您当前的位置:首页 > 发表论文>论文发表

离散几何论文题目

2023-02-28 09:55 来源:学术参考网 作者:未知

离散几何论文题目

这个问题你找对人了。我一年前也写过一篇关于数列求和与递归关系的论文(我也是高中生)。下面按我说的做:

构思部分:

首先,你需要明确研究对象。现在你的研究对象是一种没学过的函数。

其次,看着你的函数,然后思考:这是一个什么函数,指数 对数 三角 双曲 幂 反三角 伽玛 贝塔还是西格马,简单函数还是复合函数,初等函数还是高等函数......

再次,思考该函数的以下性质:
1 定义域和值域
2 单调性 极值 凹凸性 拐点 渐进线 渐进点 连续(离散)性 周期性 奇偶性 渐开线 渐屈线 包络线 等等等等
3 f(x+y) f(x-y) f(cx) f(xy) f(x/y)等能否展开
4 看该函数是否满足一些非常对称的等式或不等式
5 该函数的迭代 复合后有没有什么特殊性质
6 几何上的特殊意义
7 生活生产中的应用
8 其他

第四,开始研究以上性质。

第五,考虑如何利用高中数学知识证明以上性质。例如讨论该函数的极值,有两种办法:1 通过变形,把该函数的极值问题化归为二次函数等已知函数的极值问题,或利用单调性解决之;2 对该函数求导,利用导数解决问题。

写作部分:

引入:先写一个背景材料 历史回顾什么的,神吹海侃一番,把前人对该函数的研究简单介绍一下。然后写一个内容提要,把你要讲的内容简单说明一下,最重要的是指出你的研究的独创性。

正文开头:如果该函数有特殊的几何意义或在生活生产中有重要应用,不妨以此作为引入的材料。如果没有,那就只好直接进入主题。

正文主要内容:把前面提到的性质有条例地叙述一遍。

结尾:把你在论文中参考到的内容的出处罗列出。然后交给打字员,大功告成!

基本上就这过程,好好干吧!
祝你好运!

数学与应用数学毕业论文范文(2)

  数学与应用数学毕业论文篇3
  浅谈离散数学的应用及教学

  我国传统数学教育模式内容相对陈旧、体系单一、知识面窄、偏重符号演算和解题技巧,脱离实际应用,缺乏应用数学知识解决实际问题的实践意识和能力,创新精神和创新能力不足。然而,高科技信息时代的迅速发展对学生的数学素质又提出了新的要求,现有教育模式所培养的学生在某种程度上已经不能适应社会的需要。实践表明,数学研究化图论能激发学生学习欲望,是培养学生主动探索、努力进取的学风和团结协作精神的有力 措施 ;是数学知识和应用能力共同提高的最佳结合点;是启迪创新意识和 创新思维 、锻炼创新能力、培养高层次人才的一条重要途径。因此高校教师在实际的教学过程中要把数学研究化图论的思想、方法及内容融入到当今的大学数学教学中去,是一种行之有效的素质教育方法。本文主要从以下几个方面对图论部分的教学进行了讨论:

  一、整合教学资源,重视双基学习,激发学生兴趣

  图是一类相当广泛的实际问题的数学模型,有着极其丰富的内容,是数据结构等课程的先修内容。学习时应掌握好图论的基本概念、基本方法、基本算法,善于把实际问题抽象为图论的问题,然后用图论的方法解决问题。那在实际的教学过程中,要充分利用课堂上的时间让学生掌握好这些基本概念、基本方法、基本算法则是显示一名大学教师基本功的时候。因此,教师在讲解最常用的概念如:无向图,有向图,顶点集,边集,n阶图,多重图,简单图,完全图,图的同构,入度,出度,度,孤立点等时,要细讲而精讲,要讲到根上,不仅要帮助学生理解每个概念的具体含义,更重要的是要引导学生总结规律,探索方法,培养能力。教师要充分相信学生,注意从学生的思维角度去剖析问题,运用设疑、讨论、启发、诱导等方式,给他们充分的时间去思考、体会和消化。

  图与网络有个自然的对应关系,网络设计和分析中的许多问题可以归结图论问题。因此,图论是网络设计和软件分析的最有力的数学工具。图论数学是应用最广的数学分支之一,不仅在网络设计和软件分析中有着重要的应用价值,在 企业管理 ,交通规划,战争指挥,金融分析等领域都有重要的应用。因此在图论数学的教学中不能仅仅注重讲授概念、定理,还要用实例使学生对图论数学产生兴趣,进而解决生活中出现的一些简单的图论数学问题,以达到培养能力为主的教育目标。例如,我在讲解通路、回路、图的连通性时,为了更好的让学生理解这些概念,我提出一个问题:人、狼、羊、菜用一条只能同时载两位的小船渡河,“狼羊”、“羊菜”不能在无人在场时共处,当然只有人能架船。这种情况下怎样安排才能达到最优的状态呢?这个问题的提出,极大的激发了同学们的兴趣,他们努力思索问题的解决之道。在此基础上,我进一步引导他们建立图模型:顶点表示“原岸的状态”,两点之间有边当且仅当一次合理的渡河“操作”能够实现该状态的转变。起始状态是“人狼羊菜”,结束状态是“空”。问题的解决:找到一条从起始状态到结束状态的尽可能短的通路。最后得出这样的结论:在“人狼羊菜”的16种组合中允许出现的只有10种。即下图所示:

  这样我就完成把单纯的图论概念和实际生活相结合的转变。同学们在这个过程中通过自己动手具体分析、积极思索,提高了分析问题、解决问题和运用数学的能力。

  二、积极采用多媒体教学,使抽象复杂的内容变得具体形象

  大学教材中关于图论部分的定义、定理很多,而且内容比较抽象。在教学中,如果教师沿用传统的教学方法,即:介绍定义——引入定理——证明定理,这种讲课方法不仅时间长,而且也不能吸引学生的兴趣。再加上该课程具有较强的抽象性与推理性,一些问题无法在黑板上讲清楚。因此,在数学化研究图论教学中,在继承传统教学的基础上适当使用现代教育技术进行辅助教学,可以把语言、文字、声音、图形、动画、视频图象等多种媒体有机地集成一体,制作和应用多媒体课件。使学生通过多个感觉器官来获取相关信息,提高教学信息传播效率,把抽象问题具体化和形象化,有效地激发学生的学习兴趣,使得教学效果更加形象、生动、具体、准确。

  例如,教师在讲授关于“中国邮递员问题”的知识时,可以先用PPT 展示一个实心的正十二面体,20个顶点标上邮递员途经街道的名称,要求邮递员从邮局出发,遍历各街道一次,最后回到邮局。给学生一段时间寻找路径后,用动画显示出寻找路径的过程。然后教师引导学生将上述的中国邮递员问题建立成一个数学模型即:在一个赋权连通图上求一个含所有边的回路,且使此回路的权最小。显然,若此连通赋权图是 Euler 图,则可用 Fleury 算法求 Euler 回路,此回路即为所求。给出Euler 图的定义以及Fleury 算法,从中让学生归纳演示Fleury 算法。这些知识都掌握以后,可以向学生介绍一下赋权连通图在计算机网络布局中的应用,学生在对赋权连通图的认识从具体—抽象—具体的过程中达到了对赋权连通图的深刻理解。

  当然制作一个多媒体课件并不是简单的把书本上的概念和定理照搬到PPT 上,而是用具体形象的媒体冲击同学的感官视觉效果,使其能从中更加深刻体会抽象的概念和定义。例如,在讲解图的相关概念时,对于每一种图可以用具体的图形来演示说明,这样学生可以通过形象的图形对抽象的文字有更加深刻的理解。除了教学课堂上使用多媒体之外,教师还可以通过网络辅导学生课后的学习以及布置与指导,通过电子信箱、BBS讨论等多种形式和手段提供学习支持服务。

  三、加强师生课堂互动,调动学生学习的主动性  图论中的图是由若干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系,用点代表事物,用连接两点的线表示相应两个事物间具有这种关系。图论数学知识的 应用无所不在,在教学过程中, 我们可根据教学内容结合学生熟悉的生活、生产、科技和当前商品 经济中的一些实际问题如利息、股票、利润、人口等,引导学生从生活中熟悉的方面入手开始学习数学。

  图论的教学决不能只是告诉学生现有的结论,然后让他们死记硬背一些公理算法之后,就希望他们立马可以解答出理论很深奥、算法很复杂的数学问题。为了调动学生主动学习的积极性,我在实际的教学过程中会利用好课堂提问这个环节。上课前几分钟的提问,可以通过学生的回答来了解他们对上节课程的掌握程度。而课堂上的提问,可以让学生不宜走神、时刻保持警惕、仔细认真听讲老师讲课的每一个环节,可以积极促使学生在课堂上通过回答教师的提问而解读信息,实施对信息的加工,进而加深对信息的理解。当然教师的提问不应该是随意的、盲目的,而应该是精心准备的,紧扣课堂上所讲授内容的重点及学生最容易混淆、模糊的环节。对于当代大学生而言,老师提问的问题应当有一定的深度和广度,能引导学生深入思考, 把课堂上被动的吸收知识、填鸭式的教学模式变成主动的思考问题、积极回答问题的过程。学生主体参与是数学图论教学的核心,教师主导作用是数学图论教学的保障。在数学图论教学中,通过提问可以引发学生进行深入思考,充分调动他们的积极性,发挥他们的潜能,这样就可以使学生的能动性、自主性、创造性得到长足的进步。

  四、加强学生的图论数学思想及运用 网络工具

  图论的数学教学实际上就是帮助同学们形成把现实问题转化成点和线的数学思维过程。而教师在具体的教学过程中,就要有目的的引导学生运用数学思想来认识世界。通过这样的教学过程,可以增加学生对图论知识的了解,培养他们提高运用数学图论思维的能力。比如,我在讲解图论之前会给同学们介绍图论问题的由来,即追溯到1736年哥尼斯堡七桥问题,或给学生介绍中外数学名家的光辉 事迹 与献身精神。让他们在加强数学思想的同时,不忘加强自身思想品德的 教育。

  图论即形象地运用一些点以及点与点之间的连线构成的图或网络来表示具体问题。利用图与网络的特点来解决系统中的问题,比用线性规划等其他模型来求解往往要简单、有效得多。图论就是研究图和网络模型特点、性质和方法的理论。图和网络之间存在密切的 联系,因此,教师要创设条件, 因材施教,例如运用一些优秀的数学软件如Matlab,MathCAD, 几何画板等,充分利用网络画图的能力来培养学生的数学思维逻辑能力,使每个学生都得到不同程度的 发展和提高,同时培养学生的思想品德和世界观, 让学生的综合素质得到提高。

  总之,若教师通过知识的载体,对学生实施能动的 心理和智能的引导教学,提高了学生的数学素质,培养了他们创造性应用的能力,这就算是一种成功的教学。当然教师的职责是通过教学培养学生数学思想,并把这种思想应用到实际的生活中。但传统的教育模式已经根深蒂固的深入到我们的思想当中,尤其是教师也是传统教育模式培养出来的,所以,要想跳出这个怪圈,教师和学校都需要努力去思索和探讨。根据新时代的需求,培养出适应新时代发展的具有自学能力乃至科研能力的更高的人才,这需要我们共同的努力。

猜你喜欢:

1. 应用数学专业论文

2. 数学与应用数学毕业论文

3. 应用数学毕业论文题目

4. 应用数学系毕业论文

5. 数学应用数学本科毕业论文

求一篇关于【组合数学】的论文

组合数学概述

组合数学,又称为离散数学,但有时人们也把组合数学和图论加在一起算成是离散数学。组合数学是计算机出现以后迅速发展起来的一门数学分支。计算机科学就是算法的科学,而计算机所处理的对象是离散的数据,所以离散对象的处理就成了计算机科学的核心,而研究离散对象的科学恰恰就是组合数学。组合数学的发展改变了传统数学中分析和代数占统治地位的局面。现代数学可以分为两大类:一类是研究连续对象的,如分析、方程等,另一类就是研究离散对象的组合数学。组合数学不仅在基础数学研究中具有极其重要的地位,在其它的学科中也有重要的应用,如计算机科学、编码和密码学、物理、化学、生物等学科中均有重要应用。微积分和近代数学的发展为近代的工业革命奠定了基础。而组合数学的发展则是奠定了本世纪的计算机革命的基础。计算机之所以可以被称为电脑,就是因为计算机被人编写了程序,而程序就是算法,在绝大多数情况下,计算机的算法是针对离散的对象,而不是在作数值计算。正是因为有了组合算法才使人感到,计算机好象是有思维的。

组合数学不仅在软件技术中有重要的应用价值,在企业管理,交通规划,战争指挥,金融分析等领域都有重要的应用。在美国有一家用组合数学命名的公司,他们用组合数学的方法来提高企业管理的效益,这家公司办得非常成功。此外,试验设计也是具有很大应用价值的学科,它的数学原理就是组合设计。用组合设计的方法解决工业界中的试验设计问题,在美国已有专门的公司开发这方面的软件。最近,德国一位著名组合数学家利用组合数学方法研究药物结构,为制药公司节省了大量的费用,引起了制药业的关注。

在1997年11月的南开大学组合数学研究中心成立大会上,吴文俊院士指出,每个时代都有它特殊的要求,使得数学出现一个新的面貌,产生一些新的数学分支,组合数学这个新的分支也是在时代的要求下产生的。最近,吴文俊院士又指出,信息技术很可能会给数学本身带来一场根本性的变革,而组合数学则将显示出它的重要作用。杨乐院士也指出组合数学无论在应用上和理论上都具有越来越重要的位置,它今后的发展是很有生命力,很有前途的,中国应该倡导这个方面的研究工作。万哲先院士甚至举例说明了华罗庚,许宝禄,吴文俊等中国老一辈的数学家不仅重视组合数学,同时还对组合数学中的一些基本问题作了重大贡献。迫于中国组合数学发展自身的需要,以及中国信息产业发展的需要,在中国发展组合数学已经迫在眉睫,刻不容缓。

2. 组合数学与计算机软件

随着计算机网络的发展,计算机的使用已经影响到了人们的工作,生活,学习,社会活动以及商业活动,而计算机的应用根本上是通过软件来实现的。我在美国听到过一种说法,将来一个国家的经济实力可以直接从软件产业反映出来。我国在软件上的落后,要说出根本的原因可能并不是很简单的事,除了技术和科学上的原因外,可能还跟我们的文化,管理水平,教育水平,思想素质等诸多因素有关。除去这些人文因素以外,一个最根本的原因就是我国的信息技术的数学基础十分薄弱,这个问题不解决,我们就难成为软件强国。然而问题决不是这么简单,信息技术的发展已经涉及到了很深的数学知识,而数学本身也已经发展到了很深、很广的程度并不是单凭几个聪明的头脑去想想就行了,而更重要的是需要集体的合作和力量,就象软件的开发需要多方面的人员的合作。美国的软件之所以能领先,其关键就在于在数学基础上他们有很强的实力,有很多杰出的人才。一般人可能会认为数学是一门纯粹的基础科学,1+1的解决可能不会有任何实际的意义。如果真是这样,一门纯粹学科的发展落后几年,甚至十年,关系也不大。然而中国的软件产业的发展已向数学基础提出了急切的需求:网络算法和分析,信息压缩,网络安全,编码技术,系统软件,并行算法,数学机械化和计算机推理,等等。此外,与实际应用有关的还有许多许多需要数学基础的算法,如运筹规划,金融工程,计算机辅助设计等。如果我们的软件产业还是把眼光一直盯在应用软件和第二次开发,那么我们在应用软件这个领域也会让国外的企业抢去很大的市场。如果我们现在在信息技术的数学基础上,大力支持和投入,那将是亡羊补牢,犹未为晚;只要我们能抢回信息技术的数学基地,那么我们还有可能在软件产业的竞争中,扭转局面,甚至反败为胜。吴文俊院士开创和领导的数学机械化研究,为中国在信息技术领域占领了一个重要的阵地,有了雄厚的数学基础,自然就有了软件开发的竞争力。这样的阵地多几个,我们的软件产业就会产生新的局面。值得注意的是,印度有很好的统计和组合数学基础,这可能也是印度的软件产业近几年有很大发展的原因。

3. 组合数学在国外的状况

纵观全世界软件产业的情况,易见一个奇特的现象:美国处于绝对的垄断地位。造成这种现象的一个根本的原因就是计算机科学在美国的飞速发展。当今计算机科学界的最权威人士很多都是研究组合数学出身的。美国最重要的计算机科学系(MIT,Princeton,Stanford,Harvard,Yale,….)都有第一流的组合数学家。计算机科学通过对软件产业的促进,带来了巨大的效益,这已是不争之事实。组合数学在国外早已成为十分重要的学科,甚至可以说是计算机科学的基础。一些大公司,如IBM,AT&T都有全世界最强的组合研究中心。Microsoft 的Bill Gates近来也在提倡和支持计算机科学的基础研究。例如,Bell实验室的有关线性规划算法的实现,以及有关计算机网络的算法,由于有明显的商业价值,显然是没有对外公开的。美国已经有一种趋势,就是与新的算法有关的软件是可以申请专利的。如果照这种趋势发展,世界各国对组合数学和计算机算法的投入和竞争必然日趋激烈。美国政府也成立了离散数学及理论计算机科学中心DIMACS(与Princeton大学,Rutgers大学,AT&T 联合创办的,设在Rutgers大学),该中心已是组合数学理论计算机科学的重要研究阵地。美国国家数学科学研究所(Mathematical Sciences Research Institute,由陈省身先生创立)在1997年选择了组合数学作为研究专题,组织了为期一年的研究活动。日本的NEC公司还在美国的设立了研究中心,理论计算机科学和组合数学已是他们重要的研究课题,该中心主任R. Tarjan即是组合数学的权威。我所熟悉的美国重要的国家实际室(Los Alamos国家实验室,以造出第一颗原子弹著称于世),从曼哈顿计划以来一直重视应用数学的研究,包括组合数学的研究。我所接触到的有关组合数学的计算机模拟项目经费达三千万美元。不仅如此,该实验室最近还在积极充实组合数学方面的研究实力。美国另外一个重要的国家实验室Sandia国家实验室有一个专门研究组合数学和计算机科学的机构,主要从事组合编码理论和密码学的研究,在美国政府以及国际学术界都具有很高的地位。由于生物学中的DNA的结构和生物现象与组合数学有密切的联系,各国对生物信息学的研究都很重视,这也是组合数学可以发挥作用的一个重要领域。前不久召开的北京香山会议就体现了国家对生物信息学的高度重视。据说IBM也将成立一个生物信息学研究中心。由于DNA就是组合数学中的一个序列结构,美国科学院院士,近代组合数学的奠基人Rota教授预言,生物学中的组合问题将成为组合数学的一个前沿领域。

美国的大学,国家研究机构,工业界,军方和情报部门都有许多组合数学的研究中心,在研究上投入了大量的经费。但他们得到的收益远远超过了他们的投入,更主要的是他们还聚集了组合数学领域全世界最优秀的人才。高层次的软件产品处处用到组合数学,更确切地说就是组合算法。传统的计算机算法可以分为两大类,一类是组合算法,一类是数值算法(包括计算数学和与处理各种信息数据有关的信息学)。依我个人的浅见,近年来计算机算法又多了一类:那就是符号计算算法。吴文俊院士开创的机器证明方法就属于符号计算,引起了国际上的高度评价,被称为吴方法。而国际上还有专门的符号计算杂志。符号算法和吴方法跟代数组合学也有十分密切的联系。组合数学,数值计算(包括计算数学,科学计算,非线性科学,和与处理各种信息数据有关的信息学)和统计学可能是应用最广的数学分支,而组合数学的价值甚至不亚于统计学和数值计算。由于数学机械化近年来的发展和在计算机科学中的重要性,把数学机械化,科学计算和组合数学组合起来,就可以说是中国信息产业的基础。组合数学家H. Wilf和D. Zeilberger1998因为在组合恒等式的机械化证明方面的成果,获得1998年美国数学会的Steele奖。

Gian-Carlo Rota教授在他去年不幸逝世之前,还专门向我提出,希望我向中国有关部门和领导人呼吁,组合数学是计算机软件产业的基础,中国最终一定能成为一个软件大国,但是要实现这个目标的一个突破点就是发展组合数学。中国在软件技术上远远落后于美国,而在组合数学上则更是落后于美国和欧洲。如果中国只是想在软件技术上跟着西方走,而不在组合数学上下功夫,那么中国的软件将一直处于落后的状态。他特别强调组合数学在计算机科学中的作用,以及在大学计算机系加强组合数学教学和人才培养。

最近Thomson Science公司创刊的一份电子刊物《离散数学和理论计算机科学》即是一个很好的说明。它的内容涉及离散数学和计算机科学的众多方面。由于计算机软件的促进和需求,组合数学已成为一门既广博又深奥的学科,需要很深的数学基础,逐渐成为了数学的主流分支。本世纪公认的伟大数学家盖尔芳德预言组合数学和几何学将是下一世纪数学研究的前沿阵地。这一观点不仅得到国际数学界的赞同,也得到了中国数学界的赞同和响应。

加拿大在Montreal成立了试验数学研究中心,他们的思路可能和吴文俊院士的数学机械化研究中心的发展思路类似,使数学机械化,算法化,不仅使数学为计算机科学服务,同时也使计算机为数学研究服务。吴文俊院士指出,中国传统数学中本身就有浓厚的算法思想。

今后的计算机要向更加智能化的方向发展,其出路仍然是数学的算法,和数学的机械化。另外的一个有说服力的现象是,组合数学家总是可以在大学的计算机系或者在计算机公司找到很好的工作,一个优秀的组合数学家自然就是一个优秀的计算机科学家。相反,美国所有大学计算机系都有组合数学的课程。

除上述以外,欧洲也在积极发展组合数学,英国、法国、德国、荷兰、丹麦、奥地利、瑞典、意大利、西班牙等国家都建立了各种形式的组合数学研究中心。近几年,南美国家也在积极推动组合数学的研究。澳大利亚,新西兰也组建了很强的组合数学研究机构。值得一提的是亚洲的发达国家也十分重视组合数学的研究。日本有组合数学研究中心,并且从美国引进人才,不仅支持日本国内的研究,还出资支持美国的有关课题的研究,这样使日本的组合数学这几年的发展极为迅速。台湾、香港两地也从美国引进人才,大力发展组合数学。新加坡,韩国,马来西亚也在积极推动组合数学的研究和人才培养。台湾的数学研究中心也正在考虑把组合数学作为重点方向来发展。世界各地对组合数学的如此钟爱显然是有原因的,那就是没有组合数学就没有计算机科学,没有计算机软件。

4. 组合数学花絮

** 在日常生活中我们常常遇到组合数学的问题。如果你仔细留心一张世界地图,你会发现用一种颜色对一个国家着色,那么一共只需要四种颜色就能保证每两个相邻的国家的颜色不同。这样的着色效果能使每一个国家都能清楚地显示出来。但要证明这个结论确是一个著名的世界难题,最终借助计算机才得以解决,最近人们才发现了一个更简单的证明。

** 我国古代的河洛图上记载了三阶幻方,即把从一到九这九个数按三行三列的队行排列,使得每行,每列,以及两条对角线上的三个数之和都是一十五。组合数学中有许多象幻方这样精巧的结构。1977年美国旅行者1号、2号宇宙飞船就带上了幻方以作为人类智慧的信号。

** 当你装一个箱子时,你会发现要使箱子尽可能装满不是一件很容易的事,你往往需要做些调整。从理论上讲,装箱问题是一个很难的组合数学问题,即使用计算机也是不容易解决的。

** 在中小学的数学游戏中,有这样一个问题,一个船夫要把一只狼,一只羊和一棵白菜运过河。问题是当人不在场时,狼要吃羊,羊要吃白菜,而他的船每趟只能运其中的一个。他怎样才能把三者都运过河呢?这就是一个很典型、很简单的组合数学问题。

** 我们还会遇到更复杂的调度和安排问题。例如,在生产原子弹的曼哈顿计划中,涉及到很多工序,许多人员的安排,很多元件的生产,怎样安排各种人员的工作,以及各种工序间的衔接,从而使整个工期的时间尽可能短?这些都是组合数学典型例子。

** 航空调度和航班的设定也是组合数学的问题。怎样确定各个航班以满足 不同旅客转机的需要,同时也使得每个机场的航班起落分布合理。此外,在一些航班有延误等特殊情况下,怎样作最合理的调整,这些都是 组合数学的问题。

** 对于城市的交通管理,交通规划,哪些地方可能是阻塞要地,哪些地方 应该设单行道,立交桥建在哪里最合适,红绿灯怎样设定最合理, 如此等等,全是组合数学的问题。

** 一个邮递员从邮局出发,要走完他所管辖的街道,他应该怎样选择什么样的路径,这就是著名的"中国邮递员问题",由中国组合数学家管梅谷教授提出,著名组合数学家,J. Edmonds和他的合作者给出了一个解答。

** 一个通讯网络怎样布局最节省?美国的贝尔实验室和IBM公司都有世界一流的组合数学家在研究这个问题,这个问题直接关系到巨大的经济利益。

** 据说,假日饭店的管理中,也严格规定了有关的工序,如清洁工的第一步是换什么,清洗什么,第二步又做什么,总之,他进出房间的次数应该最少。既然,这样一个简单的工作都需要讲究工序,那么一个复杂的工程就更不用说了。

** 库房和运输的管理也是典型的组合数学问题。怎样安排运输使得库房充分发挥作用,进一步来说,货物放在什么地方最便于存取(如存储时间短的应该放在容易存取的地方)。

** 我们知道,用形状相同的方型砖块可以把一个地面铺满(不考虑边缘的情况),但是如果用不同形状,而又非方型的砖块来铺一个地面,能否铺满呢?这不仅是一个与实际相关的问题,也涉及到很深的组合数学问题。

** 组合数学中有一个著名问题:是否存在稳定婚姻的问题。假如能找到两对夫妇(如张(男)--李(女)和赵(男)--王(女)),如果张(男)更喜欢王(女),而王(女)也更喜欢张(男),那么这样就可能有潜在的不稳定性。组合数学的方法可以找到一种婚姻的安排方法,使得没有上述的不稳定情况出现(当然这只是理论上的结论)。这种组合数学的方法却有 一个实际的用途:美国的医院在确定录取住院医生时,他们将考虑申请者的志愿的先后次序,同时也给申请排序。按这样的 次序考虑出的总的方案将没有医院和申请者两者同时后悔的情况。 实际上,高考学生的最后录取方案也可以用这种方法。

** 组合数学还可用于金融分析,投资方案的确定,怎样找出好的投资组合以降低投资风险。南开大学组合数学研究中心开发出了"金沙股市风险分析系统"现已投放市场,为短线投资者提供了有效的风险防范工具。

总之,组合数学无处不在,它的主要应用就是在各种复杂关系中找出最优的方案。所以组合数学完全可以看成是一门量化的关系学,一门量化了的运筹学,一门量化了的管理学。

胡锦涛同志在1998年接见"五四"青年奖章时发表的讲话中指出,组合数学不同于传统的纯数学的一个分支,它还是一门应用学科,一门交叉学科。他希望中国的组合数学研究能够为国家的经济建设服务。

如果21世纪是信息社会的世纪,那么21世纪也必将是组合数学大有可为的世纪。

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页