您当前的位置:首页 > 发表论文>论文发表

水中铁检测论文

2023-03-02 02:59 来源:学术参考网 作者:未知

水中铁检测论文

  自己翻译吧
  实验七 邻二氮菲分光光度法测定水中微量铁
  [日期:2008-05-12] [字体:大 中 小]
  一、实验目的
  1.学习测定微量铁的通用方法.
  2.学习绘制吸收曲线,选择测量波长.
  3.熟悉用标准曲线法定量的实验技术.
  4.学会正确使用分光光度计.
  二、实验原理
  邻二氮菲是测定微量铁的高灵敏性、高选择性试剂.邻二氮菲光度法是化工产品中微量铁测定的通用方法.在酸度为 pH=2 9 的溶液中,邻二氮菲和 Fe 2+ 生成稳定的桔红色配合物,λ max =508nm ,ε max =1.1 × 10 4 L /(mol · cm) ,在还原剂存在下,颜色可保持几个月不变.邻二氮菲与 Fe 3+ 也生成 3:1 配合物,呈淡蓝色.因此在显色之前,需要用盐酸羟胺 ( 或抗坏血酸 ) 将全部的 Fe 3+ 还原为 Fe 2+ .
  2Fe 3+ + 2NH 2 OH = 2Fe 2+ + N 2 ↑ + 2H 2 O + 2H +
  三、仪器和试剂
  仪器:分光光度计 容量瓶( 25mL ,9 个) 吸量管( 5mL ,1 支,用于铁标准溶液的移取) 移液管( 10mL ,1 支,用于未知试液的移取)
  试剂:铁标准溶液 (40.0 μ g/mL ,用洁净干燥的 100mL 烧杯,准确称取 3.454g 硫酸铁铵 [NH 4 Fe(SO 4 ) 2 · 12H 2 O] ,加 30mL HCl 及 30mL 水,溶解后定量转移至 1L 容量瓶中,加 300mL HCl ,加水至刻线,摇匀,作为贮备液.用前移取 100.0mL 贮备液至 1L 容量瓶中,用水稀释至刻线 ) 盐酸羟胺( 100g /LNH 2 OH · HCl 溶液,两周内有效)邻二氮菲溶液 ( 2.0g /L ,温水溶解,避光保存,两周内有效,出现红色时已不能使用 ) 乙酸钠溶液( 1.0mol/L)
  四、实验步骤
  1.测绘吸收曲线
  移取 2.00 mL 铁标准溶液,注入容量瓶,加 0.5mL 盐酸羟胺溶液,摇匀,放置 2min ,加 1.0mL 邻二氮菲溶液和 2.0mL 乙酸钠溶液,加水至刻线,摇匀.以水为参比,在不同波长 ( 从 450 550nm ,每隔 10nm 测量一次吸光度,其中在 500 520nm 每间隔 5nm 测量一次 ) 下测量相应的吸光度,将测量结果记入下表 :
  λ /nm
  450
  460
  470
  480
  490
  500
  505
  510
  515
  520
  530
  540
  550
  A
  在坐标纸上以波长为横坐标,吸光度为纵坐标绘出吸收曲线.根据吸收曲线确定进行测定的适宜波长.
  此步实验也可不单独配制一份试液,而选用下步实验中的第四份溶液进行测定.
  2.标准曲线的制作
  洗净 5 只容量瓶,依次加入 0.50 、 1.00 、 1.50 、 2.00 、 2.50mL 铁标准溶液,各加入 0.5mL 盐酸羟胺溶液,混匀.放置 2min 后,各加入 1.0mL 邻二氮菲溶液和 2.0mL 乙酸钠溶液,加水至刻线,混匀.以水为参比,在选定的波长下测定各溶液的吸光度,将测得的数据记入下表:
  序号
  1
  2
  3
  4
  5
  V(Fe 3+ )/mL
  0.50
  1.00
  1.50
  2.00
  2.50
  ρ (Fe 3+ )/ (μ g/mL )
  A
  在坐标纸上以铁的质量浓度ρ (Fe 3+ ) 为横坐标,吸光度为纵坐标,绘制标准曲线.
  3.试样中铁含量的测定
  移取 10.00mL 试样溶液,按制作标准曲线相同的步骤显色、定容后,在相同的波长下测定吸光度,由标准曲线查出铁的质量浓度,然后再换算成原试样中微量铁的质量浓度.
  五、思考题
  1 .实验中盐酸羟胺和乙酸钠的作用是什么?
  2 .根据自己的实验结果,计算最大吸收波长下的摩尔吸光系数.
  3 .朗伯比耳定律的物理意义是什么?什么叫吸收曲线,什么叫标准曲线?

水中微量铁的测定

水中微量铁的测定如下:

1.测定波长的确定

显色溶液的配制在序号为1~6的6只25mL容量瓶中,用吸量管分别准确加入10.0 ugmL-1铁标准溶液0.0、1.00、2.00、3.00、4.00、5.00mL,再分别加入10%盐酸羟胺溶液1mL。摇匀后放置2min,再各加入1molL-1NaAc溶液2.5mL及0.15%邻二氮菲溶液1mL,每加一种试剂后,均摇匀(不要加盖)容量瓶中的溶液,再加另一种试剂,最后用以水稀释至刻度,加盖摇匀。

吸收曲线的测量在分光光度计上,用1em吸收池,以不含铁的试剂空白溶液(1)为参比,在450-550nm之间,每隔10nm测定4铁标准溶液的吸光度A(读数准确至+0.001)。

以波长为横坐标,吸光度为纵坐标,绘制吸收曲线,从而选择测定铁的最大吸收波长Amax。[注意]每次改变波长之后,都要校准仪器并用参比溶液调节仪器的吸光度值。

2.标准曲线的绘制

以试剂空白溶液为参比,用1cm吸收池,在选定波长下测定2~6号各显色标准溶液的吸光度。在坐标纸上,以铁的浓 度为横坐标,相应的吸光度为纵坐标,绘制标准曲线。

3. 试样铁溶液的测定

吸取未知液2.5mL,按上述标准曲线相同条件和步骤测定其吸光度。根据未知液吸光度Ax,在标准曲线上查出未知液相对应铁的量,然后计算试样中微量铁的含量,以每升未知液中含铁多少克表示(gL-1)。

水中铁,怎么检测含量??化学法

1:分光光度计,这个误差很小。
2:加碱形成沉淀,要么直接称重换算,要么加热分解为氧化物再称重换算,但有较大误差。
3:有铁离子或亚铁离子的液体体系会有一定的旋光性,因此可以仿照旋光量糖术,来测定含铁量。
4:因为铁离子有较强氧化性,因此可以用氧化还原滴法发完成测定。
5:用离子交换膜,将铁离子或亚铁离子换为其他容易测定的离子再行测定。

工业废水中铅含量的测定论文

水中铅测定方法详解(1)

在中性和碱性溶液中,双硫腙与铅反应生成单取代双硫腙络合物,溶于有机溶剂而呈洋红色。反应灵敏,最大吸收波长为520nm,摩尔吸光系数(ε)6.86×104L/(mol·cm)。
有机溶剂通常使用三氯甲烷或四氯化碳,四氯化碳可比三氯甲烷在较低pH值萃取铅,不形成二铅酸盐,且四氯化碳不溶于水,挥发性较低,比重较大。另一方面,铅一双硫腙络合物在三氯甲烷中溶解度较大,可萃取较大量的铅。由于双硫腙在三氯甲烷中溶解度比四氯化碳为大,因此,当需要从三氯甲烷中完全除去双硫腙时,必须保持较高的pH值。
当使用三氯甲烷作溶剂时,铅可在pH8~11.5被定量萃取。,通常采用百里酚蓝(pH8.O~9.6)作指示剂,调节水相由绿变蓝(pH~9.5),然后进行萃取。亦有建议在高pH值进行萃取,如SnydercsJ提出,在含柠檬酸铵和氰化钾的pH9.5~10.0水溶液中,用双硫腙一三氯甲烷溶液萃取铅,继用稀硝酸反萃取,最后用氨性氰化物溶液调节至pH11.5,以双硫腙三氯甲烷溶液萃取,在pHll.5的高pH值下,使过量双硫腙成为铵盐而进入水层。
影响铅的萃取率,除pH外,还与所用溶剂、存在阴离子的种类和数量、两相的体积比、双硫腙在有机相中的浓度等参数有关。阴离子由于与铅形成络合物而影响萃取平衡,如在同样的pH,当含一定浓度的乙酸盐、酒石酸盐和柠檬酸盐时,可使萃取率降低。
双硫腙法测定铅,可采用单色法,亦可采用混色法,前者以氨性氰化物溶液洗去有机层中过量的双硫腙后,测量络合物的吸光度,后者则有机层中残留过量的双硫腙不经除去直接测量吸光度,操作简便。然而对铅含量极微的水样,由于受基体影响,当采用混色法测定,以无铅水制备的空白试验为参比时,往往会出现负值,而单色法则无此现象。

干扰及其消除

在最适pH萃取铅时,Ag+、Hg2+、Pd2+、Au3+、Cu2+、Zn2+、cd2+、Co2+和Ni2+亦可与双硫腙络合而被萃取,可加氰化物掩蔽之。如有大量的Ag+、Hg2+、Pd2+、Au3+和Cu2+存在(每一种金属离子超过1mg),则最好是在强酸性溶液中,甩双硫腙一氯仿溶液预先将这些金属离子萃取除去。而后再测定铅。
Bi2+、In3+、Tl+和Sn2+不能为氰化物所掩蔽,铋在较低pH时比铅易于被双硫腙萃取,因此可将水层调节至一定pH(通常为2.O~3.5),铋被萃取而铅仍在水液中,然后提高pH值而萃取
铅。亦可先在较高pH值,使铋和铅一起被萃取,然后用缓冲液洗有机层使铅进入水层(如用
C014作溶剂则pH为2.3~2.5,用CHCl3则为pH3.4),或用碱性溶液(通常pH大于1l的0.5~
1%氰化钾溶液)洗有机层,使铋先行解离。
铋量很大时,可用溴和氢溴酸处理,使成三溴化铋使其挥发。
铟的干扰:铟萃取的最适pH为5.2~6.3(CCl4)和8.3~9.6(CHCl3),因此可采用pH值大
于lO,以CCl4为溶剂,当铟存在100倍过量时,可进行铅的萃取。
铊的干扰严重:可调节pH至6.0~6.4,用双硫腙萃取铅,此时铊不被萃取。或将萃取物与
0.5%氰化钾溶液振摇,此时铊一双硫腙盐解离而铅一双硫腙盐则不解离。
大量的铊亦可以在2~4mol/L HCl中,用乙醚萃取除去。
Fe3+可由于氰化物的存在而形成高铁氰化物,使双硫腙氧化而干扰,如加盐酸羟胺、肼、亚硫酸钠或其他还原剂,使变成亚铁氰化物则不干扰。铜亦可能有类似的干扰。
含大量Fe3+时,可在1.2mol/L HCl介质中,加过量铜铁试剂,用CHCl3萃取之,此时铅不被沉淀亦不被萃取,而Cu3+、Bi3+、Tl3+和Sn2+亦被除去,过量铜铁试剂用CHCl3萃取除去。
Sn2+可引起干扰,而Sn4+则不干扰,含量大时,可形成溴化锡挥发除去。
在碱性介质中可产生沉淀的金属(氢氧化物),以柠檬酸铵或酒石酸盐络合掩蔽之。
另外还有一些金属可妨碍铅的萃取,特别如钛(5mg或以上)可阻碍铅从pH7~11的氨性柠檬酸盐溶液中的完全萃取。含高浓度铝时,亦有类似情况。遇此场合,可先用硫化物沉淀分离,必要时加少量铜作为共沉淀剂。
阴离子的影响,硫化物是较重要的,试剂级的氰化钾中常发现含有硫化物。其他阴离子如柠檬酸盐、酒石酸盐。存在高浓度时,因络合作用而阻碍铅的萃取。高浓度的磷酸盐、胶体状的硅酸亦可使铅的萃取发生困难,必要时以较浓的双硫腙溶液反复萃取之。
铅一双硫腙络合物可被稀酸溶液所解离这一性质,有助于干扰物质的分离,即第一次用较浓的双硫腙溶液萃取分离之后,用稀酸液振摇,使铅返回水相,然后再调节至最适pH,第二次用双硫腙溶液从水相中萃取铅 。

水中铅测定方法详解(2)

(《生活饮用水检验规范》部分)

在地壳中,铅是一种相对少的元素,以低浓度广泛存在于未受污染的沉积岩与土壤中。未受污染的海水约含0.03μg/L,而接近表层与海岸则浓度可增高10倍。淡水的含量较高,约为1~50μg/L。

由于使用含铅汽油和冶炼厂的烟尘使大气中含有铅,从而使水中浓度增高。工业生产,采矿或冶炼厂废水均可污染水体。使用含铅高的管道或含铅化合物的塑料管作自来水管,可使饮水中铅含量增高。

铅可在人体内蓄积,主要毒性为引起贫血、神经机能失调和肾损伤。

27.1水中铅的测定方法有原子吸收分光光度法、分光光度法、示波极谱法、电位溶出法等。
与其它元素相比,铅测定方法的发展较慢。虽也有一些新方法的报导,但有实用价值的
不多。孙勤枢等报导的氧化电位溶出法是一种较好的方法,可以同时测定水中铜、铅、铁、
锌、镉。其中铅的线性范围为0.1~3400μg/L,用来测定水中铅与原子吸收法基本一致,但精
密度优于原子吸收法。

在报导的分光光度法中,比较好的有碘化钾-丁基罗丹明B-阿拉伯胶-曲拉通x-100体系分光光度法。该法灵敏度较高,摩尔吸光系数为6.2×105L·mol-1·cm-1,可以满足要求。水中常见的离子无干扰,少见的离子如Ag+、Cu2+、Cd2+、Hg2+等,可用巯基棉预处理消除。它测定湖水中铅的结果与原子吸收法一致。

27.1原子吸收法测铅,灵敏度及精密度均不太理想。有文献报道同时应用高性能空心阴极灯,超声波雾化器和缝管式原子捕集器可使灵敏度大为提高,精密度明显改善。详细情况请参考第二篇第五节。

27.2无火焰原子吸收法测定铅时,经常使用次灵敏线283.3nmo虽然用灵敏线217.0nm测定铅的灵敏度比用次灵敏线283.3nm高约2倍,但在217.0nm处的能量很难与氘灯能量平衡。若用塞曼效应校正背景时可采用217.0nm分析线。

27.2参见25镉的注解25.2。

27.2.1有文献指出:用HGA-72型石墨炉测定铅时发现,K、Na、Al的氯化物不干扰铅的测定,ca、co、Fe、Mn的氯化物对铅的测定有干扰。浓度为1g/L的NiCl2能将铅的信号全部抑制。除了浓度为lg/L的NaNO3干扰铅的信号约为20%外,其余的硝酸盐对铅的测定没有影响。若使用经LaCl3处理过的石墨管测定,浓度高达500mg/L的氯化物也不干扰铅的测定。

27.2.2 当铅浓度为10μg/L时,10mg/L的K、Cd、Zn、Be、Fe、Mn无干扰,100mg/L的Na、Ca 无干扰,S042-、P043-有干扰,加入7.5g/L的La可降低干扰。

27.2.3.4可作为铅的基体改进剂的无机试剂还有:NH4NO3,(NH4)2HPO4,CaCl2,Pt和Pd等。有机试剂有:草酸、抗坏血酸和硫脲等。

27.3.2双硫腙分光光度法是一种比较古老的方法,但至今仍有一定的实用价值。双硫腙在弱碱性溶液中与铅形成红色络合物。

27.3.3.4有人作过试验,使用的双硫腙透光率为60%比70%的标准曲线线性关系好,试验结果见表27.1。

表27.1 双硫腙透光率对线性的影响

27.3.5.2.2水中钙、镁离子在碱性溶液中可形成沉淀析出,影响对铅的萃取,加入柠檬酸铵可防止析出沉淀,因柠檬酸铵可与钙、镁等离子形成稳定的络合物。

27.3.5.2.2铜、锌等金属离子也与双硫腙反应生成红色络合物,对铅的测定有干扰。加入 氰化钾可与这些离子形成稳定的络阴离子如 [Cu(CN)4]3-和[Zn(CN)4]2- ,故可消除它们的干扰。

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页