DNA甲基化在表观遗传学领域还是一个比较热的题目,如果真想很好的了解,可去pubmed找两篇review认真看看.以下是简单的介绍:
DNA甲基化是指生物体在DNA甲基转移酶(DNA methyltransferase,DNMT) 的催化下,以S-腺苷甲硫氨酸(SAM) 为甲基供体,将甲基转移到特定的碱基上的过程.DNA甲基化可以发生在腺嘌呤的N -6位、胞嘧啶的N -4位、鸟嘌呤的N -7位或胞嘧啶的C-5位等.但在哺乳动物,DNA甲基化主要发生在5’-CpG-3’的C上,生成5-甲基胞嘧啶(5mC) .人类的CpG以两种形式存在,一种是分散于DNA 中,另一种是CpG结构高度聚集的CpG岛.在正常组织里,70 %~90 %的散在的CpG是被甲基修饰的,而CpG岛则是非甲基化的.
一般来 说,DNA甲基化与基因表达呈负相关.不仅启动子区高甲基化与基因表达呈负相关,基因内部的甲基化与基因表达也存在着弱的负相关,而启动子区低甲基化与转 录活性正相关.因此,DNA甲基化是调控基因表达的重要机制,也是一些遗传病以及肿瘤发生的重要机制.
使DNA甲基化的DNMT有两种:DNMT1, 持续性DNA 甲基转移酶,作用于仅有一条链甲基化的DNA 双链, 使其完全甲基化, 可参与DNA 复制双链中的新合成链的甲基化,DNM T1 可能直接与HDAC (组蛋白去乙酰基转移酶) 联合作用阻断转录;DNMT3a和DNMT3b,从头甲基转移酶, 它们可甲基化CpG, 使其半甲基化, 继而全甲基化.从头甲基转移酶可能参与细胞生长分化调控, 其中DNM T3b在肿瘤基因甲基化中起重要作用.
正确!
细胞分化与基因的表达和相互调控紧密相连。事实上,受精卵能够发育成一个个体,依赖卵细胞的细胞质中基因调控物质的不均一性,这些物质调节了胚胎不同部位的细胞内的基因,使得它们发育成肢体和器官。
细胞凋亡受到基因的严格调控。由于人体内基因受到很多物质的调节,当某些坏死因子积累到一定程度或细胞收到一定程度损伤后,某些细胞会在特定的机制下启动死亡程序,以保障其他细胞的生存。端粒酶的缺失可能造成这种衰亡的加速。
癌变和基因密不可分。癌症是一些细胞的“管家”基因突变后,细胞不受控制的“疯长”并竞争性占据机体的物质和能量,最终危害机体的病症。举一个典型的例子: p53蛋白。这是一个哺乳动物典型的管家基因表达产物。研究表明它失去活性后,50%以上的细胞会转为癌变。
希望对你的问题起到帮助。
分子杂交等大量实验表明,在细胞的全套基因组中,只有少数基因(5-10%)表达。基因组中表达的基因分为两类:⑴一类是维持细胞基本生命活动所必须的,称管家基因(house keeping gene),如各种组蛋白基因。;⑵另一类是指导合成组织特异性蛋白的基因,对分化有重要影响,称奢侈基因(luxury gene),即组织特异性(tissue-specific gene)表达的基因,如表皮的角蛋白基因、肌肉细胞的肌动蛋白基因和肌球蛋白基因、红细胞的血红蛋白基因等。这类基因与各类细胞的特殊性有直接的关系, 是在各种组织中进行不同的选择性表达的基因。 看家基因是维持细胞生存不可缺少的,奢侈基因和细胞分化有关,是组织特异性表达有关的基因,在特定组织中保持非甲基化或低甲基化状态,而在其他组织中呈甲基化状态。几乎所有的甲基化均发生在二核苷序列5'-CG-3'中的C上。使胞嘧啶变为5'-甲基胞嘧啶。而含有这种甲基化CG的序列,对应于染色体上的兼性异染色质区域。 看家基因以组成型方式在所有细胞中表达,而奢侈基因在特定组细胞中得到表达。这些基因的特异表达与否,决定了生命历程中细胞的发育、分化、细胞周期的调控、体内平衡、细胞衰老、甚至于程序化死亡。对不同类型,不同分化时期细胞的基因或基因表达情况的研究,可以获得整个细胞生命过程的信息。细胞在不同自然或人工理化因子作用下代谢过程变化甚至于病变,基因也将选择性表达。
细胞分化:
细胞分化中基因表达的调节控制是一个十分复杂的过程,在蛋白质合成的各个水平,从mRNA的转录、加工到翻译,都会有调控的机制.在DNA水平也存在调控机制(如基因的丢失、放大、移位重组、修筛以及染色质结构的变化等).不同的细胞在其发育中的基因表达的调节控制不同;相同的细胞在其发育的各阶段中,调节控制的机制不同
基因选择性表达:
从大量的研究结果中我们可以推测,生物体内有一套RNA监视系统,可以通过多种异常RNA来激发。如果外来核酸是DNA(包括转基因、重组基因、DNA病毒、扩增子等),靶标RNA需要在细胞核中完全成转录后运转到细胞质中,而侵入细胞质的病毒RNA可以直接提供靶标RNA。各种不同的靶标RNA(包括与外源基因同源的内源基因和外来的DNA产生的RNA以及病毒的RNA)由寄主的RdRP或病毒自身的RdRP通过多种不同的途径反靶标RNA转变成为双链RNA,从而通过RNAi引发的PTGS。PTGS被引发后就不再需要RdRP。关于双链RNA介导的RNAi特异性靶标RNA的降解,Bass[5]提出了这样一个假说:认为生物体内存在着一种复合酶:RNAi核酸酶,该酶具有双链RNA结合、RNase和RNA解旋酶三个活性区。首先双链RNA结合到该酶的双链RNA结合区并引导该酶识别靶标RNA,接着该酶的解旋酶完成ATP依赖性的靶标RNA与该酶结合的双链RNA的正义链的换位,RNase在靶标RNA结合位点附近完成切割,从而使靶标RNA能被进一步降解,产生大量的小片段RNA,包括序列特异性的-25nt RNA。载有序列特异性的双链RNA的游离复合酶再去识别并降解其它的靶标RNA,产生更多-25nt RNA,从而使PTGS具有持久性系统性。
基因沉寂需要经历不同的反应过程才能实现,包括组蛋白N端结构域的赖氨酸残基的去乙酰基化加工、甲基化修饰(由甲基转移酶催化,修饰可以是一价、二价和三价甲基化修饰,后者又被称为'过度’甲基化修饰(Hypermethylation) ) 、以及和甲基化修饰的组蛋白结合的蛋白质(MBP)形成“异染色质”,在上述过程中,除了部分组蛋白的N端尾部结构域需要去乙酰化、甲基化修饰之外,有时也许要在其他的组蛋白N端尾部结构域的赖氨酸或精氨酸残基上相应地进行乙酰化修饰,尽管各种修饰的最终结果会导致相应区段的基因“沉寂”失去转录活性。