您当前的位置:首页 > 发表论文>论文发表

内弹道学毕业论文

2023-03-01 22:52 来源:学术参考网 作者:未知

内弹道学毕业论文

  参考文献是论文写作中可参考或引证的主要文献资料,可以反映论文作者的科学态度和论文具有真实、广泛的科学依据。下面是我带来的关于化学论文参考文献的内容,欢迎阅读参考!
  化学论文参考文献(一)
  [1] 王亮. 薄层等离子体与表面等离子体激元的实验研究[D]. 中国科学技术大学 2009

  [2] 汪建. 射频电感耦合等离子体及模式转变的实验研究[D]. 中国科学技术大学 2014

  [3] 马新欣. 基于COSMIC掩星数据的电离层分布特征及地震响应研究[D]. 中国地震局地球物理研究所 2014

  [4] 王若鹏. 地震电离层前兆短期预报研究[D]. 武汉大学 2012

  [5] 何昉. 地基大功率无线电波加热电离层对空间信息链路影响研究[D]. 武汉大学 2009

  [6] 汪枫. 高频电波人工调制低纬电离层所激发的ELF波的研究[D]. 武汉大学 2011

  [7] 邓忠新. 电离层TEC暴及其预报方法研究[D]. 武汉大学 2012

  [8] 刘宇. 实验室研究化学物质主动释放形成的电离层空洞边界层的非线性演化[D]. 中国科学技术大学 2015

  [9] 宋君. 返回式电离层探测技术应用研究[D]. 武汉大学 2011

  [10] 冯宇波. 电离层等离子体分析仪的设计与研制[D]. 中国科学院研究生院(空间科学与应用研究中心) 2011

  [11] 李正. 电离层暴及“行星际扰动-磁暴-电离层暴”的观测研究[D]. 中国科学院研究生院(空间科学与应用研究中心) 2011

  [12] 赵莹. GNSS电离层掩星反演技术及应用研究[D]. 武汉大学 2011

  [13] 牛田野. 特殊等离子体环境物理信息获取与处理的研究[D]. 中国科学技术大学 2008

  [14] 黄勇,时家明,袁忠才. Numerical Simulation of Ionospheric Electron Concentration Depletion by Rocket Exhaust[J]. Plasma Science and Technology. 2011(04)
  化学论文参考文献(二)
  [1] 徐凯. 硝基甲烷及其分解产物的从头算分子动力学研究[D]. 四川大学 2014

  [2] 李倩,徐送宁,宁日波. 用发射光谱法测量电弧等离子体的激发温度[J]. 沈阳理工大学学报. 2011(01)

  [3] 李兵,张明安,狄加伟,魏建国,李媛. 电热化学炮内弹道参数敏感性研究[J]. 电气技术. 2010(S1)

  [4] 赵晓梅,余斌,张玉成,严文荣. ETPE发射药等离子体点火的燃烧特性[J]. 火炸药学报. 2009(05)

  [5] 张祎. 小口径固体电枢电磁轨道炮发射稳定性与初始装填过程影响规律的研究[D]. 南京理工大学 2012

  [6] 弯港. 基于格子Boltzmann方法的流动控制机理数值研究[D]. 南京理工大学 2013

  [7] 李海元. 固体发射药燃速的等离子体增强机理及多维多相流数值模拟研究[D]. 南京理工大学 2006

  [8] 王争论. 中心电弧等离子体发生器及其在电热化学炮中的应用研究[D]. 南京理工大学 2006

  [9] 林鹤. HMX共晶炸药的制备与理论研究[D]. 南京理工大学 2014

  [10] 王娟. 2,3-二羟甲基-2,3-二硝基-1,4-丁二醇衍生物的合成及其应用研究[D]. 南京理工大学 2014

  [11] 董岩. 多氨基多硝基苯并氧化呋咱及其金属配合物的合成与性能研究[D]. 南京理工大学 2014

  [12] 刘进剑. 多氨基多硝基吡啶及吡嗪氮氧化物含能配合物的合成、性能及应用[D]. 南京理工大学 2014

  [13] 赵国政. 氮杂环硝胺化合物的理论设计与母体合成[D]. 南京理工大学 2014

  [14] 郭长平. 一步法微气孔球扁药成孔机理、燃烧性能及应用研究[D]. 南京理工大学 2013

  [15] 金涌. 电热等离子体对固体火药的辐射点火及燃烧特性研究[D]. 南京理工大学 2014
  化学论文参考文献(三)
  [1] 王晓东. 蛋白质复合体及蛋白质相互作用研究新策略[D]. 北京协和医学院 2012

  [2] 罗孟成. H5N1亚型禽流感病毒DNA疫苗及分子佐剂研究[D]. 武汉大学 2010

  [3] 吴志强. 应用RNA干扰技术抑制手足口病重要病原体的基因表达与复制研究[D]. 武汉大学 2010

  [4] 刘丹. 乙型肝炎病毒Pol蛋白对NF-κB信号通路抑制作用的研究[D]. 武汉大学 2014

  [5] 江淼. RNA结构在其诱导细胞先天免疫反应中的作用及其相关信号通路研究[D]. 武汉大学 2011

  [6] 詹蕾. 呼吸道合胞病毒的纳米免疫分析新方法研究[D]. 西南大学 2014

  [7] 易昌华. 麻疹病毒血凝素蛋白H诱导HeLa细胞凋亡及其分子作用机制研究[D]. 武汉大学 2014

  [8] 杨景晖. H3N2亚型流感病毒Vero细胞冷适应株减毒特性及假病毒评价中和抗体的研究[D]. 北京协和医学院 2014

  [9] 刘娟. 人呼吸道腺病毒55型的基因组学与病原学特征研究[D]. 中国人民解放军军事医学科学院 2014

  [10] 喻正源. 全基因组测序与病毒捕获测序技术探讨EB病毒进化及整合规律的初步研究[D]. 中南大学 2013

  [11] 陈晓庆. 天然产物抗单纯疱疹病毒感染活性评价及机理研究[D]. 南京大学 2014

  [12] 李康. 抗流感病毒和EV71新靶标及新药物研究[D]. 北京工业大学 2014

  [13] 王君. 白细胞介素-6受体介导A型流感病毒感染诱导白细胞介素-32及白细胞介素-6表达的研究[D]. 武汉大学 2013

  [14] 申彦森. 基于内含子剪切的人工miRNA结构和靶向位点与基因沉默效率的关系研究[D]. 武汉大学 2009

  [15] 金旭. 冠状病毒N7甲基转移酶甲基化核苷酸GTP的特性研究[D]. 武汉大学 2013

  [16] 陶佳莉. SARS冠状病毒非结构蛋白nsp14的结构功能关系研究[D]. 武汉大学 2013

  [17] 高国振. 宿主因子Cyclin T1和Sam68在Ⅰ型人免疫缺陷型病毒生活周期中的功能研究[D]. 武汉大学 2012

  [18] 柳叶. 阻断HIV-1辅助受体CXCR4的新方法研究[D]. 武汉大学 2012

  [19] 李围. Akt1蛋白质复合体的纯化鉴定及其相互作用蛋白质的功能研究[D]. 中国人民解放军军事医学科学院 2007

  [20] 鞠湘武. H5N1型禽流感病毒损伤细胞溶酶体的机制研究和南极极端环境下科考队员的应激反应研究[D]. 北京协和医学院 2012
猜你喜欢:
1. 化学论文参考范文

2. 关于科学论文参考文献

3. 药学论文参考文献

4. 药学毕业论文参考文献

5. 毕业论文参考文献国家标准

请系统全面地讲讲军事运筹学

军事运筹学是应用数学工具和现代计算技术,对军事问题进行定量分析,为决策提供数量依据的一种科学方法。它是一门综合性应用学科,是现代军事科学的组成部分。

解决现代条件下国防建设和军事活动中一系列复杂的指挥控制问题,不但要有高度的指挥艺术,还必须有一整套进行高速计算分析的现代科学方法,军事运筹学就是这种科学方法。

军事运筹学发展简史

运筹一词出自中国古代史书《史记·高祖本纪》“夫运筹帷幄之中,决胜于千里之外。”

虽然军事运筹学作为一门学科,是在第二次世界大战后逐渐形成的,不过军事运筹思想在古代就已经产生了。中国春秋末期军事家孙武的《孙子兵法·形篇》中,就有许多关于军事运筹的论述,他把度、量、数、称等数学概念引入军事领域,通过双方对比计算,进行战争胜负的预测分析。他在《孙子兵法·计篇》中还说“夫未战而庙算胜者,得算多也;未战而庙算不胜者,得算少也。多算胜,少算不胜,而况于无算乎!”这里的“算”就是计算筹划之意。此外,《孙膑兵法》、《尉缭子》、《百战奇法》等历代军事名著及有关史籍,都有不少关于运筹思想的记载。

《史记·孙子吴起列传》载:战国齐将田忌与齐威王赛马,二人各拥有上、中、下三个等级的马,但齐王各等级的马均略优于田忌同等级的马,如依次按同等级的马对赛,田忌必连负三局。田忌根据孙膑的运筹,以自己的下、上、中马分别与齐王的上、中、下马对赛,结果是二胜一负。这反映了在总的劣势条件下,以己之长击敌之短,以最小的代价换取最大胜利的古典运筹思想,也是对策论的最早渊源。

成功地应用运筹思想而取胜的战例很多,如齐鲁长勺之战中曹刿对反攻时机的运筹,齐魏马陵之战中孙膑对出兵时间、决战时机、决战地点的运筹等。此外,在中国历史上还有不少善于运用运筹思想的人物,如张良、曹操、诸葛亮、李靖、刘基等。

第一次世界大战前期,英国工程师兰彻斯特发表了有关用数学研究战争的大量论述,建立了描述作战双方兵力变化过程的数学方程,被称为兰彻斯特方程。和兰彻斯特同时代的美国科学家爱迪生,在研究反潜斗争中也应用了数学方法,他主要是用概率论和数理统计,研究水面舰艇躲避和击沉潜艇的最优战术。但当时这些方法尚处探索阶段,未能直接用于军事斗争。后来,英国国防部成立以生理学教授希尔为首的研究雷达配置和高炮效率的防空试验小组(后改名为作战研究部),这是最早的运筹组织。

第二次世界大战中,英国空、海、陆军都建立了运筹组织,主要研究如何提高防御和进攻作战的效果。美国军队也陆续成立了运筹小组,其中海军设立最早,是由莫尔斯博士发起和组织的,主要研究反潜战。加拿大皇家空军也在1942年建立了运筹学小组。而运筹学作为一个独立的新学科,是于20世纪50年代初 才开始形成的。

军事运筹学的基本内容

军事运筹学的基本理论,是依据战略、战役、战术的基本原则,运用现代数学理论和方法来研究军事问题中的数量关系,以求对目标的衡量准则达到极值的择优化理论。它通过描述问题——提出假设——评估假设——使假设最优化,反映出假设条件下军事问题本质过程的规律。

模型方法是指运用模型对实际系统进行描述和试验研究的方法。反映实际系统的模型方法很多,有逻辑模型、数学模型、物理模型、混合模型等,军事模拟活动中应用最多的是数学模型。数学模型是用来描述研究对象活动规律并反映其数量特性的一套公式或算法,其复杂程度随实际问题的复杂程度而定,一般简单的问题可用单一的数学方法解决。如兰彻斯特方程,就是确定性数学模型,可宏观地描述双方战斗的毁伤过程。

对复杂的军事问题,必须根据问题的需要,选择各数学分支方法,构成一个整体的混合模型或组合模型,此项工作称之为构模。运用模型方法研究军事问题,以协助指挥员分析判断,是军事运筹学发展的重要途径。

作战模拟是研究作战对抗过程的仿真实验,即对一个在特定态势下的作战过程,根据预定的规则、步骤和数据加以模仿复现,取得统计结果,为决策者提供数量依据。过去运用沙盘对阵、图上作业和实兵演习等进行模仿战争全部或部分活动的过程,都是作战模拟。

由于现代战争的规模增大,复杂程度日益增加,上述传统的作战模拟方法已难于进行较精确的定量描述。在新的数学方法及电子计算机出现后,开始有可能对较大规模的复杂战斗过程作近似描述,现代作战模拟开始得到广泛应用。

现代作战模拟可以看成是一种“作战实验”技术。它可部分地解决军事科学研究中难以通过直接实验的手段进行反复检验的难题,还可节省时间和人力、物力,因而是军事科学研究方法上的一个重大进步。通过现代作战模拟,能对有关兵力、装备使用的复杂关系,从数量上获得深刻了解。

作战模拟可用于作战训练、武器装备论证、后勤保障以及军事学术研究等各个方面。其分类因角度不同而异。按军种、兵种分:有合成军作战模拟,陆军、空军海军作战模拟;按规模分:有战役模拟、战术模拟;按现代化程度分:有手工作战模拟、计算机辅助作战模拟和计算机化作战模拟。

决策论是研究如何选择最佳有效决策方案的理论和方法。无论是平时还是战时,指挥员的重要职责就是分析判断情况,选择可行的或满意的决策方案,定下决心进而组织实施,以完成上级赋予的各项任务。决策论可以引导指挥人员根据所获得的各种信息,按照一定的衡量标准进行综合研究,从而使指挥员的思维条理化,决策科学化。

搜索论是研究如何合理地使用人力、物力、资金及时间,以取得最佳效果的一种理论和方法。搜索论用在军事方面,主要是研究提高对某一区域内的目标进行侦察搜索的效果。在第二次世界大战中,英国为研究提高飞机对德国潜艇的搜索效率,首先运用并发展了这种理论。由于现代战争中搜索问题比较复杂,涉及的因素 比较多,所以搜索理论尚在发展中,还难于建立统一的通用模式。

规划论是研究在军事行动中,如何适当地组织由人员武器装备、物资、资金和时间等要素构成的系统,以便有效地实现预定的军事目的。规划论分线性规划、非线性规划、整数规划和动态规划。

线性规划是当约束条件及目标函数均为线性函数时的规划,可用于解决对目标或作战地域分配同类兵力、兵器问题等。非线性规划是当约束条件或目标函数为非线性方程的规划,可用来解决向目标或作战地域分配不同类型的兵力、兵器等问题。人们在实际应用中为计算方便,常把非线性问题近似地处理成多级线性规划问题。

整数规划是规划论的特殊问题,要求变量和目标函数采用整数进行运算。因为有时人员、武器装备等只有整数才有意义。动态规划是解决多级决策过程员优化的一种数学方法,可把多级决策过程作为总体决策,构成决策空间,并对每个决策找出其定量评估优劣的准则函数,选出准则函数为员优值的决策方案。这即是决策过程的最优化。动态规划多用于多级指挥控制、计算使目标遭受最大损失的火力分配问题等。

排队论亦称“等待理论”、“公用服务系统理论”或“随机服务系统理论”。是研究系统的排队现象而使顾客获得最佳流通的一种科学方法。在军事系统中出现的排队现象很多,如指挥系统收发军事情报信息,反坦克武器对敌坦克的射击,防空系统对空中目标的射击,以及飞机的批次侦察轰炸,武器装备的修理等。

这些军事活动在排队论中被称为“服务”,而服务系统则为指挥控制系统、反坦克系统、防空系统、侦察轰炸系统、修理系统等。其中“顾客”是被指挥的部队,被射击的坦克和飞机,被侦察轰炸的目标,以及需要修理的武器装备等。当顾客要求服务的数量超过服务系统的能力时,就会出现排队现象。排队论即由此得名。

排队论可以用来解决指挥系统的信息处理能力及反坦克武器射击效率的估计分析;对空中侦察及防空武器提出相应的要求,估计不同设施的防空系统效率;武器装备维修及后勤保障的合理安排;人员、物资、装备等按时间序列流动的组织安排等。

对策论是研究冲突局势下局中人如何选择最优策略的一种数学方法。由于这门学问最初是从赌博和弈棋中提出的,因此亦称“博奕论”。

对策论的基本思想是立足于最坏的情况,争取最好的结果。在军事斗争中,通常并不掌握对方如何打算和行动的充足情报,在这种不确定情况下应用对策论最为合宜。如在对方采用一系列不同战术条件下,选择己方的有效战术问题;受对方攻击情况下设置假情报和实施伪装的问题;以及选择与对方对抗的各种武器装备的合理配置问题等。

随着科学技术和军事斗争的发展,航天技术中出现了机动追击的对策问题,原来的对策论就难以适应,于是美国兰德公司等在20世纪60年代开创了新的“微分对策”理论,从而使对策论的军事应用进入了一个新的发展阶段。

存储论亦称“库存论”,是研究在何时何地从什么来源保证必需的军用物资储备,并使库存物资及补充采购所需的总费用最少的理论和方法,它主要用于军队的后勤保障和物资管理方面。采用这种方法,可以确定维持军事系统的组织活动或经营管理正常运转所需的武器装备、备品备件、材料,及其他物资的最佳经济储备量。最佳经济储备量是由最佳经济采购量决定的,而采购量又与消耗量有关。

除上述各论外,军事运筹学常用的理论和方法还有网络法、火力运用理论、指挥控制理论、最优化理论、概率论和数理统计、信息论、控制论等。

应用军事运筹学需要特别注意其局限性。主要是运筹分析系统的简化和本质抽象中人的主观性,以及对军事问题中一些非定量因素,诸如人的水平、能力、爱好个性、士气、心理因子等,只能在假定条件下作近似的分析。

军事运筹学作为军事科学的一个组成部分,是定量研究其他军事学科的有关问题的手段和工具,其他军事学科是军事运筹学的应用领域。随着现代战争日趋复杂多变,且有大量随机现象出现,以及数学方法的研究上取得了新的成果,并且计算机技术的高速发展和大量使用,使得在军事上广泛应用运筹学方法日益有效,并且费用也越来越低。不过,现代战争仍然需要指挥人员的经验和创造性思维,需要科学方法和指挥艺术的有机结合。

随着现代科学技术的迅速发展,军事运筹学的基本理论和方法也将进一步发展。其发展方向主要是,如何提高描述精度,如何通过直接和间接的数学方法以及其他科学方法,对目前难于用数量表示的那部分军事问题予以量化。以及如何通过人机联系的最新途径——人工智能等进行作战模拟。军事运筹学的应用范围将更加广泛,对研究解决作战、训练、武器装备、后勤管理等军事问题的作用将越来越大。

其它军事学分支学科

军事学概述、射击学、弹道学、内弹道学、外弹道学、中间弹道学、终点弹道学、导弹弹道学、军事地理学、军事地形学、军事工程学、军事气象学、军事医学、军事运筹学、战役学、密码学、化学战

军事运筹学
系统研究军事问题的定量分析及决策优化的理论和方法的学科。军事学术的组成部分。以军事运筹的实践活动为研究对象。研究领域涉及作战指挥、军事训练、武器装备研制与发展、军队体制编制、军队管理、后勤保障等各个方面。主要任务是为各类军事运筹分析活动提供理论和方法,用以揭示各类军事系统的功能、结构和运行规律,科学地辅助军事决策和军事实践,合理利用资源,提高军事效能,启发新的作战思想。词源 “运筹”一词,出自中国《史记·高祖本纪》:“运筹策帷帐之中,决胜于千里之外”。最早有“军事运筹学”含义的英文词operationalresearch出现于1938年,是由当时英国的鲍德西雷达站负责人A.P.罗威就整个防空作战系统的运行研究工作而提出的,原意为“作战研究”。在美国称为operationsresearch。英文缩写均为OR。自50年代起,虽然欧美一些国家将这种用于作战研究的理论和方法广泛用于社会经济各领域,但仍沿用原词,使OR的含义有了扩展。OR传入中国后,曾一度译为“作业研究”、“运用研究”。1956年,中国有关专家共同商定将OR译为“运筹学”。其译意恰当地反映了该词源于军事谋划又军民通用的特点,并赋予其作为一门学科的含义。随着适用于军事领域的这些理论和方法应用的不断扩展,军事运筹理论研究工作得到深入与发展,军事运筹理论逐渐形成为一门独立的军事学科,在中国称之为“军事运筹学”。简史 军事运筹学的形成经历了一个漫长的过程。早期的军事运筹思想可追溯到古代军事计划与实际作战运算活动中的选优求胜思想。如公元前6世纪孙武在《孙子》一书中,就有关于作战力量的运用与筹划的论述(见《孙子》中的运筹思想)。又如《史记·孙子吴起列传》中记载的春秋战国时期孙膑辅助齐将田忌与齐威王赛马,田忌采用孙膑建议的取胜策略,就体现了对策论中的最优策略思想。再如11世纪沈括的《梦溪笔谈》中根据军队的数量和出征距离,筹算所需粮草的数量,将人背和各种牲畜驮运的几种方案与在战场上“因粮于敌”的方案进行了比较,得出了取粮于敌是最佳方案的结论,反映了当时后勤供应中多方案选优的思想。古希腊数学家阿基米德利用几何知识研究防御罗马人围攻叙拉古城的策略,也是体现军事运筹思想最早的典型事例之一。中国共产党和毛泽东在领导中国革命战争中,继承和发展了古今中外的军事运筹思想。毛泽东的《中国革命战争的战略问题》、《论持久战》、《三个月总结》、《目前形势和我们的任务》、《党委会的工作方法》等一系列著作,均有关于军事运筹方面的论述。例如,土地革命战争时期,科学地分析战略形势,确定以农村包围城市的斗争道路;抗日战争时期,分析敌我力量对比,确定以持久战胜敌的思想;解放战争时期,计算战争进程,确定在3~5年内从根本上消灭国民党军队,推翻国民党反动统治等,都科学地运用了定量分析的方法。此外,他还利用作战经验及大量统计数据,提出作战理论原则,并把一些重要的数量依据,直接纳入原则体系,指导作战。十大军事原则中“每战集中绝对优势兵力(两倍、三倍、四倍、有时甚至是五倍或六倍于敌之兵力),四面包围敌人,力求全歼,不使漏网”(《毛泽东选集》,第二版,人民出版社,北京,1991,第1247页)的原则,就是一例。随着近代工业的兴起,大量新的科学技术开始应用于军事运筹活动,军事运筹学的理论与方法逐步成熟,其发展大致经历了以下三个阶段。萌芽阶段 1909年,丹麦工程师A.K.埃尔朗首次提出了排队模型,用于研究排队系统运行效率和提高服务质量问题。1914年,英国工程师F.W.兰彻斯特提出了描述作战双方兵力变化关系的微分方程组,该方程组被称为兰彻斯特方程。1915年,俄国人M.奥西波夫独立推导出类似于兰彻斯特方程的奥西波夫方程,并用历史上的战例数据作了验证;同年,美国学者F.W.哈里斯首创库存论模型,用于确定平均库存与经济进货量,提高了库存系统的综合经济效益。第一次世界大战期间,美国人T.A.爱迪生应用“战术对策板”研究商船运行策略,减少了敌方潜艇对商船的毁伤;1921~1927年,法国数学家E.波莱尔发表的一系列论文,为对策论的创建奠定了基础,其中证明了极小极大定理的特殊情形。这些均是为适应不同的军事需要而逐步发展起来的早期运筹理论和方法。形成阶段 第二次世界大战初,为研究雷达在实战中的有效使用,英国皇家空军于1939年吸收多个学科的专家建立了最早的运筹学研究小组。1940年成立由著名物理学家P.M.S.布莱克特领导的英国防空指挥研究小组,对机载雷达发现船只、潜艇等作战问题进行研究。通过改变深水炸弹的爆炸深度,使皇家海军、皇家空军摧毁敌方潜艇的成功率分别增加了3倍、6倍。此后,英国的陆军、海军也都相继设立了运筹分析机构,专门从事军事运筹的理论和应用研究。美国的运筹分析工作开始于1940年。1942年成立了由P.M.莫尔斯领导的美国海军反潜战运筹小组,主要研究反潜作战效果等问题。如1943年的研究表明,使用B-29飞机夜间单机布雷效果最好,飞机损失率由10%~15%降低到1%~1.5%。第二次世界大战期间,加拿大军队中也建立了运筹组织。至战争结束时,英、美、加三国的军事运筹人员总数已超过700人。1945年,苏联学者A.H.柯尔莫哥洛夫提出了多发齐射毁伤目标的火力运用理论。1947年,美国学者G.B.丹齐克等创立了线性规划解法——单纯形法。1948年,美国组建了兰德公司。1951年,莫尔斯教授等在总结战时经验基础上公开出版了《运筹学方法》一书;同年,美国为培养高级军事运筹分析人员,在美国海军研究生院设置了运筹分析课程。1952年成立了美国运筹学会。此后,搜索论、决策分析等新的理论和方法相继产生。这些均标志着军事运筹学的理论和方法体系已基本形成。发展阶段 由于军事技术的不断发展和现代战争的日益复杂,指挥决策问题对科学理论方法的发展提出了更高的要求。电子计算机技术与现代数学方法的适时出现,有力地推进了军事运筹学的发展。50年代中期以来,许多国家广泛推广应用了军事运筹学的理论和方法。美国自1960年R.S.麦克纳马拉任国防部长后,军事运筹学在国防管理等领域中得到了进一步发展。如相继发展了计划评审技术、图示评审技术、风险评审技术等网络分析方法,规划计划预算系统,以及在武器装备研制过程中发展的费用一效果分析方法等。同时,国防系统有关部门还建立了数百个军事模型。这些模型除了用于武器装备论证外,还用于国际局势分析、战争预测、作战指挥、军事训练、后勤保障等方面的辅助决策。取得成功的事例有:确保美国对苏联具有核反击能力所需的最少弹头数的计算分析、阿波罗登月计划的制订、B一1轰炸机的研制等。特别是在1991年的海湾战争中,以美国为首的多国部队,在战场管理、军队指挥、后勤保障等方面,成功地应用了军事运筹学的理论与方法。在中国,军事运筹学的研究始于50年代初期军队院校有关火力运用理论的教学工作。1956年,在钱学森、许国志教授的倡导下,中国科学院成立了第一个运筹学专业研究机构,对军事运筹学的发展,起了积极促进作用。60年代中期至70年代初期,华罗庚教授提出的优选法和统筹法,在军事领域中也得到了推广和应用。1978年5月,中国航空学会在北京召开了军事运筹学座谈会,与会人员向有关部门提出了在中国人民解放军中开展军事运筹与系统工程研究试点工作的建议。1978年底,中国人民解放军成立了第一个由多个学科的专家组成的“反坦克武器系统工程试点小组”,开展了反坦克武器系统工程试点工作。1979年10月,中国第一个军事运筹学研究机构——中国人民解放军军事科学院军事运筹分析研究所正式成立。1981年5月,成立了中国系统工程学会军事系统工程委员会。1984年12月,成立了中国人民解放军军事运筹学会。许多机关、部队也先后建立了各种专业性论证分析机构,在军内有组织地开展军事运筹学的研究与推广应用,并逐步扩大到军队工作的各个方面。1990年,中国国务院学位委员会和国家教育委员会发布的《授予博士、硕士学位和培养研究生的学科专业目录》,把军事运筹学列为军事学的二级学科。此后,大多数军事院校陆续招收和培养了一批军事运筹学硕士研究生。1994年,开始招收第一批军事运筹学博士研究生。这一阶段的主要特点是:研究队伍的规模越来越大,研究问题的层次不断提高,应用范围已由战术规模逐步发展到战役规模和战略规模,研究的内容不断拓宽。基本理论 军事运筹学的基本理论主要有:概率论与统计学 概率论与统计学是军事运筹学中最基本的数学工具,在军事运筹分析中广泛应用。概率论是从数量角度研究大量随机现象,并从中获得规律的理论。统计学则是研究如何有效地搜集、整理随机数据,找出随机现象数量指标分布规律及其数字特征的理论。很多军事问题和基础数据均可运用上述理论进行描述或获取。数学规划理论 研究如何将有限的人力、物力、资金等资源进行最适当最有效的分配和利用的理论,即研究可控变量X=(x1,x2,···,xn)在某些约束条件下求其目标函数在X�处取极大(或极小)值的理论。根据问题的性质与处理方法的不同,它又可分为线性规划、非线性规划、整数规划、动态规划、多目标规划等不同的理论。在军事资源分配等方面的运筹分析中有着广泛的应用。决策论 研究决策者如何有效地进行决策的理论和方法。决策论指导军事决策人员根据所获得的各种系统的状态信息,按照一定的目标和衡量标准进行综合分析,使决策者的决策既符合科学原则又能满足决策者的需求,从而促进决策的科学化。通常在军事决策问题的运筹分析中有广泛的应用。排队论 研究关于公用服务系统的排队和拥挤现象的随机特性和规律的理论。军事上常用于作战、通信、后勤保障、C�I系统的运行管理等领域的运筹分析。库存论 研究合理、经济地进行物资储备的控制策略的理论。军事上主要用于后勤管理领域的运筹分析。网络分析 通过对系统的网络描述,应用网络理论,研究系统并寻求系统优化方案的方法。广泛应用于作战指挥、训练演习、武器装备研制、后勤管理等军事活动的组织计划、控制协调等方面的运筹分析。对策论 研究冲突现象和选择最优策略的一种理论。适用于军事对抗和冲突条件下的决策策略等方面的运筹分析。搜索论 研究在探测手段和资源受到限制的情况下,如何以最短时间和最大可能、最有效地找到某个特定目标的理论和方法。通常用于军事目标搜索、边防巡逻、搜捕逃犯以及军事情报检索等方面的运筹分析。武器射击运筹理论 关于武器系统射击效率及火力最佳运用的理论。主要用于武器系统的设计、研制与使用过程中的毁伤效果计算、精度分析、靶场试验及综合评价等方面的运筹分析。兰彻斯特方程 描述敌对双方交战过程中兵力变化关系的微分方程组。包括第一线性律、第二线性律与平方律。用以揭示在特定的初始兵力兵器条件下,敌对双方战斗结果变化的数量关系。主要用于作战指挥、军事训练、武器装备论证等方面的运筹分析。军事模型与模拟 对军事问题的抽象描述与仿真。军事模型是现实世界军事活动本质特征的近似描述,而不是全部属性的复制。模拟是指运用模型进行实验的过程。作战模拟是作战对抗过程的仿真实验。广泛应用于各类军事问题的运筹分析。相关的理论与方法 在研究解决军事运筹问题中,还经常用到一些相关理论和方法,如模糊数学、系统动力学、决策支持系统等。应用理论 随着自然科学与军事科学的不断发展,军事运筹学在军事领域中的应用研究日益广泛和深入,在各专门领域运筹分析实践的基础上,已经或正在形成一系列面向专门领域的理论和方法,主要有:军事战略运筹分析 对与军事战略有关的全局性问题进行定量研究和方案选优的理论和方法。它涉及的问题包括:战略环境、战略目标、常备力量与后备力量建设、国防动员体制、战略后勤、国防经济、军事外交、军备控制和裁军、军事威慑与军事冲突、局部战争与全面战争、常规战争与核战争等方面的分析、预测和评估。由于战略问题不确定因素多,有些问题难于单纯用定量方法解决,因此需要定量分析与定性分析结合,计算机与人的判断结合。国防科技发展运筹分析 对国防科技发展的方针、政策、目标、规划等有关问题进行定量分析和方案选优的理论和方法。可用于解决诸如重大项目评价、国防科技投资方向以及新技术在国防中应用的可行性研究等问题。作战运筹分析 对作战的有关问题进行定量分析和方案选优的理论和方法。内容主要包括:综合分析判断敌情、评估交战双方作战能力、优化兵力编成、部署和协调作战及各种保障计划等。主要用于作战辅助决策等。军事训练运筹分析 对军事训练的组织与实施进行定量分析和方案选优的理论和方法。主要内容包括:训练体制和训练内容、训练的组织实施、训练效果评估等方面的论证分析。后勤保障运筹分析 对后勤保障进行定量分析和方案选优的理论和方法。内容主要包括:后勤指挥、军费需求与分配、武器装备保管与维修、卫生勤务保障、军队运输方面的优化分析等。武器系统运筹分析 对武器系统的发展、部署和使用进行定量分析与方案选优的理论和方法。主要内容包括:武器系统作战效能、武器系统全寿命费用、武器系统费用效能、武器系统可靠性、易损性与生存能力等方面的分析、预测与评估等。军队组织结构与干部管理运筹分析 对军队组织的各部分或要素的组合方式与干部队伍结构、需求和规划控制等进行定量分析与方案选优的理论和方法。涉及的问题包括:军队整体的宏观分析与具体单位的微观分析;军队结构的控制幅度、指挥层次、职权区分、单位编制、相互关系以及干部编制结构、培养任用、流动规律、考核评估、进退升流等管理方面的分析。与相关学科的关系 军事运筹学是不同领域的科学家运用自然科学、社会科学、军事科学的相关理论,在研究分析军事问题的运筹实践活动中产生的边缘学科。它与数学、物理学和电子计算机技术等有着密切联系,在军事科学领域中与相关学科也有着密切的关系。与军事系统工程的关系 军事运筹学与军事系统工程,都是在早期作战研究的基础上发展起来的。它们都强调定量分析和整体效益,注重优化决策等。但军事运筹学侧重于定量分析现有系统的作业情况,而军事系统工程则是以定量与定性相结合的方法,解决工程技术及其他方面的组织管理技术问题。有的学者认为军事运筹学是军事系统工程的基础理论,也有的学者认为两者同多

高等数学在我们生活中的具体应用论文

高等数学在我们生活中的具体应用论文

从小学、初中、高中到大学乃至工作,大家都尝试过写论文吧,论文是探讨问题进行学术研究的一种手段。你写论文时总是无从下笔?以下是我收集整理的高等数学在我们生活中的具体应用论文,希望对大家有所帮助。

摘要:

进入21世纪,随着经济的不断发展,社会竞争越来越大,对于人才的要求也越来越高。在这种情况下,高等数学的重要作用就凸显了出来,高等数学能够培养人们的思维能力,培养人们发现问题、解决问题的思维方式。高等数学在我们生活中的应用越来越广泛,并且渗透到了各行各业中,许多问题的解决都离不开数学模型的构建。针对高等数学的特点,分析其在我们生活中的具体应用。

关键词 :

高等数学;经济社会;应用;

引言:

数学既是一门理论学科,又是一门应用广泛的工具性学科,在理学、工学、管理学、经济学等各个领域都发挥着重要的作用,如何将抽象的数学理论应用到具体的经济科学实践中去,作为学管理学、经济学的我们更应该对数学有更深的认识。

一、高等数学在学术中的应用

高等数学在众多的学科中扮演着重要的角色,在物理学科中,高等数学与其关系极为紧密,高等数学中最为重要的一部分便是微积分,众所周知,微积分是其创始人,著名的物理学家、数学家牛顿先生在解决经典力学问题的过程中所创立的,力学作为物理学中重要的知识,几乎贯穿于整个物理知识体系中,而微积分就是解决物理知识的关键工具,构建了地球和天体主要运动现象的完整力学体系。

在生物学中,高等数学同样扮演着重要的角色,19世纪时,就有生物学家试图通过数学方法来研究生命现象。而在上世纪20年代中期,就有生物学家利用高等数学的一些知识来解决著名的地中海鳖鱼问题,经历了几十年的发展,生物数学已经成为了生物学中重要的部分,无论是心脏的跳动还是血液的循环、脉搏的周期,都可以用高等数学的知识通过方程组的形式进行表示,并且通过求解的方法来掌握一定的规律,描述生物界的一些现象。

二、高等数学在经济社会的应用

随着社会经济的不断进步以及高等数学的不断发展,数学的手段越来越多样化,经济问题也越来越多样化,利用数学问题对经济环节进行定量分析是十分重要的,最简单的例子就是我们平时生活中的存取款问题以及利率问题。高等数学在经济生活中的应用不止如此,除此之外,高等数学还可以为经营者提供科学合理的数据,以高等数学作为工具来得到最佳的决策。在经济学当中,许多的量如边际成本、边际收益、边际利润都需要用导数来进行计算。而通过这些量可以计算企业生产过程中的一些数据,来对企业的正常运转进行调控,从而达到最优的生产效果。每个经营者都希望用最少的钱创造更多的`价值,在实际经营过程中,难免会出现资金的浪费,利用高等数学知识,能够使资金得到最合理的应用,使成本降低,创造更加大的利润,这种问题,其实就是高等数学中最大值最小值的问题,将其转化为数学模型,能够更好地配置相关资源,合理安排生产,实现最大利润。

三、高等数学在军事中的应用

纵观两次世界大战,无论哪一次都少不了高等数学的身影。射击火力表一直都是数学家需要计算的重要任务。除此之外,各种新型武器装备的研发以及投产,都离不开高等数学的研究。不仅仅是空气动力学、流体动力学还是弹道学,等等,其中都包含着高等数学的知识,这充分说明了高等数学的重要地位。除此之外,高等数学还在原子弹、声呐等新型装备的研发过程中扮演着重要的角色,可能直接影响战争的格局和走向。未来,随着科学技术的不断发展,军事技术也一定会作用于各种新的高科技,而一切高科技领域都少不了高等数学的"加持"。

四、高等数学中概率和数理统计的应用

高等数学中涵盖的知识点较多,概率作为其中的一个知识点,在多种领域尤其是自然科学方面以及社会科学方面的应用十分广泛,而且,还与我们的日常生活息息相关。举例子来说,几年前,我国全面开放了二孩政策,在这项政策开放的背后,是相关专家针对我国人口发展的问题,根据众多的资料数据进行统计分析,判断后做出的决定。近几年,随着我国科学技术的不断进步,以高等数学为核心的生活方式迅速地辐射到了人们日常生活中的各个领域,从移动支付以及购物到智能机器人的应用,办公的自动化,这些都需要我们具有高等数学知识以及素养。

五、高等数学在学生思维构建方面的应用

高等数学通过建立模型,能够有效地培养学生的综合素质,开拓学生的思维。在教学过程中,教师通过给学生树立建模的思想,使学生能够得到全面的发展,能够最大程度地提高学生的学习热情。高等数学可以通过构建数学模型,以此来对现实中的一些事物进行有规律的描述。而高等数学进行数学模型的构建需要人类的思维活动,也就是说,高等数学能够提高学生对于数学理论以及思维方法应用的意识,使学生培养数学思维,利用数学知识解决生活实际问题。

六、结语

当代大学生学习数学的重要性显而易见,我们要想在21世纪的社会有一个立足之地就需要全面地发展自己,而我们学习的高等数学又是其中的重中之重。我们要认清当今社会的人才培养目标,深入地学习高等数学,为中国的经济建设献出自己的力量,为早日实现中华民族的伟大复兴而奋斗。

参考文献

[1]苏丽论高等数学在经济分析中的应用[J].信息记录材料,2016,(06)

[2]卢明宇浅析微积分在金融领域的作用[J].经贸实践,2017,(05)

[3]马源谈谈数学学习在经济金融学中的作用[J].经贸实践,2017,(15)

拓展:

专业论文格式模板

一、毕业论文(设计)资料按以下顺序排列:

(一)封面。包括论文题目、指导教师、学生姓名、学号、院(系)、专业、毕业时间等内容。论文封面由学校统一印制。

(二)中、外文摘要(包括关键词)。外文论文(设计)的中文摘要放在英文摘要后面编排。

(三)正文。

(四)注释。

(五)附录。

(六)参考文献。

(七)致谢。

二、毕业论文的打印与装订

除要检验学生书写规范的专业外,毕业论文(设计)须用计算机打印,一律采用A4纸。

(一)页面设置

毕业论文(设计)要求纵向打印,页边距的要求为:

上(T):2.5cm

下(B):2.5cm

左(L):2cm

右(R):2cm

装订线(T):0.5cm

装订线位置(T):左

其余采取系统默认设置。

(二)排式与用字

文字图形一律从左至右横写横排。

文字一律通栏编辑。

论文采用宋体,字迹清楚整齐,除特殊需要,一般不使用繁体字。

(三)段落设置

采用多倍行距,行距设置值为1.25。

其余采取系统默认设置。

(四)页眉、页脚设置

论文题目(不包括副题目)居中,采用五号宋体字。

页脚需设置页码,页码采用五号黑体字,加粗,居中放置,格式如:1,2,3……页。

三、毕业论文(设计)撰写的内容与要求

(一)封面

1、封面。

纸质封面由学校统一印制。不编排页码。

2、封一(中文摘要)

中文摘要:“中文摘要”四字在第一行居中位置,使用小二号黑体字,加粗。内容使用小四号宋体字。起行空两格,回行顶格。中文摘要一般不超过250—300字。

关键词:接中文摘要打印,“关键词”三字空两格,后加冒号与关键词隔开,各关键词之间用逗号隔开。关键词一般在3—8个之间。

3、封二(外文摘要)

外文摘要:“外文摘要”英文单词在第一行居中位置,使用小二号黑体字,加粗。内容使用小四号宋体字。起行空两格,回行顶格。外文摘要一般不超过250个实词。

关键词:接外文摘要打印,“关键词”英文单词空两格,后加冒号与关键词隔开,各关键词之间用逗号隔开。外文关键词应与中文关键词相对应。

(二)正文

正文一般使用小四号宋体字,重点文句加粗。

1、标题层次。

毕业论文的全部标题层次应整齐清晰,相同的层次应采用统一的表示体例,正文中各级标题下的内容应同各自的标题对应,不应有与标题无关的内容。

各层标题均单独占行。第一级标题居中放置;第二、三、四等级标题序数顶格放置,后空一格接标题内容,末尾不加标点。

标题序数采用1.、2.……1.1、1.2……1.1.1、1.1.2……1.1.1.1……的层次。正文中对总项包括的分项采用一、二、……(一)、(二)……1、2……(1)、(2)……①②……的层次,括号后不再加其他标点。

2、量和单位。各种计量单位一律采用国家标准GB3100—GB3102-93。非物理量的单位可用汉字与符号构成组合形式的单位。

3、标点符号。标点符号应按照国家新闻出版署公布的“标点符号使用方法”的统一规定正确使用,忌误用和含糊混乱。

4、外文字母。外文字母采用我国规定和国际通用的有关标准写法。要分清正斜体、大小写和上下脚码。

5、名词、名称。科学技术名词术语采用全国自然科学技术名词审定委员会公布的规范词或国家标准、部标准中规定的名称,尚未统一规定或叫法有争议的名称术语,可采用惯用的名称。

6、数字。文中的数字,除部分结构层次序数和词、词组、惯用语、缩略语、具有修辞色彩语句中作为词素的数字必须使用汉字外,应当使用阿拉伯数码,同一文中,数字表示方法应前后一致。

7、公式。公式一般居中放置;有编号的公式顶格放置,编号需加圆括号标在公式右边,公式与编号之间不加虚线。

公式下有说明时,应在顶格处标明“注: ”。

较长公式的转行应在加、减、乘、除等符号处。

8、表格和插图。

(1)表格。每个表格应有自己的表序和表题。表内内容应对齐,表内数字、文字连续重复时不可使用“同上”等字样或符号代替。表内有整段文字时,起行处空一格,回行顶格,最后不用标点符号。

(2)插图。每幅图应有自己的图序和图题。一般要求采用计算机制图。

文中图表需在表的上方、图的下方排印表号、表名、表注或图号、图名、图注。

(三)注释

注释采用页末注(将注文放在加注页的页脚)或篇末注(将全部注文集中在文章末尾),不可行中加注。注释编号选用带圈阿拉伯数字,注文使用小五号宋体字。

以下为引用各类文献注释格式:

专著:注释编号.作者.专著.书名[m].出版社,出版年.起止页码

期刊:注释编号.作者.期刊.题名[J].刊名,出版年(卷、期):起止页码

论文集:注释编号.作者.论文名称:论文集名[C].出版地:出版社,出版年度.起止页码

学位论文:注释编号.作者.题名[D].保存地点:保存单位,写作年度.

专利文献:注释编号.专利所有者.题名[P].专利国别:专利号,出版日期

光盘:注释编号.责任者.电子文献题名[电子文献及载体类型标识],出版年(光盘序号)

互联网:注释编号.责任者.文献题名.电子文献网址.访问时间(年-月-日)

文献作者3名以内的全部列出;3名以上则列出前3名,后加“等”(英文加“etc"”)

(四)附录

“附录”两字在第一行居中位置,使用小二号黑体字,加粗。

附录项目名称使用四号黑体字,加粗,居左顶格放置。另起一行空两格,使用小四号宋体字标注附录序号和题名,编排样式可参照正文。

(五)参考文献

参考文献一律放在文后,其书写格式应根据GB3469-83《文献类型与文献载体代码》规定,以单字母方式标识:M专著,C论文集,N报纸文章,J期刊文章,D学位论文,R研究报告,S标准,P专利;对于专著、论文集中的析出文献采用单字母“A”标识,其他未说明的文献类型,采用单字母“Z”标识。

“参考文献”四字居中放置,使用小二号黑体字,加粗。

内容使用小四号宋体字,居左,空两格放置。具体结构格式与标注方法同注释中交代引文出处的注文格式。

我要五个数学家勤奋学习的故事

1、数学家的故事——苏步青
苏步青1902年9月出生在浙江省平阳县的一个山村里。虽然家境清贫,可他父母省吃俭用,拼死拼活也要供他上学。他在读初中时,对数学并不感兴趣,觉得数学太简单,一学就懂。可是,后来的一堂数学课影响了他一生的道路。
那是苏步青上初三时,他就读浙江省六十中来了一位刚从东京留学归来的教数学课的杨老师。第一堂课杨老师没有讲数学,而是讲故事。他说:“当今世界,弱肉强食,世界列强依仗船坚炮利,都想蚕食瓜分中国。中华亡国灭种的危险迫在眉睫,振兴科学,发展实业,救亡图存,在此一举。‘天下兴亡,匹夫有责’,在座的每一位同学都有责任。”他旁征博引,讲述了数学在现代科学技术发展中的巨大作用。这堂课的最后一句话是:“为了救亡图存,必须振兴科学。数学是科学的开路先锋,为了发展科学,必须学好数学。”苏步青一生不知听过多少堂课,但这一堂课使他终身难忘。
杨老师的课深深地打动了他,给他的思想注入了新的兴奋剂。读书,不仅为了摆脱个人困境,而是要拯救中国广大的苦难民众;读书,不仅是为了个人找出路,而是为中华民族求新生。当天晚上,苏步青辗转反侧,彻夜难眠。在杨老师的影响下,苏步青的兴趣从文学转向了数学,并从此立下了“读书不忘救国,救国不忘读书”的座右铭。一迷上数学,不管是酷暑隆冬,霜晨雪夜,苏步青只知道读书、思考、解题、演算,4年中演算了上万道数学习题。现在温州一中(即当时省立十中)还珍藏着苏步青一本几何练习薄,用毛笔书写,工工整整。中学毕业时,苏步青门门功课都在90分以上。
17岁时,苏步青赴日留学,并以第一名的成绩考取东京高等工业学校,在那里他如饥似渴地学习着。为国争光的信念驱使苏步青较早地进入了数学的研究领域,在完成学业的同时,写了30多篇论文,在微分几何方面取得令人瞩目的成果,并于1931年获得理学博士学位。获得博士之前,苏步青已在日本帝国大学数学系当讲师,正当日本一个大学准备聘他去任待遇优厚的副教授时,苏步青却决定回国,回到抚育他成长的祖任教。回到浙大任教授的苏步青,生活十分艰苦。面对困境,苏步青的回答是“吃苦算得了什么,我甘心情愿,因为我选择了一条正确的道路,这是一条爱国的光明之路啊!”
这就是老一辈数学家那颗爱国的赤子之心

5位数学家的简介与主要成果

1、祖冲之

祖冲之,曾经算出月球绕地球一周为时27.21223日,与现代公认的27.21222日几乎没有误差。月球上许多火山口中的一个被命名为“祖冲之”。祖冲之还曾经计算出圆周率应该在3.1415926和3.1415927之间。

法国巴黎的“发现宫”科学博物馆中也有祖冲之的大名与他所发现的圆周率值并列。在莫斯科国立大学礼堂廊壁上,用彩色大理石镶嵌的世界各国著名的科学家肖像中,也有中国的祖冲之和李时珍。

2、华罗庚

华罗庚(1910.11.12—1985.6.12),汉族,籍贯江苏金坛,祖籍江苏省丹阳。世界著名数学家,中国科学院院士,美国国家科学院外籍院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士。中国第一至第六届全国人大常委会委员。

他是中国解析数论、矩阵几何学、典型群、自守函数论与多元复变函数论等多方面研究的创始人和开拓者,也是中国在世界上最有影响力的数学家之一,被列为芝加哥科学技术博物馆中当今世界88位数学伟人之一。国际上以华氏命名的数学科研成果有“华氏定理”、“华氏不等式”、“华—王方法”等。

3、约翰·卡尔·弗里德里希·高斯

1777年4月30日-1855年2月23日,享年77岁,德国著名数学家、物理学家、天文学家、大地测量学家,近代数学奠基者之一。高斯被认为是历史上最重要的数学家之一,并享有“数学王子”之称。

高斯和阿基米德、牛顿、欧拉并列为世界四大数学家。一生成就极为丰硕,以他名字“高斯”命名的成果达110个,属数学家中之最。他对数论、代数、统计、分析、微分几何、大地测量学、地球物理学、力学、静电学、天文学、矩阵理论和光学皆有贡献。

4、阿基米德

公元前287年—公元前212年,伟大的古希腊哲学家、百科式科学家、数学家、物理学家、力学家,静态力学和流体静力学的奠基人,并且享有“力学之父”的美称,阿基米德和高斯、牛顿并列为世界三大数学家。阿基米德曾说过:“给我一个支点,我就能撬起整个地球。”

阿基米德确立了静力学和流体静力学的基本原理。给出许多求几何图形重心,包括由一抛物线和其网平行弦线所围成图形的重心的方法。阿基米德证明物体在液体中所受浮力等于它所排开液体的重量,这一结果后被称为阿基米德原理。他还给出正抛物旋转体浮在液体中平衡稳定的判据。

5、勒内·笛卡尔

1596年3月31日生于法国安德尔-卢瓦尔省的图赖讷(现笛卡尔,因笛卡尔得名),1650年2月11日逝世于瑞典斯德哥尔摩,是世界著名的法国哲学家、数学家、物理学家。他对现代数学的发展做出了重要的贡献,因将几何坐标体系公式化而被认为是解析几何之父。

他还是西方现代哲学思想的奠基人,是近代唯物论的开拓者且提出了“普遍怀疑”的主张。黑格尔称他为“现代哲学之父”。他的哲学思想深深影响了之后的几代欧洲人,开拓了所谓“欧陆理性主义”哲学。堪称17世纪的欧洲哲学界和科学界最有影响的巨匠之一,被誉为“近代科学的始祖”。

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页