1、数和负数
2、有理数
1.2.1有理数的分类
有理数(从定义) (1)正有理数——正分数、正整数
(2)0
(3)负有理数——负分数、负整数
有理数(从正负) (1)整数——正整数、0、负整数
(2)分数——正分数、负分数
1.2.2数轴:规定了原点正方向和长度单位的直线叫数轴。
1.2.3相反数
一、定义:1.像2和-2,5和-5这样,只有符号不同的两个数,叫互为相反数。2.若a+b=0,则称a.b互为相反数。3.绝对值相等,符号相等的两个数叫相反数。
二、特征:1.互为相反数的两个和为0。2.相反数是成对出现的。3.在数轴上,相反数与原点的距离相同,是对称的。
三、计算法则:在任意一个数前面添上“-”号,新的数就表示原数的相反数。
1.2.4绝对值
一、定义 一般的,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。
二、绝对值的定义可知:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0。(文字叙述)当a是正数时,|a|=a;当a是负数时,|a|=a;当a=0时,|a|=0。(字母表示)
三、一个数的绝对值总是一个非负数,即|a|≥0。
四、比较有理数大小法则:1.正数都大于0,0大于负数,正数大于负数。2.两个负数,绝对值大的反而小。
1.3有理数的加减法
1.3.1有理数的加法
一、法则:1.同号两数相加,取相同的符号,并把绝对值相加。2.异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值。3.互为相反数的两个数相加得0。4.一个数同0相加仍得这个数。
二、运算律:1.加法交换律:两个数相加,交换加数的位置,和不变。(a+b=b+a)
2.加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
1.3.2有理数的减法
一、法则:减去一个数等于加上这个数的相反数。字母表示:a-b=a+(-b)。
1.4有理数的乘除法
1.4.1有理数的乘法
一、法则:1、(1)两数相乘,同号得正,异号得负,并把绝对值相乘。(2)任何数同0相乘,都得0。
2、(1)几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。(2)几个数相乘,如果其中有因数为0,积等于0。
二、数中仍然有:乘积是1的两个数互为倒数。
三、1.乘法交换律:两个数相乘,交换因数的位置,积相等。
2.乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
3.乘法分配律:一个数同两个数的和相乘等于把这个数分别同这个数相乘,再把积相加。
四、去括号法则:括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同。
括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反。
1.4.2 有理数的除法
一、法则:除以一个不等于0的数,等于乘以这个数的倒数。(a÷b=a×b≠0)
一、1.5有理数的乘方
1.5.1乘方
一、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。
二、乘方的性质(法则)1.正数的任何正整数次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。
2.0的正整数次幂是0。
1.5.2 科学记数法
一、概念:把一个数N表示成a×10n(1≤|a|<10,n为整数的形式,叫做科学记数法)
1.5.3 近似数和有效数字
一、准确数 与实际完全相符的数是准确数。
二、精确度 一般的,把一个数四舍五入到哪一位,就说这个数精确到了那一位.所以,精确度是描述一个近似数的近似程度的量。
三、有效数字 在近似数中,从左边第一个不是零的数字起,到由四舍五入所得的数位止,所有的数字,都叫做这个数的有效数字.一共包含的数字的个数,叫做有效数字的个数。
四、近似数的混合运算
(1) 近似数的加减运算 法则:先确定结果精确到哪一个数位;再把已知数中超过这个数值的数字四舍五入到这个数位的下一位;然后进行计算,并且把算得的数的末位四舍五入。
(2)近似数的乘除运算 法则:先确定结1、数和负数
2、有理数
1.2.1有理数的分类
有理数(从定义) (1)正有理数——正分数、正整数
(2)0
(3)负有理数——负分数、负整数
有理数(从正负) (1)整数——正整数、0、负整数
(2)分数——正分数、负分数
1.2.2数轴:规定了原点正方向和长度单位的直线叫数轴。
1.2.3相反数
一、定义:1.像2和-2,5和-5这样,只有符号不同的两个数,叫互为相反数。2.若a+b=0,则称a.b互为相反数。3.绝对值相等,符号相等的两个数叫相反数。
二、特征:1.互为相反数的两个和为0。2.相反数是成对出现的。3.在数轴上,相反数与原点的距离相同,是对称的。
三、计算法则:在任意一个数前面添上“-”号,新的数就表示原数的相反数。
1.2.4绝对值
一、定义 一般的,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。
二、绝对值的定义可知:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0。(文字叙述)当a是正数时,|a|=a;当a是负数时,|a|=a;当a=0时,|a|=0。(字母表示)
三、一个数的绝对值总是一个非负数,即|a|≥0。
四、比较有理数大小法则:1.正数都大于0,0大于负数,正数大于负数。2.两个负数,绝对值大的反而小。
1.3有理数的加减法
1.3.1有理数的加法
一、法则:1.同号两数相加,取相同的符号,并把绝对值相加。2.异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值。3.互为相反数的两个数相加得0。4.一个数同0相加仍得这个数。
二、运算律:1.加法交换律:两个数相加,交换加数的位置,和不变。(a+b=b+a)
2.加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
1.3.2有理数的减法
一、法则:减去一个数等于加上这个数的相反数。字母表示:a-b=a+(-b)。
1.4有理数的乘除法
1.4.1有理数的乘法
一、法则:1、(1)两数相乘,同号得正,异号得负,并把绝对值相乘。(2)任何数同0相乘,都得0。
2、(1)几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。(2)几个数相乘,如果其中有因数为0,积等于0。
二、数中仍然有:乘积是1的两个数互为倒数。
三、1.乘法交换律:两个数相乘,交换因数的位置,积相等。
2.乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
3.乘法分配律:一个数同两个数的和相乘等于把这个数分别同这个数相乘,再把积相加。
四、去括号法则:括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同。
括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反。
1.4.2 有理数的除法
一、法则:除以一个不等于0的数,等于乘以这个数的倒数。(a÷b=a×b≠0)
一、1.5有理数的乘方
1.5.1乘方
一、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。
二、乘方的性质(法则)1.正数的任何正整数次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。
2.0的正整数次幂是0。
1.5.2 科学记数法
一、概念:把一个数N表示成a×10n(1≤|a|<10,n为整数的形式,叫做科学记数法)
1.5.3 近似数和有效数字
一、准确数 与实际完全相符的数是准确数。
二、精确度 一般的,把一个数四舍五入到哪一位,就说这个数精确到了那一位.所以,精确度是描述一个近似数的近似程度的量。
三、有效数字 在近似数中,从左边第一个不是零的数字起,到由四舍五入所得的数位止,所有的数字,都叫做这个数的有效数字.一共包含的数字的个数,叫做有效数字的个数。
四、近似数的混合运算
(1) 近似数的加减运算 法则:先确定结果精确到哪一个数位;再把已知数中超过这个数值的数字四舍五入到这个数位的下一位;然后进行计算,并且把算得的数的末位四舍五入。
(2)近似数的乘除运算 法则:先确定结果有几个有效数字;再把已知数中有效数字的个数多的,四舍五入到只比结果中需要的个数多一个;然后进行计算,并把算得的数四舍五入到与先确定的有效数字的个数相同。果有几个有效数字;再把已知数中有效数字的个数多的,四舍五入到只比结果中需要的个数多一个;然后进行计算,并把算得的数四舍五入到与先确定的有效数字的个数相同。
3月15日 07:45 整数和分数统称为有理数。这里的分数是指p/q中,p、q都为整数,且分母不为0 ,有理数是指有限小数或无限循环小数,因为它们都可化为整数和分数。无理数指无限不循环小数。它们都不可化为整数和分数。
数字的历史
公元500年前后,随着经济、文化以及佛教的兴起和发展,印度次大陆西北部的旁遮普地区的数学一直处于领先地位。天文学家阿叶彼海特在简化数字方面有了新的突破:他把数字记在一个个格子里,如果第一格里有一个符号,比如是一个代表1的圆点,那么第二格里的同样圆点就表示十,而第三格里的圆点就代表一百。这样,不仅是数字符号本身,而且是它们所在的位置次序也同样拥有了重要意义。以后,印度的学者又引出了作为零的符号。可以这么说,这些符号和表示方法是今天阿拉伯数字的老祖先了。
两百年后,团结在伊斯兰教下的阿拉伯人征服了周围的民族,建立了东起印度,西从非洲到西班牙的撒拉孙大帝国。后来,这个伊斯兰大帝国分裂成东、西两个国家。由于这两个国家的各代君王都奖励文化和艺术,所以两国的首都都非常繁荣,而其中特别繁华的是东都——巴格达,西来的希腊文化,东来的印度文化都汇集到这里来了。阿拉伯人将两种文化理解消化,从而创造了独特的阿拉伯文化。
大约700年前后,阿拉伯人征眼了旁遮普地区,他们吃惊地发现:被征服地区的数学比他们先进。用什么方法可以将这些先进的数学也搬到阿拉伯去呢?
771年,印度北部的数学家被抓到了阿拉伯的巴格达,被迫给当地人传授新的数学符号和体系,以及印度式的计算方法(即我们现在用的计算法)。由于印度数字和印度计数法既简单又方便,其优点远远超过了其他的计算法,阿拉伯的学者们很愿意学习这些先进知识,商人们也乐于采用这种方法去做生意。
后来,阿拉伯人把这种数字传入西班牙。公元10世纪,又由教皇热尔贝�6�1奥里亚克传到欧洲其他国家。公元1200年左右,欧洲的学者正式采用了这些符号和体系。至13世纪,在意大利比萨的数学家费婆拿契的倡导下,普通欧洲人也开始采用阿拉伯数字,15世纪时这种现象已相当普遍。那时的阿拉伯数字的形状与现代的阿拉伯数字尚不完全相同,只是比较接近而已,为使它们变成今天的1、2、3、4、5、6、7、8、9、0的书写方式,又有许多数学家花费了不少心血。
阿拉伯数字起源于印度,但却是经由阿拉伯人传向四方的,这就是它们后来被称为阿拉伯数字的原因。
数学是必考科目之一,故从初一开始就要认真地学习数学。那么,怎样才能学好数学呢?现介绍几种方法以供参考:
一、课内重视听讲,课后及时复习。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
二、适当多做题,养成良好的解题习惯。
要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。
三、调整心态,正确对待考试。
首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。
在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。
由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。