关于牛顿第二定律研究论文
阅读人数:1337人页数:4页wscq11wwgx
“The alteration of motion is ever proportional to the motive force impressed; and is made in the direction of the right line in which that force is impressed.” “动量的变化与冲量成同向正比”
——艾萨克•牛顿
运动是物质无时无刻都在做的,2百年前伟大的物理学家,数学家,哲学家艾萨克•牛顿博士就在《自然哲学之数学原理》中做了探究。今天就让我们追寻前辈的足迹来一探辛秘。
关于牛顿第二定律研究论文 Newton's Second Law of Motion-Force and Acceleration
一、概述
牛顿第二运动定律(Newton's second law of motion)说明了物体的加速度与物体所受的合力成正比,并和物体的质量成反比。
而物体加速度的方向与合力的方向相同。以物理学的观点来看,牛顿第二定律亦可以表述为“物体随时间变化之动量变化率和所受外力之和成正比”。即动量对时间的一阶导数等于外力之和。牛顿第二定律表明,物体的加速度与施加的合外力成正比,与物体的质量成反比,方向与合外力方向相同。这定律又称为“加速度定律”。以方程表达:
,其中, F是合外力,是所有施加于物体的力的矢量和,m 是质量,a 是加速度。而数学上,牛顿第二定律通常表达为:
这里实际上定义了质量为合外力与加速度的比率。这样定义的质量称为物体的惯性质量,是物体的固有属性,与外力无关。这样在数量上,施加于物体的合外力等于物体质量与加速度的乘积。国际标准制中,将力的单位定义为使得单位质量的物体得到单位加速度的所需[1],这与惯性质量的定义相容。
具体来说,力、加速度、质量的单位分别规定为牛顿(N)、米每二次方秒(m/s2),公斤(kg)。施加1牛顿的力于质量为1公斤的物体,可以使此物体的加速度为1m/s2。也就是说,
合外力只能造成物体朝着同方向的加速度运动。假定物体的质量、初始速度与初始位置为已知量,则从施加于物体的合外力,可以应用第二定律计算出物体的运动轨迹。这是一个非常有用的方法。
1/4
二、牛顿论述
牛顿试着解释冲量与动量之间的关系。假设施加于物体的冲量造成了物体的动量改变,则双倍的冲量会造成双倍的动量改变,三倍的冲量会造成三倍的动量改变,不论冲量是全部同时施加,还是一部分一部分慢慢地施加,所造成的动量改变都一样。
牛顿又试着解释这动量改变与原先动量之间的关系。这动量改变必定与施加的冲量同方向。假设在冲量施加之前,物体已具有某动量,则这动量改变会与原先动量相加或相减,依它们是同方向还是反方向而定,假设动量改变与原先动量呈某角度,则最终动量是两者按著角度合成的结果。
牛顿所使用的术语的涵意、他对于第二定律的认知、他想要第二定律如何被众学者认知、以及牛顿表述与现代表述之间的关系,科学历史学者对于这些论题都已经做过广泛地研究与讨论
三、实验
[实验目的]验证牛顿第二定律,即质量一定时,物体的加速度与合外力大小成正比;合外力一定时,物体加速度大小和质量成反比。
[实验原理]①、保持车质量不变,改变车所受合外力大小(改变砂的质量)。用打点计时器打出纸带,求出加速度,用图象法验证物体运动的加速度是否正比于物体所受到的合外力。
②、保持砂子质量不变,改变研究对象质量。利用打点计时器打出的纸带,求出运动物体加速度,用图象法验证物体的加速度是否反比于物体的质量。
[实验器材]纸带和复写纸、小车、小桶、细绳、砂子、刻度尺、砝码、打点计时器、低压学生电源、天平(带有一套砝码)、附有定滑轮的长木板。
[实验步骤]①、用天平测出车和桶的质量M和M'。在车上加砝码,在桶内放入适量砂,使桶和砂总质量远小于车和砝码总质量,记下砝码和砂的质量m和m'。 ②、安装好实验装置。
③、平衡车和纸带受的摩擦力:在长木板不带定滑轮的一端下垫一块木板,反复移动木板位置,直到车在斜面上运动时可保持匀速直线运动,这时车拖着纸带运动时所受的阻力恰与车所受到的重力在斜面方向上的分量平衡。
④、把细绳系在小车上,并绕过滑轮悬挂小桶。接通电源,放开小车,打点计时器在纸带上打下一系列点。取下纸带,在纸带上标上纸带号码。
2/4
⑤、保持车的质量不变,通过改变砂桶的质量而改变车所受到的牵引力,再做几次实验。
⑥、在每条纸带上选取一段比较理想的部分,测量各计数点间的距离Sn,利用公式 Δs=at2,算出各条纸带所对应的小车的加速度。
⑦、根据实验结果画出车运动的a─F图线,如图线是过原点的倾斜直线,则证明物体运动的加速度a和合外力大小成正比。
⑧、保持砂子和小桶的质量不变,在小车上加放砝码,重复上面的实验。
⑨、根据实验结果画出小车运动时的a~图线,如果图线是过原点的的倾斜直线,则证明物体运动的加速度a和物体的质量大小成反比。
[注意事项]①(M'+m')取30~100克,(M+m)大于1千克,满足 ②、平衡摩擦时,要让车拖着纸带运动,且打点计时器要打点。摩擦力一经平衡,当改变小车的质量或改变小桶的质量时,不需要重新平衡摩擦力。
③、a─F图象不过坐标原点的原因和调节方法
图线和横轴相交的原因是阻力大于下滑力,此时应该增大长木板的倾角
B、图线和纵轴相交的原因是下滑力大于阻力,应该减小长木板的倾角。
[实验思考题]1[ 1、3 ]在验证牛顿第二定律的实验中,平衡摩擦力时 不能将装砂子的小桶用细绳通过滑轮系在小车上
小车后的纸带必须连好,但打点计时器可以不打点
应使打点计时器打在纸带上的相邻点迹间的距离相等
每次改变小车的质量,必须再次平衡摩擦力
2[ A、C、D ]在做验证牛顿第二定律实验时
应该使砂子和小桶的总质量远小于小车和砝码的总质量,以减小实验误差
3/4
可用天平测得小桶和砂的总质量m1,小车和砝码的总质量m2,根据公式
求出
牛顿与经典力学的建立
吕增建
焦作大学
摘要 牛顿一是一位伟大的物理学家、数学家和天文学家。他
在自然科学史上占有独特的地位。他的科学巨著《自然哲学的数学原理》的出版,
标志着经典力学体系的建立。经典力学理论体系的科学成就和科学的方法论启迪了
人类征服自然的无穷智慧, 对现代化科学技术发展和社会进步产生了极其深远的影
响。
关键词 牛顿经典力学贡献
牛顿是伟大的物理学家, 在他所处的时代, 哥白尼提出了日心说, 开普勒从第谷的观测
资料中总结了经验的行星三定律, 伽利略又给出了力、加速度等概念并发现了惯性定律和自
由落体定律。但是, 这些物理概念和物理规律是孤立的, 在逻辑上是各自独立的东西。牛顿
正是“ 站在这些巨人的肩上” 对行星及地面上的物体运动作了整体的考察和研究, 用数学方法, 使物理学成为能够表述因果性的一个完整体系。正如牛顿所说“ 自然哲学应称之为
“ 物理学,’ 的目的在于发现自然界的结构和作用, 并且尽可能地把它们归结为一些普遍的法则和一般的定律—用观察和实验来建立这些法则, 从而导出事物的原因和结果⋯ ⋯” 牛顿对力学的研究成果集中体现在他的科学巨著《自然哲学的数学原理》以下简称《原理》
中, 这本书是科学史上极为重要的伟大著作。牛顿在《原理》书中, 提出了力学的三大定律
和万有引力定律, 对宏观物体的运动给出了精确的描述, 总结了他自己的物理发现和哲学观
点。可以说在整个科学史上没有一部著作在创新或思维方面可以和该书相媲美, 在取得伟大
成就方面也是如此。它不仅标志了十六、十七世纪科学革命的顶点, 也是人类文明进步的划
时代标志, 它不仅总结和发展了牛顿之前物理学的几乎全部重要成果, 而且也是后来所有科
学著作和科学方法的楷模。该书的出版, 标志着经典力学体系的建立, 立即作为新科学的经
典著作而受到崇敬, 在科学发展史上建立了一个不朽的丰碑。
1.1划时代的巨著《原理》
《原理》一书分为两大部分, 在第一部分中, 牛顿首先明确了当时人们常常混淆的几个
重要概念, 如质量、惯性、外力、向心力、时间、空间等, 然后提出了运动的基本定理和定
律, 即牛顿力学三定律, 力的合成与分解、动量守恒定律、质心运动定律、相对性原理以及
力的等效原理等。这一部分虽然篇幅不大, 但它是全书的基础, 内容极为重要。第二部分是
这些定律的应用, 又分为三篇, 前两篇是用演绎推理的方法导出了万有引力定律, 确定了这
一定律的具体形式讨论了阻尼运动、流体动力学以及流体静力学等。在第三篇中, 用已发,
第期吕增建牛顿与经典力学的建立现的规律解释宇宙体系, 研究天体的观测资料, 其中包括行星围绕太阳的运动, 卫星围绕行星的运动, 地面上物体的降落运动和抛射运动, 慧星轨道的确定, 岁差以及潮汐现象与万有引力的符合程度等, 首次把地上的运动与天体运动用数学方式联系起来。
牛顿的时空观是绝对的, 它虽然不能正确揭示作为物质存在形式的空间和时间的统一
性, 不能正确揭示物质和运动的统一性, 但它正确反映了当速度远低于光速时的经典理论的
基础, 它是在当时实验条件下的科学总结, 是人类认识自然的一个里程碑。
1.2著名的牛顿三定律
在明确了这些概念, 建立了时空观以后, 牛顿又精辟地阐述了著名的运动三定律。
“ 定律工每个物体继续保持其静止或沿一直线作等速运动的状态, 除非有力加于其上
迫使它改变这种状态。”
“ 定律运动的改变和所加的动力成正比, 并且发生在所加的力的那个直线方向上。”
“ 定律每个作用总有一个相等的反作用和它相对抗, 或者说, 两物体彼此之间相互
作用永远相等, 并且各指其对方。”
牛顿三定律是在观察和实验的基础上发现的, 已被公认为宏观自然规律, 并成为数学
演绎的基础。第一定律是在伽利略、笛卡儿关于惯性定律的基础上建立起来的, 对当今的物
理学家来说, 它几乎自然地成了力学的基础。第二定律是在明确了质量概念以后, 对伽利略
动力学思想的发展, 它是运动三定律的核心。牛顿第一和第二定律是密切相关的。第一定律
表明一个不受干扰力的质点保持它的原有的运动状态第二定律则表明, 力只能引起原有运
动状态的改变。故这两个定律否定了伽利略—牛顿时代以前关于必须有力才能保持运动的
错误观点。第三定律的指出, 可以说是牛顿对力学发展的一个最具创造性的独到的贡献, 这
个定律的确立指出了每一个力都有其反作用力, 从而对力的概念作了完整的概括。这三个看
起来非常简单的物体运动定律作为一个整体是动力学的基础。这个基础, 从牛顿奠定之后又
成为近代动力学和天体力学研究的基本出发点, 因此得到物理学家, 甚至所有科学家和自然
哲学家的极大重视。
1.3万有引力定律
在引力问题上, 牛顿在观念上肯定了地球上的重力与天体间引力的同一性, 这在科学史上有特别重要的意义。他从建立总的力学体系出发, 排除次要因素, 发挥他高超的数学才能处理变量问题, 在前人已知引力平方反比定理的基础上, 把向心力与物体天体的质量联系起来,并利用了他的反作用定律, 从而推广为普适的万有引力定律峡。利用万有
引力理论, 人们发现了海王星、冥王星, 解释了今后几百年内极多的地面现象与天体现象, 例如哈雷慧星、地球的扁形等。定律经过了实践的严格检验, 得到了全世纪的公认。直到今天, 万有引力定律仍是最精密可靠的基本定律之一, 也是天体力学和宇宙航行计算的基础。
牛顿的功绩及经典力学的创立对现代科学发展的影响和启示
恩格斯在谈到牛顿的成就时说, 牛顿“ 借助于万有引力定律而创造了科学的天文学, 借助于对光学的分解而创造了科学的光学, 借助于二项式定理和无穷级数理论而创立了科学的数学, 借助于对力的本性认识而创造了科学的力学” 。对牛顿的科学贡献作了极高的评价。牛顿是一位伟大的物理学家、数学家和天文学家。他一生的重要贡献是集十六、十七世纪科学先驱们成果的大成。以《原理》出版为标志创立了一个完整的经典力学理论体系, 把天地间万物的运动规律概括在一个严密的统一理论中, 正确地反映了宏观物体低速运动的宏观运动规律, 从而完成了人类文明史上第一次自然科学的大综合。以牛顿命名的力学是经典物理学和天文学的基础, 也是现代工程力学以及与之有关的工程技术的理论基础。此外, 为了说明天体现象和物理规律, 牛顿在数学上创建的微积分微积分之发明, 史学家也归功于莱布尼兹, 他们几乎同时创立了微积分学与微分方程, 为后来自然科学的发展提供了最为必要的思想工具和数学手段, 开创了数学发展的新纪元。同样, 牛顿在热学、光学、天文学等方面都做出了自己的卓越贡献。如同历史上一切伟大人物一样, 牛顿虽然对人类作出了巨大的贡献, 但他也不能不受时代的限制。他对那些暂时无法解释的自然现象归结为上帝的安排, 提出所谓“ 第一推动力” , 花费后半生的心血写出巧万字的神学著述。牛顿虽然有这样或那样的缺点或不足, 然而正是经典力学的建立表明了一个新时代和新科学文明的到来。
牛顿是近代理论物理学的创始人, 他所建立的力学理论体系不仅能说明已有的理论已经说明的现象, 更重要的是, 经典力学理论能预见到新的物理现象和物理事实, 并能以天文观测或实验证实它们的正确性。诺贝尔物理学奖获得者杨振宁教授在谈到物理学发展时曾指出物理学发展的动力有两个, 一个是实验, 另一个是物理学本身的结构。理论物理学是以实验为基础的, 没有实验, 没有对客观现象的分析和研究就不可能有物理学的发展。和经典力学体系相应的是, 牛顿建立了研究自然科学的新方法。他站在巨人的肩上以培根的实验归纳方法为基础, 又吸收了笛卡儿的数学演绎体系, 形成了他的比较全面的科学方法通过实验和观察即分析现象, 然后加以概括和总结为普遍法则即综合方法, 启开了实验科学的大门, 使作为实验科学的物理学形成了一个光辉的体系。这已成为人类认识事物本质的智能体现和重要的方法论之一, 三百年来为自然科学的繁荣立下了不朽功勋。
牛顿的经典力学体系和他的方法论使物理学在十八、十九世纪期间得以迅速发展, 并成为那时理论物理学的纲领或规范, 直到麦克斯韦电磁理论诞生, 人类对客观世界的认识扩展到电磁领域, 提出电磁场概念。这也可以认为是牛顿引力场理论的一次重大飞跃。量子力学和相对论的建立以及人们对自然过程的物理认识都可以看作是牛顿思想的一种系统的发展。
牛顿是位伟大的科学家。他在自然科学史上占有独特的地位, 给两个多世纪的自然科学的
内容和结构打上了自己的烙印。他的经典力学体系所奠定的物理基础和方法启迪了人们征服
自然的无穷智慧, 二百多年来受到人们的高度崇敬。他的科学成就和哲学观点不仅对当时的学术界和思想界起着重大推动作用, 而且还影响了的后来的一些社会变革, 对现代化科学发展和社会进步都产生了极其深刻的影响。
参考文献
谷世义物理学史简编 天津和科学技术出版社,
陈毓芳, 邹延肃物理学史简明教程 北京师范大学出版社,
丁士章等简明物理学史 山西人民出版社,
周培源在纪念牛顿《原理》三百周年大会上的讲话 物理通报,
钱令希等中国大百科全书物理学 中国大百科全书出版社,
梅益等中国大百科全书物理学 中国大百科全书出版社,
牛顿运动定律包括牛顿第一运动定律、牛顿第二运动定律和牛顿第三运动定律三条定律,由艾萨克·牛顿在1687年于《自然哲学的数学原理》一书中总结提出。
1、牛顿第一定律。
假若施加于某物体的外力为零,则该物体的运动速度不变(惯性定律)
牛顿第一定律表明,假若施加于某物体的外力为零,则该物体的运动速度不变。速度是矢量,速度包括了运动的大小与方向。
根据此定律,可得出静止的物体会保持静止,直到有外力施加于这物体为止。运动中的物体会维持其运动速度的大小与方向,直到有外力施加于这物体为止。
2、牛顿第二定律。
施加于物体的外力等于此物体的质量与加速度的乘积
牛顿第二定律表明,施加于物体的外力等于质量与加速度的乘积。这定律又称为“加速度定律”。以方程表达,F=ma,其中,F是外力,m是质量,a是加速度。
第二定律也可以用动量来表明,即施加于物体的外力等于动量的变率:
F=dp/dt;其中p是动量,t是时间。
由于动量等于质量乘以加速度,所以,假若质量不变,则可得到加速度定律,假若质量随着时间流易而改变,则该系统为可变质量系统,必须将时变质量纳入考量,更多内容,请参阅可变质量系统。
3、牛顿第三定律。
当两个物体相互作用于对方时,彼此施加于对方的力,其大小相等、方向相反(作用力与反作用力)。
牛顿第三定律表明,当两个物体相互作用时,彼此施加于对方的力,其大小相等、方向相反。根据第三定律,力是物体与物体之间的相互作用,力必会成双结对地出现,其中一道力称为“作用力”,而另一道力则称为“反作用力”。
这两道力的大小相等、方向相反。在这两道力之间,任何一道力都可以被称为作用力,而其对应的力自然成为伴随的反作用力。
这成对的作用力与反作用力称为“配对力”。第三定律又称为“作用与反作用定律”。
扩展资料:
过去两百年中,物理学者完成了很多个检验核对牛顿运动定律的实验与观测,对于一般的状况,牛顿定律能够计算出很好的近似结果。牛顿定律、牛顿万有引力定律、微积分数学方法,这些理论从所未有地对于各种各样的物理现象给出了一致的定量解释。
对于某些状况,牛顿运动定律并不适用,这时候需要更进阶的物理理论。超高速或非常强烈重力场的状况下,我们需要相对论修正和解释一些天体运动和现象,例如黑洞。在原子尺寸,我们需要量子力学解释原子的发射光谱等物理现象。
但是现代工程学里,对于一般应用案例,像车辆或飞机的运动,牛顿运动定律已能准确地解释和计算工程师遇到的问题。所以,牛顿运动定律仍是中学物理科、大学工程和理科学生的必修和基础部分。
假若要将狭义相对论效应纳入考量,则必须修改第二定律。因为当速度接近光速时,物体受到的合外力就不能精确地表示为静质量与加速度的乘积了。详尽细节,请参阅条目四维力。第三定律也不适用于狭义相对论,这是因为同时性之相对性无法实现于第三定律。
对于不是直接互相接触,而是相隔有限距离的两个物体,第三定律假定物体与物体之间的作用为瞬时的超距作用。
假设互相作用的两个物体相隔一段距离,从参考系A观测,在时间t,两个物体彼此施加于对方的力分别为F(t),-F(t)。但是从另外一个以相对速度v≠0的参考系B观测,这两个力的施加的时间不同,所以,第三定律不成立,需要加以修改。
参考资料来源:百度百科-牛顿运动定律
第一定律:惯性和力的概念,惯性系的定义 .
第二定律:
二 国际单位制
力学基本单位 m、 kg、 s
量纲:表示导出量是如何由基本量组成的关系式
四 惯性系和非惯性系 惯性力
对某一特定物体惯性定律成立的参考系叫做惯性参考系.相对惯性系作加速运动的参考系为非惯性参考系 .
在平动加速参考系中 ( 为非惯性系相对于惯性系的加速度)
五 应用牛顿定律解题的基本思路
1)确定研究对象,几个物体连在一起需作隔离体,把内力视为外力;
2)受力分析:画受力图;
3)建立坐标系,列方程求解;(用分量式)
4)先用文字符号求解,后代入数据计算结果
21世纪是知识爆炸的时代,大学物理也不例外。这是我为大家整理的大学物理学术论文,仅供参考!
中学物理中的物理模型
摘要:本文阐述了物理模型的概念、功能,中学物理教材中常见的六种物理模型,物理模型在中学物理教学中地位和作用,以及中学阶段在物理模型的教学过程中应该注意的若干问题。
关键词:中学物理;教学;物理模型
一、物理模型的概念及功能
物理学所分析、研究的实际问题往往很复杂,有众多的因素,为了便于着手分析与研究,物理学往往采用一种“简化”的方法,对实际问题进行科学抽象化处理,保留主要因素,略去次要因素,得出一种能反映原物本质特性的理想物质(过程)或假想结构,此种理想物质(过程)或假想结构就称之为物理模型。
物理模型按其设计思想可分为理想化物理模型和探索性物理模型。前者的特点是突出研究客体的主要矛盾,忽略次要因素,将物体抽象成只具有原物体主要因素但并不客观存在的物质(过程),从而使问题简化。如质点模型、点电荷模型、理想气体模型、匀速直线运动模型等等。后者的特点是依据观察或实验的结果,假想出物质的存在形式,但其本质属性还在进一步探索之中。如原子模型、光的波粒二象性模型等等。
人们建立和研究物理模型的功能主要在于:
一是可以使问题的处理大为简化而又不会发生大的偏差,从中较为方便地得出物体运动的基本规律;
二是可以对模型讨论的结果稍加修正,即可用于对实际事物的分析和研究;
三是有助于对客观物理世界的真实认识,达到认识世界,改造世界,为人类服务之目的。
二、中学物理教材中经常碰到的几种物理模型
物理模型就它在实际问题中所扮演角色或所起作用的不同,可分为:
1.物理对象模型 即把物理问题的研究对象模型化。
例如质点,舍去和忽略形状、大小、转动等性能,突出它具有所处位置和质量的特性,用一个有质量的点来描述,又如点电荷、弹簧振子、单摆、理想变压器、理想电表等等,都是属于将物体本身的理想化。
另外诸如点光源、电场线、磁感线等,则属于人们根据它们的物理性质,用理想化的图形来模拟的概念。
2.物理过程模型 即把研究对象的实际运动过程进行近似处理。排除其在实际运动过程中的一些次要因素的干扰,使之成为理想的典型过程。
如研究一个铁球从高空中由静止落下的过程。首先应考虑吸引力,由公式F=GMm�r2可知,铁球越接近地面,F就越大,其次还要考虑空气阻力、风速、地球自转等影响。这样考查铁球下落运动过程就显得十分复杂,研究起来十分不便。为此,我们在研究过程上突出铁球下落的主要因素,即受重力作用,而忽略其它次要影响,并把重力视为恒力,通过如此简化,使研究问题简化,其研究结果也不致影响到基本规律的正确性。从而成为物理学中一个典型的运动过程,即自由落体运动。这种物理模型称之为过程模型。
教材中的匀速直线运动、简谐振动、弹性碰撞;理想气体的等温、等容、等压、绝热变化等等都是将物理过程模型化。
3.物理条件模型 如自由落体运动规律就是在建立了“忽略空气阻力,认为重力恒定”的条件模型之后才得出来的。力学中的光滑斜面;热学中的绝热容器;电学中的匀强电场、匀强磁场等等,也都是把物体所处的条件理想化了。
4.物理等效模型 即通过充分挖掘原有物理模型的特征去等效具有相似性质或特点的现象和相似运动形态的物质和运动。如将理想气体分子等效为弹性小球,并用弹性小球对器壁的碰撞去解释和推导气体压强公式,用单摆振动模型去等效类比电磁振荡过程等等。
5.物理实验模型 在实验的基础上,抓住主要矛盾,忽略次要矛盾,然后根据逻辑推理法则,对过程作进一步的分析,推理,找出其规律,得出实验结论。
如伽利略就是从斜槽上滚下的小球滚上另一斜槽,后者坡度越小,小球滚得越远的实验基础上提出了他的理想实验――在无摩擦力情况下,从斜槽滚下的小球将以恒定的速度在无限长的水平面上永远不停地运动下去,从而推翻了延续两千多年的“力是维持物体运动的不可缺少”的结论,为惯性定律(牛顿第一定律)的产生奠定了基础。
再如在研究电场强度时,设想在电场中放置一个不会引起电场变化的点电荷,去考查它在各点的F�q值等等。
6.物理数学模型 即建立以物理模型为描述对象的数学模型,进行对客观实体近似的定量计算,从而使问题由繁到简。如单摆的摆线与竖直方向的夹角不得大于50,使弧线计算转化为三角计算等等。
三、物理模型在中学物理教学中的地位和作用
1.建立正确鲜明的物理模型是物理学研究的重要方法和有力手段之一
物理学所研究的各种问题,在实际上都涉及许多因素,而模型则是在抓住主要因素,忽略次要因素的基础上建立起来的。它具有具体形象、生动、深刻地反映了事物的本质和主流这一重要属性。
如“质点”模型,在物体的宏观平动运动中,描述运动的物理量位移、速度、加速度等对同一物体来说其上各点都相同,在这些问题的研究中,运动物体的大小和形状是可不考虑的,故可将运动物体质点化,即用质点模型来取代真实运动的物体。
2.正确鲜明的物理模型本身就是重要的物理内容之一,它与相应的物理概念、现象、规律相依托
人们认识原子结构的进程中,从汤姆逊模型到卢瑟福模型的飞跃就是生动的反映。
爱因斯坦光电效应方程的建立成功地解释了光电效应,而它是建立在反映光粒子性的“光子”模型之上的。
诸多的事实都在说明大凡物理现象、过程、规律都直接与之相应的物理模型关联着;一定的物理模型又是最生动最集中地反映着相应的物理概念、现象、过程和规律,二者密不可分。
3.正确鲜明的物理模型的建立,使许多抽象的物理问题变得直观化、具体化、形象化
例如,电场线对电场的描述,磁感线对磁场的描述。分子模型对理解分子动理论的基本观点,原子核式结构对a粒子散射实验现象的解释;光子模型对光的粒子性的理解等等,凡是学物理的人都会感受到物理模型所给予的无可争辩的重要作用。
四、物理模型的教学要着眼于学生掌握建立正确鲜明的物理模型这一根本方法
物理模型是物理基础知识的一部分,属物理概念的范畴。学习前人为我们创造的各种物理模型是完成教学内容的重要组成部分,培养学生掌握这一方法,即对一个具体的物理内容、现象或过程能反映出一幅鲜明的“物理图景”,是培养学生科学思维能力的一个重要方面。为此,我们在教学中应注意如下几点:
1.讲清各物理模型设计的依据。物理模型看上去是独立的,但设计物理模型的思想是相通的。
2.讲授物理模型要前后呼应,触类旁通。运动学中建立的“质点”模型,发展到质点动力学中,万有引力定律中,以至物体转动问题中,还可引伸到单摆中的摆球,弹簧振子中的振子,甚至帮助我们建立电学中的点电荷模型,光学中的点光源模型。
3.物理模型思维贯穿在物理教学的过程中,随着人们对某个物理问题认识的不断深刻和提高,物理模型也必将随之完善和准确。例如对于光本性的问题,人们从牛顿的微粒说,惠更斯的波动说、电磁说、粒子说到波粒二象性,在此发展过程中光的模型也随之一次次地得到深化。
4.在平时的例题教学中也是处处体现了物理模型的重要地位和作用。解答各类物理习题,学生能否依据题意建立起相应的物理模型,是解题成败的重要环节。如果解题者所理解的题意中的物理模型与命题者的设计模型一致,题意就必然变得清晰鲜明,习题的难点便会随之而突破,这种例子是垂手可得的。
总之,物理模型的教学确实需要我们予以足够的重视,这个问题对提高我们的物理教学水平关系甚大。
物理猜想与中学物理教学
【摘 要】阐述物理猜想在中学物理教学中的意义及教师在物理课堂教学中引导学生进行物理猜想的方法。
【关键词】中学 物理猜想 物理教学
【中图分类号】 G 【文献标识码】 A
【文章编号】0450-9889(2014)11B-0076-02
随着基础教育课程改革的逐步深入,在新课程标准中,对高中生在学习物理过程中的学习能力提出了更高的要求,由此教会学生运用物理猜想方法可以让学生更有效地学好物理。为了促进中学生学会运用物理猜想方法,新课程的物理教材刻意设计了许多研究物理现象的活动。以此增进学生对物理知识的理解,提高学生学习物理知识的能力,例如提出问题、猜想与假设、合作与交流等能力。这些基本能力是确保科学研究各种物理现象得以顺利进行的前提和基础。只有通过猜想、假设,并经过许多的研究活动,才能使研究物理现象过程顺利完成。根据笔者这十多年的教学经验,总结出物理猜想对高中物理教学的作用以及如何通过物理猜想提高物理教学的经验,现浅谈自己的看法。
一、物理猜想对中学物理教学有着重要的意义
新课标义务教育阶段的物理课程中,提出要鼓励学生积极大胆地进行科学研究,使学生从基本的科学研究过程中学到科学研究的方法,最终达到提高他们的科学研究能力的目的。使学生养成尊重事实、大胆想象的科学习惯,发扬研究真理的科学精神;培养学生敢于质疑、勇于创新、战胜困难的信心和决心。在中学物理教学中教师的作用是引导学生进行科学猜想,引导学生进行科学探索活动,提升他们的科学探索创新能力。鼓励他们在研究活动过程中,根据已经了解的物理知识和物理现象,进行猜想与假设,然后设计实验,通过亲自动手做实验来验证自己的猜想与假设。因此,要达到新课标中的要求,笔者认为猜想在新课程标准的教学过程中的运用起到了关键的作用。物理猜想的运用是教育教学发展的要求,也是促进物理教育教学改革和发展的需要。笔者认为运用物理猜想法在中学物理教学中有以下几个重要的意义。
1.提高学生学习兴趣和增进学生学习主动性
学生往往对新生事物比较好奇,都希望能够尽快了解其中的知识、规律和奥秘。如果在中学物理教学过程中多鼓励学生对所要学习的物理现象猜想出其可能出现的某些现象或规律,那么不但能增强学生的新奇心,而且还能激发学生的探究意识和能力,使他们更能积极地深入到学习新知识当中。锻炼和培养中学生的物理猜想能力,能提高学生对研究物理问题的兴趣和欲望。兴趣和欲望正是学生学习物理知识的动力。因此,物理猜想是提高学生学习兴趣和增进学生主动学习的好方法。
2.提高学生的思维能力
在中学物理教学过程中,教师要经常通过提出问题并引导学生根据他们现有知识和理解问题的能力进行猜想,经过观察、实验、归纳、总结等进行严格推理和验证,使学生在学习物理知识的过程中逐渐提高他们的发散思维能力,也使他们思想更加灵活。因此通过猜想法不仅使学生容易理解和掌握物理知识,而且有利于提高学生的思维能力。
3.有利于学生巩固所学的物理知识
物理猜想是学生根据自己的思维意识进行推测,是开放性的思维方式。经过对事物仔细观察和辩别认识,提高了学生对事物整体性的研究,促进学生的思维进程,使学生迅速地理解和掌握新知识。如果这些新知识是由学生自己主动猜想后经过验证推理得来的,那么学生就比较容易接受。因此,这些物理现象及规律就会深深刻印在学生的心里,巩固这些新的物理知识。
4.培养学生创新能力
在新课程标准中,特别着重对中学生创新能力培养。科学的物理猜想是培养中学生创新能力的主要方法之一。科学的物理猜想对中学生创新能力的培养起着积极的作用,它能提高学生的反应能力和灵活解题能力。因此,科学的物理猜想能够非常有效地提高中学生的创新能力。
二、教师在物理课堂教学中引导学生进行物理猜想的方法
教师在教学过程中为了尽可能地发挥学生的想象能力,要根据学生现已掌握的物理知识、兴趣爱好和想象能力等引导学生提出猜想。教师如何更好地引导学生运用已掌握的物理知识和技能来构建出新的物理猜想呢?笔者认为,教师在实际教学过程中需要讲究提出猜想一些方法。
1.启发学生根据自己各种经历、各种经验和已学的知识提出猜想
科学发展的经验告诉我们,科学的猜想并非胡乱猜测,它需要有科学依据,要根据学生的经历、经验、生活常识等提出猜想。爱因斯坦创立的“相对论”起初就是根据前人的经验、自己的经历以及自己掌握的科学知识提出的猜想,然后通过观察、推理、推导、证明,才提出了理论依据,最后才建立了举世闻名的“相对论”。例如,在学习“自由落体运动”时,先让学生观察羽毛和铁片在有空气的玻璃管中同时下落的情况,再启发他们猜想如果将玻璃管中的空气抽出后,再让羽毛和铁片同时下落会出现什么情况。让学生猜想并记下这些猜想,然后通过演示实验让学生观察,最后得出结论。这种通过启发学生猜想和实验演示相结合的教学方法,更能加深学生理解所学的物理知识。
2.激励学生讨论,诱发物理猜想
在教学过程中学生引导学生进行猜想时,应该将学生分成几个组,让各组提出各自不同的猜想,并由他们各自陈述自己猜想的理由和依据。激励他们讨论、争辩,经过讨论和争辩提高他们对物理猜想的兴趣和对物理猜想的积极性。例如,在学习“牛顿第二定律”时,将同学们分成两个小组,一组猜想物体的加速度与力的关系,另一组猜想物体的加速度与质量的关系,然后让他们分别做实验,得出结论。教师在课堂中认真听取各组学生的观点后,引导诱发他们讨论并猜想加速度与力及质量的关系,最后总结出牛顿第二定律。这样能更好地完成教学任务,取得更好的教学效果。
3.鼓励学生大胆猜想
在教学过程中许多学生由于害怕自己提出的猜想被其他同学取笑或者自己提出的猜想不正确被老师责怪而羞以启齿,这时教师应该鼓励、引导学生大胆猜想,消除他们的顾虑。例如,研究玻璃的折射率时,可以猜想单色光通过平行玻璃砖后传播方向是否发生改变。先鼓励学生大胆进行猜想其出射的方向,并记下来。不管他们的猜测是否合理、准确,教师都要持平和的态度,让实验验证结果。只有这样才能提高学生的学习积极性,增强学生科学猜想的意识。
4.创造良好的猜想条件
在教学过程中,当教学到有利于培养学生猜想能力的内容时,教师应该积极引导鼓励学生进行猜想。例如,在“楞次定律”教学中,教师在课堂演示让磁体的N极靠近闭合的铝环的实验之前,先启发学生猜想让磁体的N极靠近闭合的铝环时会看到什么现象,让磁体的N极去靠近有缺口的铝环时又会看到什么现象。然后通过实验引导学生注意观察实验现象。同样,让磁体的S极去靠近闭合的铝环时又会出现什么情况。总之,教师要尽最大可能为学生进行猜想创造条件。
物理猜想既是一种自由尝试,也是一种严谨的创造,因此,在教学过锃中,教师要善于抓住每一个有利于提高学生猜想能力的机会,鼓励学生大胆猜想,从而提高他们的思维能力,增加他们学习物理的兴趣,进而提高物理教学的效率。
【参考文献】
[1]王较过,孟蓓.物理探究教学中培养“猜想与假设”能力的策略[J].当代教师教育,2008(6)
[2]付红周.新课程下全方位认识猜想及其在物理教学中的培养・高中物理[M].北京:人民教育出版社,2012
[3]林东槟.物理探究教学中培养猜想与假设能力的策略[J].实验教学与仪器.2013(4)
[4]蔡严娟.新课改物理探究教学中猜想与假设能力的培养[J].现代教育科研论坛.2011(5)