低潮时,它也是一筹莫展。我们投资股票,最重要的一点就是看它有没有良好的收益,所有的优势最终也还得落实在收益上。
那么,极为优秀的公司平均每年的利润增长率至少应该是多少呢?我前面说过要“股不惊人誓不休”。好股票应该具有数十倍的成长潜力和前景,平均每年的利润增长率不能低于20%,当然,能超过30%就更好。茅台,招商银行,万科就超过了30%。蒙牛在前几年甚至达到了惊人的90%。
有了某种独一无二的竞争优势,又有极强的赢利能力,是不是够条件了呢?还是不够,还要看它的优势和盈利能力能不能长期保持。也就是通常所说的持续竞争优势。这一点难度更高,更有技术含量。买股票就是买未来,长寿的企业价值高。一个公司在某一年赚钱不难,难的是一辈子赚钱。BB机刚出来的时候风光无限,但没几年就不行了。柯达、乐凯等生产胶卷的公司由于数码相机的出现变得非常被动。这就需要我们的眼光更为长远,思想更为深刻。这就需要这个公司“万千宠爱在一身”,也就是多种竞争优势都具有。
可能会有人说,您说的公司近乎完美,好像很难寻觅。其实在我的持股名单中符合的就不止一个,有兴趣的读者不妨用条件套一套。要做到“股不惊人誓不休”,当然不会是一件轻而易举的事。但你发了上等愿,至少能结中等缘吧。我主要是提供一个严格的思路,在挑选股票方面要精益求精,锦上添花,没有止境。这才是追求卓越,这才是无懈可击。
谈了这么多,一直没有谈到价格,价格不太重要吗?不是的,价格当然重要,“安全空间”这个词简直是价值投资者的口头禅。好公司加上好价格才是好股票。我曾经把巴菲特的投资策略概括为十二个字:好股,好价,长期持有,适当分散。就已经把好价包括在内了。但我们谈的主要问题是优秀公司的问题。同时我认为,相对价格来说,好股是第一位的。先好股,再好价;先定性,再定量。这也是一种投资哲学。
买股要随时
买股要随时,就是主张“随时买”。必须申明,这是针对大多数人尤其是有稳定后续资金的工薪阶层而言的。
经常有人面容严峻地向我提出:“随时买,价格不用管了吗?万一买到高价的怎么办?”其实,提问题的朋友没有深思熟虑过,价格问题是个复杂的问题,在实践中甚至是可遇不可求的问题,能力圈之外的问题。你如果有幸常能在入市时遇到“9·11”或者金融危机之后这样的大机会,当然是件美事,然而股市牛熊难测,风云莫辨,不确定性是主流,必须“以不变应万变”来对付。我的经验是,努力捕捉机会也会丧失机会,放弃这样努力也许就逮住了更多机会。多想想方法,而不要动太多的脑筋去想买入时机的问题,也不要成天去盘算市赢率的高低。不同的人参加工作有先后,入市时间有早晚,一旦决定投资,难免会买到高点低点,但有了严格选和不要卖,即使是不那么幸运,最终还是会大获全胜。
有的股友引用巴菲特先生坐拥几百亿现金不出手,并表示愿意一直等下去(等到合适价格)的例子,来反驳我的“随时买”,甚至指责我有背离巴菲特的嫌疑。然而我经过再三思考,坚信这并无大错,尤其是这么多年,眼见很多朋友一再等待贵州茅台、招商银行、港交所等股票的价格跌到他们的心理价位,结果或者是永远无法买到,或者是失去耐心买得更高的事例,更能感受到学习巴菲特不能教条的重要意义。不要忘了,在美国投资界百万富翁和千万富翁组成人员状况的调查中,尽管顶尖的往往是职业投资者,但人数比例最高的恰恰是在二战以后简单买入并且长期持有的普通投资者。
大史学家司马迁在《史记———货殖列传》中说过一段精辟的话:“无财作力,少有斗智,既饶争时。”就是“没钱靠体力,钱少靠智力,钱多靠掌握时机”。坐拥几百亿现金的巴菲特已经取得了巨大成功,属于世界顶尖“钱多”的那一类。我的这个“随时买”不包括拥有大资金的投资者和专业投资机构,只是针对大多数普通投资者而言。大多数人属于“钱少”的工薪阶层,每月有固定的工资奖金收入,“随时买”就是每个月都用工资奖金的剩余部分买,这种固定的买法最终能使买到的股票成本平均化,既不会太高,也不会太低,但由于严格挑选,买到的基本上是优秀公司的股票,长期来看,收益率还是极为可观。这是靠智力的买法,只要实施,可以说人人都可以成为亿万富翁。不信的话,看看我给出的这个方法:
深圳的年轻人如果月薪在3000元左右,那么一对情侣如有毅力又有恒心,每月拿出收入的20%,即每个月各拿出600元来进行投资,按月买进那些平均利润递增在20%以上的公司股票,无论如何都不再卖出。40年后,就轻松成为亿万富翁了。有兴趣的朋友不妨计算一下。
当然,选到平均每年不低于20%增长的优秀股票有一定难度。但工资奖金是会不断增加的,如果把增加部分中的20%再追加投资,不就好事易成了吗?
持股要耐心
投资的辩证法在于:该复杂的复杂,该简单的简单。“选股要严格”,属于复杂的范围,但“买股要随时”和“持股要耐心”则格外简单,就象风暴之后天空特别碧蓝一样。
在中国古代哲学中,有很多极具智慧的话语,如“不战而胜”,“无为而无不为”,“不战而屈人之兵”,等等。特别是“大道至简”和“以不变应万变”这两句话。把这些用来指导投资,就成了轻松赚钱的学问。也就是说,精选了好股以后,把好股简单的留起来就行了。我曾经说过:“象集邮一样收藏好公司的股票”,更爱说的是:“做好股收藏家”。
经常有人问我,你是不是一个特别有耐心的人?你的一些股票五年多没动一下,你怎么能守得住?其实我在生活中是个很急躁的人。只是投资股票和其他事情不一样,你不长期持有就很难稳赚不赔,很难成就一番事业。发财要有耐心,这是千真万确的。赌场和摸彩票能提供一夜暴富的机会,但概率才多少?收藏的发财概率比赌博和摸彩要高一点,但收藏到珍品真迹的不多,大部分是收了假古董赝品什么的;做期货、买权证的发财概率比收藏的又高一点,但长期成功的实在太少;短线炒作股票成功概率又要高一些,但总体而言,失败多于成功。可是你放眼世界,多少人通过长期持有股票和房地产成为亿万富翁。这些认识在前面说过,也是经过惨痛的失败才换来的东西。这个东西叫“定力”,我把它看得很重,仅次于“眼力”。我经常建议朋友,在你的投资字典里删掉那个“卖”字。
没有丰富投资实践的人大多会想,如果结合短线,不是赚得更多吗?这是不知道鱼和熊掌不可兼得的道理。有一定经验的股民往往会问:“难道涨的太高也不卖吗?” 我的回答是不要卖。因为有些东西说说容易,就像低买高卖,实际操作时很难判断什么是高,什么是低。就象无法判断明天是涨还是跌一样。很多短线利润是要放弃的,因为放弃你才能得到更多。有舍才能有得,这就是辩证法。我和很多股友有充分的实践证明,判断高低涨跌这些东西太复杂了,这是自己能力圈之外的东西,也是害人的东西,它让我们只见树木不见森林,只拣芝麻不抱西瓜。如贵州茅台、招商银行、万科哪天卖合适?哪天卖都不合适。从长期趋势看,任何卖出好公司的行为都是愚蠢的,逆经济发展潮流的行为。其结果都不理想。最多在一个局部战役中获胜,而在全局上落败。股市上流传着很多似是而非的东西,有些东西的影响还非常之大,比如“高抛低吸”就是一例。我们看到的是绝大多数人恰恰相反,低抛高吸,大盘一向上就追涨,大盘一下跌就斩仓;上证指数跌到1000点时,每日成交量只有几十个亿,可见大多数人没有“低吸”,上证指数涨到5000点时,每日成交量高达两三千亿,可见大多数人没有“高抛”。再说,判断高低也是个技术层面的东西,不是智慧层面的东西。小赚靠技巧,大赚靠智慧。为什么股市中最后总是赚钱的人少呢?这和过度操作有关。许多人基本上每天都盯住股市行情不放,不停地在捕捉所谓的时机,不停地想低吸高抛。但真有几个人成功?还是举大家都知道的刘元生先生长期持有万科公司股票的例子,就是简单持有,买了就不卖。其实这18年中万科股票有无数次下跌,要是他老想着高抛低吸,能从几百万变成几个亿吗?技巧层面的东西,不但把人弄得非常辛苦,而且并没有给很多人带来可观的收益,至少在电脑房里炒得昏天黑地的股民情况大致是这样。人们经常会忽视:最好的往往是最简单的。
谈到这里,或会有股民质疑:“难道公司的基本面严重变坏,你也坚持不卖吗?”我的回答一如既往。即便不能排除这种情况,还是可以坚持不卖。这似乎不太符合巴菲特的思想。但我仍然认为这是对的,而且这是经过认真思考和实践过的。我很喜欢彼得林奇的看法,假如你有十个股票的长期投资组合,中间有一个股票出了问题,由于选的都是极为优秀的公司,那么我们持有的其他九个股票还是在给你赚大钱,几十年后,也就是一个亿和九千万的差别而已。何况那只股票也不会跌到零。就算你在某个优秀公司基本面出问题之后成功卖出,只是在策略上对了,战略上你却错了。你可能失去获得将来长期收益的大好机会,你也可能在心理上由于变得过于关心,由藏家变成了炒家,因小失大。在这个问题上我们要有一点哲学思维。进一步说,一个优秀公司的基本面出了问题,你可能事后才知道,而这时股价已经下跌了不少,这时卖出很难说是正确的行动。也许,情况又是恰恰相反,你要继续买进了。有几个例子很说明问题。一个是沙特王子阿瓦立德的“花旗之战”。1990年前后,花旗银行因房贷和拉美业务的拖累而陷入困境,当时许多人疯狂出逃,股价掉得一塌糊涂。这个时候阿瓦立德反而不断注资增持。4年之后,花旗银行终于渡过难关,有着坚定信念的阿瓦立德成为最大的单一股东,十几年后又成了最大赢家,一举收获近百亿美元!占他全部身家的一半。阿瓦立德说他总是在寻找同样的东西,那就是国际上知名的公司,它们拥有健康稳固的根基,但却陷入了暂时的困难之中。另一个例子是2004年底伊利股份公司的董事长郑俊怀被抓,基本面出现了问题,股价从14元掉到9元。我身边的一些朋友有些惊慌,我则劝他们在9元时再买进并一直持有,现在听我建议的朋友都取得了很好的收益。深发展也是如此,它在1997年后基本面不佳,但从1990年就开始一直持有的人还是大大的赢家。
可能还有人会问:“如果我需要用钱也不卖吗?”这个严格地说是个投资以外的问题。需要用钱有很多种情况,除非牵涉到极其巨大的家庭或个人的剧变,需要大笔的钱来救急和转危为安,比如家人患病急需用钱,你还坚持不卖,那就失去了投资的意义。投资就是要让自己和家人幸福安乐。一般情况下,要学会坚持不卖,否则我们就很容易找到各种借口把优秀的好股票卖出去。等到赚了大钱之后,就能体会到那种意义了。到那时对资产结构进行一点调整,都是很简单很自然的事。对于投资者来说,首要考虑的是怎么赚,而不是怎么花。而一直持有就是最好的赚钱方法。
还会有人问到:“当我们发现了更好的公司股票,可不可以卖呢?”我的回答是,这种情况不叫卖,叫换股,因为总的投资数量和投资金额没有变,还是在收藏好公司的股票。只要不是太频繁,这是可以考虑的。对于非职业投资者,我还是倾向于不卖先前的股票,而是用后来的收入再买进。因为深思熟虑的人不多,很容易把换股变成炒来炒去。
在这里,我想再举一个深圳人有亲身感受的例子来说明为什么要长期持有。大多数深圳人既买房又炒股,这几年房市、股市都是大牛市,按说两个市场的赢输概率应该差不多。然而统计数据表明,买房赚钱的高达98%以上,而在今年五月的统计中,在股市牛气冲天时居然有30%的人亏损。什么原因?买房的人很少频繁地“炒短线”,而炒股的人却不少有“手痒症”或“多动症”。
在现实生活中,确实是关心卖的人多,而想当收藏家的不多。其实,卖掉好公司的股票才是最大的风险。“炒”是投机者心中的魔鬼。澳门赌王何鸿燊在回答记者有关什么是赌博赢钱的诀窍时,说的是“不赌”。如果有人问我炒股赚钱的诀窍,我的回答是“不炒”。我们买的是极为优秀的企业,它们是最有活力的公司,有最为宝贵的资源、最有前途的产品,处在最好的行业中,也有最能干的经营管理者,你可以心安理得地坐享其成,一劳永逸。股市其实是一个“乌龟”打败“兔子”、“懒人”战胜“忙人”、“笨人”战胜“聪明人”的地方。
数模论文的写作在比赛中可能是你论文质量好坏,得奖与否的最重要的因素。据初步的调查,很多同学在准备比赛时,把自己的主要精力放在阅读往年优秀论文,精通某种软件和算法上面。不可否认,这会使你的建模水平得到提高,但在比赛时,你的想法再好,如果文字表达不清楚,很有可能使你的论文前功尽弃,因此学会如何写数模论文就很有必要了。关于怎么样写论文已经有了很多的介绍文章,这些都足以说明论文写作的重要性。
一、充分重视论文摘要的写作
摘要在整个数模论文中占有及其重要的地位,它是评委对你所写论文的第一印象。在全国大学生数学建模竞赛中,组委会对论文摘要提出了专门的要求,再三明文提醒参赛者要注重摘要的写作。在论文的评阅中,摘要是你的论文是否取得好名次的决定性因素,评委们通过你的摘要就决定是否继续阅读你的论文。换句话说,就算你的论文其他方面写得再好,摘要不行,你的论文也不会得到重视或者根本上就没有评委来阅读你的论文。
在摘要中一定要突出6个方面:问题,方法,模型,算法,结论,特色。简而言之,摘要应该体现你用什么方法,解决了什么问题,得出了什么结论。避免有主观评论,一定要突出重点,让人一看就知道这篇论文的目的是什么,做了什么工作,用的什么方法,得到了什么结果,有什么创新和特色。只有这样的摘要才是成功的。
具体写摘要的时间一般安排在论文基本完成以后,由一个队员具体负责,在写出初稿后由其他队员交替阅读提出修改,直到大家满意为止。
好的摘要都包含了两个共同的特点:简单与清晰。篇幅在一页之内。
范例一:公交车调度方案的优化模型
摘 要
本文建立了公交车调度方案的优化模型,使公交公司在满足一定的社会效益和获得最大经济效益的前提下,给出了理想发车时刻表和最少车辆数。并提供了关于采集运营数据的较好建议。
在模型Ⅰ中,对问题1建立了求最大客容量、车次数、发车时间间隔等模型,运用决策方法给出了各时段最大客容量数,再与车辆最大载客量比较,得出载完该时组乘客的最少车次数462次,从便于操作和发车密度考虑,给出了整分发车时刻表和需要的最少车辆数61辆。模型Ⅱ建立模糊分析模型,结合层次分析求得模型Ⅰ带给公司和乘客双方日满意度为(0.941,0.811)根据双方满意度范围和程度,找出同时达到双方最优日满意度(0.8807,0.8807),且此时结果为474次50辆;从日共需车辆最少考虑,结果为484次45辆。
对问题2,交待了综合效益目标模型及线性规划法求解。
对问题3,采集方法是遵照前门进中门出的规律,运用两个自动记录机对上下车乘客数记录和自动报站机(加报时间信息)作录音结合,给出准确的各项数据,返站后结合日期储存到公司总调度室。
关键词:公交调度 模糊优化法 层次分析 满意度
范例二:彩票发行方案的最优决策
摘 要
目前,彩票在我国得到了迅速健康的发展,并且为我国的福利公益事业的发展做出了很大 贡献。本文针对目前流行的各种不同彩票发行方案,综合分析了各种奖项出现的可能性、奖项和奖金额的设置以及对彩民的吸引力等因素对各方案的影响,建立了三个模型。
模型I:利用超几何分布原理,建立了头奖期望模型。依照此模型,得出传统型彩票中方案 、乐透型彩票中方案 (即 )设计较为合理;总体而言,乐透型彩票的方案 头奖期望最大,方案设计最为合理。
模型II:综合考虑影响方案合理性的各种因素,建立了高项奖中奖概率、总中奖概率、奖项的设置以及奖金分配的多目标决策模型,求解得到:①方案19的加权目标函数值最大,在所有方案中它是最合理的一个方案;②“传统型”彩票方案1~4中,方案4较为合理;③“传统型”彩票方案(1~4)的加权目标函数值总体上小于“乐透型”方案(5~29),从普遍意义上讲,“乐透型”方案相对优于“传统型”; ④对于 (从 中选 )型的方案, 相同时, 为35、30、32、33、34时它们的合理性依次递减。
模型III:考虑到彩票市场供给与需求的关系,并结合彩票管理部门与彩民双方的满意度,建立了多目标最优决策模型。通过彩票市场供给、需求随销售的走势,找到了均衡点,同时利用计算机编程,搜索出了更优的彩票发行方案。
本文还从 的变化对模型的灵敏性作了准确分析,以及从单式投注向复式投注、适当提高总奖金额等方面为设置彩票发行方案作了进一步讨论。
最后据此模型,向彩票管理部门提出了更为积极、实用的彩票发行建议;并从充分认识彩票、入市动机及心态、策略和技巧等三个方面对彩民摸彩、投彩提出了科学的参考意见。
关键词: 机率 期望 多目标决策 超几何分布 满意度
范例三:奥运会临时MS超市网点设计的数学模型
摘 要
本文对调查数据进行了统计分析,在此基础上求出各商区人流量百分比和分布规律,然后进行MS网点的设计,建立了三个模型,并进行了仿真检验。
对问题一,分析得到不同年龄段观众在出行、就餐、消费等方面存在较大差别,因此依照年龄段按照性别的不同,分别对出行、就餐、消费等三个方面总结出观众概率分布的8条规律。
对问题二,利用BP神经网络原理,按照年龄段-性别-商区-进出口将网络分为三级,从就餐习惯和出入场馆两个方面进行链条分析,建立了各场馆最短路径下的人流量模型,编程求解得到20个商区的人流量分布(%):A1到A10商区分别为11.887、7.621、8.540、10.378、18.963、7.621、8.540、8.036、10.378;B1到B6商区分别为11.686、 13.932、 18.760、 11.686、 13.932、 30.004; C1到C4商区分别为18.75、 20.9843、 18.75、 41.5157。在人流量分布求出后,总结出对称性定理,即人流量以场馆进出口连线为轴斜对称,并给出了详细证明。
在问题三中,对观众购买欲望的相关因素进行了细致分析,建立了购买欲望与年龄、消费额的数学表达式,得到欲望矩阵 ,并对购买能力进行了模糊计算。然后,由两个基本限制条件:满足奥运会期间的购物需求和分布基本均衡,建立了数学表达式,建立了以赢利为目标函数的非线性多目标决策模型:
用Lingo编程求解,得到了一种可参考的MS网点设计方案:A1到A10商区建立大MS个数分别为3、1、0、0、1、3、1、0、0、1,小MS个数分别为0,1,2,2、1、1、1、2、2、1;B1到B6商区建立大MS个数分别为1、2、3、1、2、3,小MS个数分别为2、1、1、2、1、1;C1到C4商区建立大MS个数分别为2、4、2、1,小MS个数分别为2、0、2、1。
考虑到奥运赛程的安排,实际人流量、消费额、赢利等将随时间而发生变化,为进一步优化网点设计方案,根据系统动力学原理,基于Venple5.3技术用计算机对人流量与收益模型进行了系统仿真,并通过调式,对模型进行了检验和评估,从而验证了模型的合理性、科学性和实用性。
最后,对北京2008年奥运会从经济收入、旅游和硬件建设等方面提出了几点建议。
关键词:概率 人流量 对称性 欲望矩阵 多目标决策 系统动力学 系统仿真
范例四:长江水质的综合评价与预测控制
摘 要
本文根据调查数据的统计分析,对近两年的长江水质做出了全方位的综合评价,找到了高锰酸盐和氨氮污染源所在主要地区,并对未来10年水质污染进行了预测,提出了控制方案,给出了一系列较为科学的防污建议。
首先对近两年来长江流域17个主要监测断面的水质抽样,按照时间-空间的先后交互顺序进行统计,建立概率统计评判模型,结果发现:2003-2005年,长江85%的断面满足Ⅰ~Ⅲ类水质要求,12%的断面属Ⅳ、Ⅴ类水质,劣Ⅴ类水质占3%。两年来,长江水质局部变化较大,整体较为平稳,但优质水正在下降,超标水质呈上升趋势。为了寻找污染源,我们以长江干流7个断面作为基本观察点,根据水流量、水流速和降解系数,确立了污染源反馈指标:
经计算发现:江苏南京、湖南岳阳高锰酸盐污染最为严重,湖南岳阳同时又是氨氮污染源的主要地区,较为次之的是安徽安庆和江苏南京,但同比之下相差较大。
其次,对近10年的主要统计数据,按照GM(1,1)灰色原理,建立灰色预测模型,归一化处理后,通过DPS数学统计软件的计算,得到了水质类别的预测值和趋势函数,分析认为:长江 I、II、Ⅲ类水质总量呈现下降趋势,其中 I、Ⅲ类水质急剧下降,劣Ⅴ类水质上升幅度较大,到2014年超标水质总量百分比将达到45.88%,长江水质全面恶化,水生态环境严重失去平衡。为了有效控制污染恶化趋势,防止超标水质的上升,运用二次多项式逐步回归分析,得到废水排放总量关于各类水质百分比的函数,经编程运算,我们提出了长江污水处理方案。未来10年需要处理的污水量依次是:0,0,2.66,5.14,5.76,8.21,10.86,13.71,16.77,20.07(单位:10亿吨)。
最后,基于对长江水质状况的综合评价和未来污染趋势的预测,根据“保护长江万里行”考察团的实践调查,我们深刻意识到:长江流域水生态环境破坏日益严重,前景不容乐观。为防止长江“癌变”,我们提出了几种水环保理念:做到教育先行,努力唤起民众环境保护意识;坚持依法治水,为保护长江立法;实行科学规划,走可持续发展之路;提倡人文环保,构建和谐的生态系统和人居环境。
关键词 监测断面;概率统计评判;污染源反馈;灰色预测;逐步回归;人文环保;
二、论文主体要鲜明、结构要完整
按照数模论文的特点,其论文主体部分就包括以下内容:
(1)问题提出——明确问题
这一部分没有过多的说明,一般是直接 copy 赛题的原文就行了,但我认为在时间充裕情况下可以适当归纳总结;因此可以写点这个问题的一些背景知识。
明确问题即建模的准备阶段,要建立现实问题的数学模型,第一步是要对解决的问题有一个明确清晰的提法,通常我们遇到的某个实际问题,在开始阶段是比较模糊的,又带实际背景,因此在建模前必须对问题进行全面深入细致的了解和调查,查阅有关的文献,同时要着手收集有关的数据,收集数据时事先应考好数据的整理形式,例如利用表格或图形等。在这期间还应仔细分析已有的数据和条件,使问题进一步明确化。即从数据中得到什么信息?数据来源是否可靠?所给的条件有什么意义?那些条件是本质?那些条件是变动的等。对数据和条件的分析会进一步增强我们对问题的了解,使我们要更好地抓住问题的本质及特征,为下一步建模打下好良好的基础。
(2)模型假设——合理的假设
作为题目的原型都是复杂的,具体的,是质和量、现象和本质、偶然和必然的统一体。这样的原型如果不抽象和简化,人们对其认识是困难的,也是很难把握它的本质属性,而建模假设就是根据建模的目的对模型进行抽象,简化。把那些反映问题本质属性的形态,量及其关系抽象出来,简化掉那些非本质的因素,使之摆脱原型的具体复杂形态,形成对建模有用的信息资源和前提条件。
但如何对问题提出合理的假设是一个比较困难的问题,这是因为作得过于简单,则使模型远离现实,无法用来解决现实问题,假设做得过于详细,试图把各个方面的因素都想进去,模型就会十分复杂,甚至难以建立,也对我们计算带来复杂化,一般模型假设遵从以下原则:
①目的性原则,从原型中抽象出与建模目的有关的因素,简化掉无关的因素或关系不大的因素。
②简明性原则,所给的假设条件要简单,精确,有利于构造模型。
③真实性原则,假设条款要符合情理,简化带来的误差应满足实际问题所允许的范围内。
④全面性原则,在对事物原型本身作出的假设的同时,还要给出原型所处的环境条件。
最简单的作法:假设的条件一般可以从题目中挖掘。
(1)根据题目中条件作出假设
(2)根据题目中要求作出假设
需要值得注意的是:
①对我们所解决问题本身没有影响(或影响比较小)但可以使模型得到简化的因素应该在假设中体现。
②不能为了简化问题而大量假设(使求解问题本身与原题意不符),因此应注意假设的量与度。
(3).符号说明——不可缺少
在你的论文中不可避免的会出现大量的数学符号,因此在这部分里应把这些符号做一个简要的说明,可以从符号,类型(变量,常量),单位,含义几个方面来说明(如下表):
符号
类型
单位
含义
需要注意的是单位量纲要统一,含义解释要准确,清楚。
(4).问题分析——思路清晰、图文并茂
从题目到模型是一种从具体到抽象的思维过程,本部分即是这一过程的体现。这部分应是论文主体的一个亮点,建议在文字说明的同时用图形或图表列出思维过程,这会使你的思维显得很清晰,让人觉得一目了然。另外,这部分应对题目做整体分析,充分利用题目中的信息和条件,确定用什么方法来建立什么模型。经验告诉我们可以从题目中得到问题的一些初步的判定:比如说可以得到在极限情况下的最大产量,花费的最少时间等,使我们最后得到的方案不能超过(或低于)我们这里分析的量。在这部分应能体现我们解决原问题的雏形。总之,问题分析在整个论文中的作用在于承上启下,也很能反应出参赛者的综合水平。
(5).模型建立——数学语言
数学模型就是:数学公式、图表、方案等。
模型的建立是将原问题抽象成用数学语言的表达式,其建立方式会由于对问题的理解和着眼点不同而不同。近年来的数学建模竞赛出题主要有两个方向:一是概率统计问题;一是运筹优化问题。因此掌握好以上两方面的知识对于建立模型来说是十分重要的。
另外,我还觉得应注意对每个模型式子的解释一定要清楚到位,其中的数学符号一定要与前面的说明保持一致。
其基本方法为:
在建模的假设的基础上,进一步分析建模假设的条款,首先区分那些是常量,哪些是变量,哪些已知、未知,然后查出各种量所处的位置、作用和它们之间的关系 ,选择恰当的数学工具和构造模型的方法对其进行表征,构造出刻划实际问题的数学模型。
这里要注意两点:其一,构造一具体问题的模型是要尽可能地简单的模型,然后把它与实际问题进行比较,再把其次要的因素加进去,逐渐逼近现实来修改模型,使之趋于完善,这样应形成了由模型一,到模型二,再模型三,……,这样逐步逼迫现实的数学模型。其二,要善于借鉴已有的数学模型,许多的实际问题,尽管现象和背景都不同却有相同的模型。例如,力学中描述的力,质量和加速度之间的关系的的牛顿第二定律F= M a ,经济学中描述单价、销售金额和销售量之间的关系的公式C= p q等,数学模型都是y= k x ,要学会观察和分析,看到问题的本质,抓住本质特征,对我们已有的模型进行修正。
(6).模型求解——软件帮忙
不同的模型要用到不同数学工具求解,如可以采用解方程,画图形,证明定理,逻辑运算,数值运算等传统的方法和近代的数学方法,建模发展到现代,多数场合的模型一般多用软件编程求解。三大软件(Matlab,Maple,Mathematic)至少应熟悉一种,另外应学会一些专用软件。比如说解概率统计问题的DPS,SAS,SPSS;解运筹优化问题的 Lingo,Lindo 等。熟练利用这些数学软件会为我们求解带来快捷和方便。其次尽量用不同方法求解,这既能反应出你的思维比较开阔,也能间接地验证你所求解结果的正确性。另外应给出主要算法的一些简要步骤,处理或简化问题的方式,并适当应用表格或图像说明。
最后需要提醒大家的是在必要时可以给出数学上的证明,这会使你的论文增色不少。
(7).模型(结果分析)——检验与修正
建立数学模型的目的在于解决实际问题。因此必须把模型解得的结果返回到实际问题,如果模型的结果与实际问题状况相符合,表明模型经检验是符合实际问题的,相反则不行,它就不能直接应用于实际问题。这时数学模型建立如果没有问题,就需要考虑建模时关于所假设的是否合理,检验是否忽略了不应该忽略的因素或还保留了不应该保留的因素。对假设给出必要的修正,重复前面的建模过程,直到使模型能够反映所给的实际问题。
通常的作法是:
由于在模型假设中,忽略了一些对问题影响的次要因素,这或多或少的使问题得到了简化,但必然会产生一些误差;另外解决问题的方法是很多的,在论文中可能只用了其中的一两种方法,思维可能显得比较局限;而模型本身也会有它的优势和缺陷。因此,我们在这部分应该做的工作主要有下面三点:
A.是否能用其他方式或方法解决。
B.模型的优缺点分析。
C.模型的误差分析或灵敏度分析。
做好上面的工作,既是对原问题的补充说明,更表现一种思维的严谨和逻辑的严密,使你的论文一气呵成,显得很完备。
(8).模型的评价与推广
什么样的数学模型是好的呢?一般来说一个好的模型应该具备以下五点:
(1)对所给的问题有较全面的考虑。在一个实验问题中往往有许多的因素同时对所研究的对象发生作用,进行数学描述时,应该全面地对这些因素加以考虑。这项工作可分为三步进行:
①列举各种因素;
②选取主要因素计入模型;
③考虑其他因素的影响,对模型进行修正。
(2)在已有的模型上进行创造性的改进。数学模型是现实对象的抽象化,理想化的产物。它不为对象所属领域所独有,可以转移到另外的领域。在生态,经济,社会等领域内建模就常常借用物理领域中的模型,能否对已有的模型作为创造性的改造,是考虑一个数学模型的优劣的重要标志
(3)善于抓住问题的本质,简化变量之间的关系。数学模型应当是实际问题的本质刻画,模型过于复杂,则无法求解或求解困难,反之则不能客观的反映客观实际。
(4)注重结果分析,考虑其在实际中的合理性。数学模型是一个从实际到数学,再从数学到实际问题的过程。由于现在的模型仅仅依赖题中的数据,如果从模型中得到的结果与实际吻合,模型是成功的,反之则失败,要求我们进一步修改。
(5)具有较好的稳定性。数学模型是依赖已有的数据和其他的信息建立起来的,他的价值在于能够从已知的信息预测到未知的东西。因此,一个好的数学模型的结果对原始的数据有较好的依赖性,即原始的数据和参数有微小的变化不会引起结果很大的变动,这是模型适应性和有效性的保证。
由于论文本身的局限性,在这里可以对一些问题做更深入的探讨,这是文章又一亮点,实力比较强的队伍可以在这一块充分发挥。这部分对于整个论文的作用在于画龙点睛。另外,我们对问题的探讨与延拓方式是多种多样的:可以把假设的条件适当放宽了来考虑问题;可以对你的算法做出改进等等,但我认为在这里做做定性的分析就够了,最后主要对问题的横向和纵向两方面进行发散。因为评委的评阅工作至此已经基本结束了。
(9).参考文献
这里注意一下格式问题,参赛要求有明确规定:
A.书籍的表述方式为:[编号] 作者,书名,出版地:出版社,出版年。
B.参考文献中期刊杂志论文的表述方式为:[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。
C.参考文献中网上资源的表述方式为:[编号] 作者,资源标题,网址,访问时间。
至于附录,附上相关程序及运行结果,数学上的证明即可,
最后注意一下论文的整体感,特别是文字表述是否准确严密。
三、用数学通用软件编写程序
在编写计算机程序时,基本原则是使用通用的、自己使用最熟悉的软件进行编写,这样可以尽快出结果,即使出错也能很快查出并进行改正。数学通用软件是建立在一定的理论基础和算法基础上的,其计算结果具有一定的可信度,因此,尽量使用matlab、mathematicas、lindo、lingo等数学软件编写的程序,能增加模型结果的可信度。另外,也可利用一些二次开发程序。如TSP,EXCEL,DPS等。
四、要善于合理使用图表
在论文写作中一定要注意能用图表的地方尽量用图表来表示,用图表比用文字阐述要来得清楚直接,一张图表往往能代替一大段干巴巴文字,并且图文并茂也可以为论文增加更多色彩。要知道评委们大都是老教授老专家,为了教授专家们的眼睛,减轻他们受文字的折磨,多用图表绝对是不错的选择。须注意的是图表的引用要规范,在交叉引用的时候一定要小心,不要错位,为此应给每一张图、每一个表都编上号,而且整篇文章的图、表的号码应该连续。图和表在论文中应尽量交替出现,同时排版时也应该让它们处于页面的中部,尽量避免出现在最顶端,这样可以增加文章的视觉美。
五、充分发挥团队的作用
在比赛中,队员之间的配合很重要,每个人对自己这个组的特长,要有一个比较清醒而统一的认识,擅长做哪种类型的题,不擅长做哪种。这样,在选题的时候才不会耽误太多时间。
分工的原则:
•建模:推导数学模型,数学能力强
•编程:计算机能力强
•论文写作:写作能力强
其次,参赛队中应有核心队员,他的作用就相当于计算机中的CPU,核心队员发挥好了,就能带动一个队正常有效开展工作。无论是选题、讨论、写作、协调甚至情绪等,核心队员都应该充分发挥好,起领导作用,才能使整个队伍充满信心地、高效地完成比赛,否则可能导致队伍的情绪低落,没有信心,甚至前功尽弃。
六、合理控制写作进度
做任何事情,合理的时间安排非常重要,建模也是一样,事先要做好一个规划,论文一般分十个大的板块:摘要,问题提出,模型假设,问题分析,模型假设,模型建立,模型求解,结果分析,模型的评价与推广,参考文献,附录。要求我们的队员每天要做完哪几个板块的工作一般先要确定好,这样做才会使工作临阵不乱,保证在规定时间内完成论文写作,以避免由于时间已经用完而任务没有完成的被动局面,严重的最后无法完成论文。
通常的竞赛时间安排:
第一天:上午:确定题目,并查阅文献
下午:开始分析,建立初步模型
晚上:编程,得到初步计算结果 12:00 PM 休息
•第二天:上午:得到第一个模型的合理结果
下午:开始写论文,并考虑对第一个模型的改进
晚上:得到第二个模型的初步结果 12:00 PM 休息
•第三天:上午:得到第二个模型的合理结果
下午:考虑对前二个模型的进一步优化,得到第三个数学模型,
或对前二个模型的正确性进行验证
晚上:得到最后结果,完成整篇论文
参考的论文: