您当前的位置:首页 > 发表论文>论文发表

二年级数学关于时间的论文

2023-02-15 12:28 来源:学术参考网 作者:未知

二年级数学关于时间的论文

学习兴趣对于学生掌握知识起着非常重要的作用。要我学与我要学,效果截然不同。数学是一门抽象性很 强的学科,如何激起学生学习的乐趣,是数学教师在教学过程中应十分重视的问题。尽管帮助学生逐步明确学 习数学的目的和提高学习数学知识意义的认识,是极其重要的一个方面。但是,对小学生来说,更重要的要靠 教师的课堂教学艺术,即如何结合小学数学这门学科的特点,根据儿童的年龄特征,采取有效的教学方法,去 激发和培养学生学习数学的乐趣。因此在小学数学教学中教师应在“引趣”的问题上多下些功夫。 一、运用谜语、故事组织教学 小学生,特别是低年级儿童,乐于猜谜语,听故事,教学中如能紧密结合教材,运用谜语故事的形式组织 教学,对于激发学生学习兴趣,能起到良好的作用。例如,教师在讲第四册“小时、分、秒、的认识”时,首 先让学生猜这样一个谜语:“会走没有腿,会说没有嘴,却能告诉我们,什么时候起床,什么时候睡。”然后 又根据书本四幅插图,编出一个小朋友是如何爱惜时间、养成良好的生活学习习惯的故事。这样很自然地使学 生认识了钟表,小时、分、秒,同时又及时地向学生进行了珍惜时间的思想教育,学生学习情绪也自然高涨。 二、发挥图示、教具作用,重视直观教学 小学生的思维特点是以形象思维为主要形式,对于具体形象的实物比较感兴趣。因为具体形象的东西直观 、生动、给人印象深刻。所以,现行通用教材结合教学内容,设计有大量的直观图,通过具体形象的实物来说 明概念、性质、法则、公式等数学知识。这样做不仅使学生比较容易理解和接受,逐步培养他们的抽象概括能 力,而且能激起他们学习的兴趣。例如,教师在讲“同样多”的概念时,先将两队小朋友进行拔河比赛的情景 图展现在学生面前,然后引导学生观察图画,从画面的观察分析中建立起“同样多”的概念。由于学生喜欢拔 河比赛之类的游戏竞赛活动,所以学习就感兴趣。在讲比多(少)应用题时,事先用白、黑纸版各剪兔子纸型 12个和7个。教学中运用教学绒板,进行贴示,从贴示中说明“白兔比黑兔多、“黑兔比白兔少”、“白兔比黑 兔多多少”、“黑兔比白兔少多少”等概念,之后又要学生依据“同样多”“多多少”“少多少”来说明图示 或自己动手摆图形,这样,学生学习积极性很高,不仅较好地理解和掌握了这一类应用题的有关概念和解法, 而且提高了学习应用题的兴趣和爱好。 三、通过实践操作,调动学习积极性 教学单凭老师讲,学生只通过一种感官来进行学习,就容易感到疲劳、厌倦,听不进、记不住,效果就差 。而通过多种感官,发挥学生好动的特点和长处,让他们亲自动手做一做、画一画、比一比、量一量、拼一拼 、剪一剪、学生积极性就高,教学效果就好,特别是几何初步知识的教学,这样作更能收到良好的效果。 例如,在讲长方形和正方形的面积时,教师为了让学生区分面积和周长,可以要学生先剪一个长方形和正 方形,然后让学生说一说它们的面积和周长各指的是什么。为得出长方形、正方形的面积计算公式,先让学生 用纸剪一个边长是1厘米的正方形,用它量一量长方形、正方形图形的面积有多大,量一量数学书的书面有多大 。由于学生亲自动手操作,参加实践,所以,学习兴趣很浓,对长方形、正方形的面积计算公式就理解深刻, 记忆牢固。 四、进行尝试练习,满足好奇心 小学生的好奇心、好胜心是很强的。教师就要根据儿童的这一特点,采取尝试性练习的方法,激发学生学 习兴趣,激起学生的求知欲望。例如,在讲第九册“分数化成小数”时,先让学生用除法把4/3、7/25、1/3、 7/22化成小数,然后教师指出问题,什么样的最简分数能够化成有限小数,什么样的最简分数不能化成有限小 数?我们能不能进行除法计算,从中找出规律来呢?由于学生通过练习,急于寻找规律,学习积极性就高涨, 兴趣就大增,教师可就势引导学生观察分数化成小数的几道算式,进行分析比较,从而得出分数化成有限小数 的规律。 五、巧妙设问,激发学习兴趣 教学是艺术性的劳动,教师形象生动的语言、恰当的姿势和手势、巧妙地设计各种启发式的问题,对于激 发学生学习兴趣都起着重要的作用。因此,在教学中教师应十分注意自己的数学语言,无论在复习旧知导入新 知时,还是进行新课时,或是巩固新知时,都应注意巧妙地设计一些思考性较强的问题,激发学生学习兴趣使 学生产生强烈的学习欲望。例如,在讲乘法的初步认识时,教师可先让学生进行求相同加数的和的加法计算, 或师生进行计算比赛,从而提出教师为什么一下子能算出结果?或提出这样连加多麻烦,还有没有比较简便的 计算方法?求几个相同加数的和,用什么方法计算要简便?当学生认识到用乘法计算简便后,老师又提出2×3 读作什么?它表示什么?3×4读作什么?表示什么,乘号前面的数是什么数?乘号后面的数是什么数?结果叫 什么?通过层层设问,就能有助于学生学习兴趣的持续发展。 六、采取多种练习手段,适应学生心理特点 注意力不稳定、不持久,对某一事物集中一段时间就开始分散、就不感兴趣、喜欢多变,这是小学生的又 一心理特点。因此,教学中应运用各种变换的教学手段促使学生兴趣发展,特别是一堂课的练习,切忌单调的 形式和简单机械的重复,否则不利于激发学生学习兴趣。例如,在低中年级教学中,教师可利用游戏进行教学 ,把学生对游戏的兴趣转移到学习上来,如口算、笔算接力、组数对口令、找朋友、开火车、夺红旗等;在高 年级教学中,教师可采取看谁解得快,看谁解法多,看谁编得又对又快(自编应用题)等办法,不仅能提起学 生学习精神,保持活跃的课堂气氛,消除学习疲劳,而且有利于学生对所学知识的巩固。

小学二年级数学小论文怎么写?

在课堂中,由我们去担任学习的主角,让我们真正成为学习的主人,是我们每个小学生的共同心愿。

数学活动课是我们都爱上的课,在老师的指导下,我们分成小组,通过自己动手去测量、拼凑、剪切、计算,去探索发现的规律、掌握数学知识。这样,即培养了我们的动手能力,又提高了我们的思维能力,而且让我们初步尝到了数学家研究问题成功时的滋味,使我们对数学的学习兴趣倍增。

四则运算

四则运算的意义和计数方法。

加法意义、减法意义、乘法意义、除法意义、加法、减法、除法、乘法、验算。

运算定律与简便方法、四则混合运算。

减法运算性质:a-(b+c)=a-b-c a-(b-c)=a-b+c。

运算分级:加法和减法叫做一级运算;乘法和除法叫做二级运算(简略)。

复合应用题

长度、面积和体积以及其同类量之间的进率。

质量单位和他们之间的进率。

1吨=1000千克 一千克=1000克。

时间单位进率、人民币进率。

1小时=60分钟 1分钟=60秒。

1块=10角。

比与比例。

正比例、反比例、化简比、求比值、比与分数、除法联系、比、比例、可以用比例解应用题。

图形与空间

图形、空间、周长、面积、侧面积、表面积、图形的变换、图形与位置、图形的认识与测量。

以上内容参考:百度百科-小学数学

浅谈小学数学建模小论文

  随着我国基础 教育 课程改革的不断深入,数学建模越来越受到重视,在小学数学中的地位也逐渐显著。下面是我带来的关于小学数学建模小论文的内容,欢迎阅读参考!

  小学数学建模小论文篇1
  浅谈小学数学教学中的数学建模

  什么是数学建模呢?下面我从两个方面谈谈小学数学教学中的数学建模。

  一、从建模的角度解读教材

  小学数学教材中的大部分内容已经按照数学建模的思想编排,即“创设问题情境——对问题进行分析——建立数学模型——模型应用、拓展”的模式,只是大部分数学教师还没有意识到这一点。数学教师首先要从数学建模的角度解读教材,充分挖掘教材中蕴含的建模思想,运用建模思想创造性的解释运用教材。

  例如人教版三年级上册,第一章“测量”的第一节“毫米的认识”这一内容,书中是这样编排的:

  1、通过插图创设问题情境:(1)、让学生估计数学书的长、宽、厚大约是多少厘米,再让学生测量“数学书的长、宽、厚的长度”。(2)、学生汇报测量的结果:“我量出的宽不到15厘米,还差------”,“我量出的宽比14厘米多,多------”,“数学书的厚不到1厘米是------”这里让学生量的数学书的宽和高都不是整厘米,学生不会表述。(3)、小精灵提出数学问题:“当测量的长度不是整厘米时,怎么办?”

  2、将实际问题数学化,建立数学模型:

  当测量的长度不到1厘米时怎么办呢?这时学生就会产生“有比1厘米更短的长度单位吗?”的念头,然后教师启发学生:“数学家们把1厘米平均分成10格,每1小格的长度叫1毫米,请同学们看自己的直尺,数一数1厘米的长度里有几小格?1厘米里有几毫米呢?”。在这里教师一定要帮助学生建立“毫米”这个数学模型的概念。

  3、解释、应用与拓展:

  (1)、请同学们看实物1分钱硬币,它的厚是1毫米。(2)、让学生再次测量数学书的宽、厚各是多少?(学生测量后汇报:宽是14厘米8毫米,厚是6毫米)。(3)、请同学们说一说生活中的哪些物品一般用“毫米”作单位?

  二、让学生亲身经历数学模型的产生、形成与应用过程

  小学阶段的数学建模重在让学生体验建模的过程。从学生亲身经历的现实问题情境出发,将实际问题数学化,使学生经历数学模型建立的过程,再运用建立的数学模型解决实际问题。例如人教版六年级上册“圆的周长”一课教师可以这样设计。

  1、让学生亲身经历问题产生的过程:

  出示主题图:一个学生绕着圆形花坛骑自行车。教师提出问题“骑一圈大约有多少米?”。自行车绕着圆形花坛骑一圈的轨迹是一个圆,它的长度就是这个圆的周长(如果忽略自行车行走时与花坛的距离)。学生产生疑问:怎样才能知道一个圆的周长呢?什么是圆的周长?

  2、让学生亲身经历猜测、分析、验证的过程:

  (1)、师:请同学回忆什么是周长?正方形、长方形的周长怎么求?与什么有关系?

  (2)、师:什么是圆的周长?同桌互相指一指自己桌面上的圆形物体的周长。

  (3)、师:猜想圆的周长与什么有关?(生1:我认为圆的周长与半径有关,自行车的半径越大车轮就越大。生2:我认为圆的周长与直径有关,圆形花坛的直径越大圆形花坛的周长就越长。)

  (4)、学生动手验证自己的猜想

  a、请同学拿出课前准备的学具(两个大小不同的圆,一个直径5厘米,另一个直径10厘米),同桌合作分别量出两圆的周长,验证生1与生2的猜测是否正确。

  b、学生汇报交流自己测量的结果,并谈谈自己的看法。(生1:我用细绳绕直径是10厘米的圆一周,然后量出细绳的长大约是31.2厘米。生2:我在作业本上画了一条直线,让直径是5厘米的圆沿直线滚动一周,量出一周的直线长大约是15.5厘米。生3:我认为刚才我们的猜想是正确的,直径是10厘米,周长大约是31.2厘米;直径是5厘米,周长大约是15.5厘米。直径越大周长越长,直径越小周长越短,所以圆的周长与直径、半径有关。)

  3、让学生亲身经历数学模型(圆周率π)的产生过程

  刚才同学们已验证了圆的周长与直径有关,那么它们到底有怎样的关系呢?

  (1)、师:正方形的周长是边长的4倍,猜猜圆的周长与直径有倍数关系吗?如果有,你认为是几倍?仔细观察下图后回答。

  (2)、师:同学们的猜想有道理吗,让我们利用前面测量过的圆的直径与周长的数据来算一算圆的周长是直径的几倍,学生计算后汇报交流。(生1:第一个圆的周长与直径的比值是:31.2÷10=3.12,第二个是:15.5÷5=3.1。生2:我发现周长与直径的比值都是3倍多一些,难道它也和正方形的一样,比值是个固定值吗?)师:你的猜想太对了,发现了一个数学秘密。一个圆的周长与它的直径的比值是一个固定值,数学家们把它叫做圆周率,用字母π表示。

  (3)、介绍中国古代数学著作《周髀算经》与数学家祖冲之1500年前就计算出圆周率应在3.1415926和3.1415927之间的 故事 。然后课件呈现:π是一个无限不循环小数,再呈现小数点后面4百位的分布情况。

  师:π的小数部分有很多位数。为了计算方便,一般把它保留两位小数,取近似值3.14。刚才同学们用自己测量的周长与直径算出的比值分别是3.12和3.1,虽然存在误差,但是老师认为你们已经很不错了,不仅发现了圆的周长与直径有关,而且还发现他们的比值是一个固定值。

  4、让学生归纳、 总结 、应用圆的周长计算公式

  师:既然圆的周长与它的直径的比值是一个固定值π,那么圆的周长怎样求?(生:圆的周长=直径×π)。请同学们利用公式计算“骑一圈大约有多少米?”【量得圆形花坛的直径是20米,学生计算3.14×20=62.8(米)。】

   反思 :建构主义认为,知识是不能简单地进行传授的,而必须通过学生自身以主动、积极的建构方式获得。这里从贴近学生的生活背景出发,提出“绕着圆形花坛骑一圈大约有多少米?”的问题,到“怎样求圆的周长”,再到学生不断地猜想验证“圆的周长与直径有关”,“圆的周长与它的直径的比值是一个固定值”,最后得到“圆的周长计算公式”这个数学模型,学生亲身经历了猜测、分析、验证、交流、归纳、总结的过程,实际上这就是一个建立数学模型的过程。在这个建模过程中培养了学生的初步建模能力,自觉地运用数学 方法 去发现、分析、解决生活中的问题的能力,培养了学生的数学应用意识。
  小学数学建模小论文篇2
  浅谈小学数学的数学建模教学策略

  摘 要:小学数学的“数学建模”是教学方式中新的改革亮点。近年来许多学校都陆续展开小学数学的“数学建模”活动。希望通过积极的实践为小学数学教育总结出一条全新的教育模式。

  关键词:小学数学;数学建模;教学策略探究

  数学教育是引导学生形成具有缜密逻辑性的思想方式。建立和解析数学模型能够有效提高学生的数学学习热情,降低数学学习的难度,使学生运用数学知识更加轻松自然。然而,在小学的数学教育内容中,就已经包含许多初级的数学模型。所以,在研究“数学建模”的过程中,教育界的学者们认为,小学的“数学建模”需要注意三个方面:小学“数学建模”的意义与目标;小学“数学建模”的定位;小学“数学建模”的教学演绎。

  一、小学“数学建模”的意义与目标

  1、小学“数学建模”的意义

  小学的“数学建模”活动早已经有学校展开研究。从目前研究资料来分析,小学数学建模是指:学生在教师设计的生活情景之中,通过一定的数学活动建立能够解读的数学模型并以此为学习数学的基本载体,进行学习相关的数学知识。

  小学数学建模在建模目的、活动方式、背景知识三方面,与传统数学模型存在较大差异。(1)建模目的方面:小学的数学建模目的是让学生了解数学知识,通过数学模型掌握新吸收的数学知识和争强对数学知识的正确应用,使学生在潜移默化中形成数学思考能力。(2)活动方式方面:小学的数学建模是为了培养学生的学习数学兴趣和更好掌握数学知识的教学方式,所以在教学活动方式上需要教师精心设计活动内容,由教师引导逐渐参与和体会数学世界的丰富和与现实生活的紧密联系。(3)知识背景方面:小学的数学建模,是在小学生毫无数学基础的情况下进行构建数学模型,所以在小学的数学建模中,需要简单的数学知识,以此为学生的数学知识结构打下良好基础。

  通过上述三个方面的分析,小学“数学建模”的意义,在于通过数学教育方式的改进,引导小学生发现数学与生活的紧密联系,提高小学生对数学知识的兴趣,培养小学生数学思维能力和学习能力,为日后的数学学习打下结实基础。

  2、小学“数学建模”的目标导向

  小学的数学建模,其目标导向是培养小学生的建模意识。通过培养建模意识来提升数学思维能力,积累数学知识,提升数学素养。建模意识的培养需要通过挖掘教学内容中蕴涵的建模元素,采用教师引导、学生寻找、以生活内容加强记忆的方式,使学生掌握数学建模的过程和通过数学模型解决生活问题的能力,在不断反复的学习和锻炼中组建使学生提升数学建模的意识。

  二、小学“数学建模”的定位

  数学建模,是建立数学模型并且通过使用数学模型,解决生活中存在的数学问题,整体过程的简称。

  如果通过大学或高中的教学视角审视数学建模,无疑会对学生日后学习和工作产生积极的影响。不过,从小学生的视角考虑数学建模,就需要特别注意建模的合理性定位,既不能失去数学建模的意义,又不能过于拔苗助长,导致教学效果的反向反弹。所以“数学建模”的定位要适合小学生的生活 经验 和环境,同时适合小学生的思维模式。

  1、定位于 儿童 的生活经验

  在小学对小学生的数学教学过程中,提供学生探讨研究的数学问题,其难易程度和复杂程度需要尽量贴近小学生的日常生活。在设计教学内容的时候,需要多设计小学生常见的生活数学问题,使学生因为好奇心而对学习产生动力,通过思考探索,体会数学模型的存在。

  同时,在教学的过程中需要循序渐进,随着学生的年龄争长,认知度的加强,生活关注内容的变化,适时地增加数学问题的难度。在此过程中,既需要照顾学生们的学习差异性,又要尊重学生的学习兴趣和个性。

  2、定位于儿童的思维模式

  小学生的思维模式比较简单。在小学数学的建模过程中,需要根据学生的具体学习程度循序渐进,通过由简入深的学习过程,让学生具有充分的适应过程。只有适应学生思维模式的教学定位,才能使学生的数学意识得到提高,并且通过循序渐进的学习过程掌握运用数学模型解决实际问题的能力。

  举例:在小学二年级,关于认知乘法和除法的过程中,将时间、路程、速度引入教学场景之中。学生跟随教师引导,逐渐发现时间与路程的关系,并且结合所学的数学知识,乘法与除法,找到了“一乘两除”的数学原型。从而使学生通过“数量关系”中,认知到生活与数学的关系。

  三、小学“数学建模”的教学演绎

  小学“数学建模”的教学演绎,主要分析以下两个方面。

  1、在小学“数学建模”中促进结构性生长

  因为小学生的 逻辑思维 能力还处于发展构成阶段,所以必须在数学建模教学过程中从学生的“逻辑结构图式”出发,充分考虑小学生的知识结构和认知规律,通过整合实际问题,从数学问题角度为学生整合抽象的、具有清晰结构认知性的,数学教育模型,从而使小学生能够直接清晰地对数学模型拥有直观深刻的认知。

  2、在小学“数学建模”中促进学生自主性建构

  在小学“数学建模”中教师需要引导和帮助学生,运用已学习的数学知识,构建具有应用性的数学模型。在教学过程中,教师需要对学生们习以为常的事物进行剖析,使事物露出具有吸引性的数学问题,通过激发学生的好奇心,引导学生探索生活中存在的数学问题,帮助学生发现生活中隐藏的数学问题和解决问题,最终促使学生能够独立自主地根据实际问题建立数学模型。

  小学数学的“数学建模”是教学方式中新的尝试,它作为一种学习数学的方式、方法、策略和将生活与数学紧密联系的纽带,对引导学生更好的认识数学、学习数学、运用数学、具有十分积极的作用。小学生学习建模过程,实际就是锻炼逻辑思维能力的过程,对学生日后学习学习知识和 兴趣 爱好 都有显著的帮助。

  参考文献:

  [1] 陈进春.基于数学建模视角的教学演绎[J].江苏教育,2013(4).

  [2] 储冬生.小学数学建模的分析讨论[J].湖南教育,2012(12).

  [3] 陈明椿.数学教育中的数学建模方法[J].福建师范大学,2014(1).
  小学数学建模小论文篇3
  浅析数学建模在小学数学中的应用

  摘 要:小学阶段进行数学基础知识的教学时,适时适度渗透数学思想模式,不仅成为一种可能,也成为一种必需。学校教育由于长期受“应试教育”的影响,学生中存在着知识技能强,实际应用差的情况.为此,本文引入了“数学模型”这一概念,就此讨论如何帮助学生建立数学模型以及建立数学模型的意义,旨在促进学生的学习兴趣,提高他们的实际应用能力。

  关键词:小学数学 模型 概念 应用

  一、数学教学中数学模型应用的缺乏

  数学课程改革的思路之一就是数学应强化应用意识,允许非形式化。事实上,数学课程中数学的应用意识早已成为发达国家的共识,而我国目前应用意识却十分淡薄,与世界数学课程的发展潮流极不合拍。

  当前使用的数学教材中的习题多是脱离了实际背景的纯数学题,或者是看不见背景的应用数学题,这样的训练,久而久之,使学生解现成的数学题能力很强,而解决实际问题的能力却很弱。教师要独具慧眼,善于改造教材,为学生创造一个可操作,可探索的数学情境,引领他们探索知识的生成过程,再现数学知识的生活底蕴。因此,引入“数学模型”这一概念。

  二、概念界定

  何谓数学模型?数学模型可描述为:对于现实世界的一个特定对象,为了一个特定的目的,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到一个数学结构,而建立数学模型的过程,则称之为数学建模。

  三、数学建模在小学数学中的应用

  1、 让学生经历数学概念形成的过程,探索数学规律。《新课标》的总体目标中提出,要让学生“经历将一些实际问题抽象为数与代数的问题的过程,掌握数与代数的基础知识和基本技能,并能解决简单的问题。”让学生经历就必须有一个实际环境。学生在实际环境中通过活动体会数学、了解数学、认识数学。

  在教学中“鱼段中烧”常常存在。没有在教学的应用上给予足够的注意和训练,即没有着意讨论和训练如何从实际问题中提炼出数学问题(鱼头)以及如何应用数学来满足实际问题中的特殊需求(鱼尾),很少给学生揭示有关数学概念及理论的实际背景和应用价值。为了避免这一情况,教师要帮助学生建立数感,在自己的水平上探索不同的数学模型。比如:在教学连减应用题时,可以让学生进行模拟购物。小售货员讲一讲自己怎样算帐,体会两种方法的不同:小强带了90元钱去买了一只 足球 45元,一只 排球 26元,要找回几元?大部分小售货员都这样算:先用90元钱去减一只足球的钱,再减去一只排球的钱,求出来的就是要找回的钱。算式是90-45-26=19(元)。也有一小部分售货员列出了这样的算式:45+26=71(元) 90-71=19(元)两种方法我都给予肯定,并总结:遇到求剩余问题的题目时都用减法来做。并总结出求大数用加法,求小数用减法的模型。学生只要在做题中知道求的是大数还是小数就可以了,从而培养了学生从数学的角度去观察和解释生活。

  2、 开设数学活动课,重视实践活动,为学生解决问题积累经验。开设数学活动课,让学生自己动脑、动手解决问题,可以使他们获取数学实际问题的背景、情境,理解有关的名词、概念,有助于学生正确理解题目意思,建立数学模型,是培养学生主动探究精神和实践能力的自由天地。

  比如:在上“几个与第几个”的拓展课时,出现一道题:从左往右数,小华是第9个,从右往左数,小华是第8个,这一排有多少人?在解这道题之前,我让一个组6个人站起来,数其中的一个人,发现就直接3+4=7,会多出一人来。为什么会这样?学生讨论后得出:其中的那个人多数一次了,要把他减掉。于是,得到一个模型:左边数过来的数+右边数过来的数-1=总人数。有了这个模型之后,解决这一类问题就容易多了。

  3、 引导学生用图形解决问题,确立从代数到几何的过渡。代数与几何并不是孤立的两块。他们也有相通之处。我们可以用几何的观念来解代数问题。图形对于低段学生来说是更直观、更有效的形式。

  例:让学生观察热水瓶、茶杯、可乐罐、电线杆、大树、房屋柱子等,通过现代教学手段(如用CAI课件或实物投影仪),学会撇开扶手柄、树枝、颜色等非本质特征,分析主体部分的形状,再配以必要的假设,得出它们的共同属性:只能往一个方向滚动,且上下两个底面是大小相同的圆面,抽象出“圆柱体”这一数学模型。这样通过向学生展示上述数学建模的过程,使学生知道数学来源于实际生活,生活处处有数学,在此基础上再引导学生把数学知识运用到生活和生产的实际中去。又如,在教学应用题时,我们往往借助线段图来解,将文字题有效地转化为图形,使题目变得浅显易懂。

  四、数学模型在小学数学中的现实意义

  1、 通过数学建模理论的学习研讨,有利于提高教师的数学素养。一般地说,在建模过程中,原始问题中的本质特征应被保留下来,当然也要简化,这种简化基于科学,而不完全基于数学,另一方面,一定的简化又是必须的,以便得到的数学体系是易处理的。这就需要教师必须具备精深的专业知识,能帮助学生建立准确的数学模型。

  2、 建立数学模型能有效地激发学生的求知欲望。数学模型是数学基础知识与数学应用之间的桥梁,建立和处理数学模型的过程,更重要的是,学生能体会到从实际情景中发展数学,获得再创造数学的绝好机会,学生更加体会到数学与大自然和社会的天然联系。因而,在小学数学教学中,让学生从现实问题情景中学数学、做数学、用数学应该成为我们的一种共识。

  3、 数学建模是培养学生建模能力的重要途径。数学建模就是找出具体问题的数学模型,求出模型的解,验证模型解的全过程。由于小学生以形象思维为主,因此他们的数学模型大多和形象图有关。引导学生从画实物图、矩形图、线段图开始,逐步做到自觉主动地构建数学模型,并把它作为一种极好的解决问题的工具,使他们在这个过程中提高兴趣,增强能力。

  4、 现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。数学思想是对数学事实与理论经过概括后产生的本质认识;基本数学思想则是体现或应该体现于基础数学中的具有奠基性、总结性和最广泛的数学思想,它们含有传统数学思想的精华和现代数学思想的基本特征,并且是历史地发展着的。通过数学思想的培养,数学的能力才会有一个大幅度的提高。

  五、结束语

  学生的建模思想的培养是长期的、复杂的过程,采用的方法是多样、灵活的。只要教师用心设计,耐心诱导,全体学生都能建立不同水平的数学模型。

猜你喜欢:

1. 数学建模教学相关小论文

2. 小学数学建模优秀论文

3. 关于小学数学建模论文

4. 学习数学建模心得体会

5. 小学数学教学小论文

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页