牛顿第一定律是经典力学中的三大定律之一,也叫作惯性定律。下文是我为大家整理的关于2017物理学术论文的 范文 ,欢迎大家阅读参考!
2017物理学术论文篇1
牛顿第一定律的探索
摘 要: 牛顿第一定律是经典力学中的三大定律之一,也叫作惯性定律,确立了运动和力之间的关系,是动力学的奠基石,为后面学习共点力平衡的知识打下了坚实的基础,为后续牛顿定律的学习做好了准备。
关键词: 牛顿第一定律 伽利略 匀速直线运动 惯性
牛顿第一定律选自人教版必修一第四章第一节,放在运动学和力学内容之后,教材安排合理,知识点紧凑,但是很多教师在讲这节内容时对牛顿第一定律的起源讲解得比较少,因此学生对相关科学家的贡献了解得非常少。
要想深刻理解牛顿第一定律的内容,就必须了解亚里士多德、伽利略、笛卡尔和牛顿这几位科学家做出的贡献,接下来沿着历史足迹重现这个物理思想的形成过程。
1.引路者―亚里士多德
在了解亚里士多德的贡献之前,我们先了解一下亚里士多德这个人。亚里士多德是古希腊哲学家、科学家和 教育 学家,他是柏拉图的学生、亚历山大大帝的老师。他一生勤奋致学,写下了大量著作,研究的领域非常广泛,包括物理学、诗歌(包括戏剧)、音乐、生物学、动物学、逻辑学等,堪称古希腊的 百科 全书。
在物理学中亚里士多德的成就很多,但是最常被提到的却是他所犯的错误。在研究自由落体运动时,根据生活 经验 ,他认为重的物体比轻的物体下落的速度快,最终被伽利略推翻。
他在研究力和运动之间的关系时,提出假设“凡是运动的物体,一定有推动者在推着它运动”。当看到一个物体在运动,必然有一个物体在推动它,当没有推力时,它就会停止移动。如风过树摆,风停树静,这些日常生活现象很好地符合他的观点,于是他在日常观察基础上经过思考之后得出结论――力是维持物体运动的原因。
虽然他的观点最终被伽利略推翻,但是他所做的贡献是不可磨灭的,他的贡献在于他把运动和力结合起来。
2.探路者―伽利略
当时亚里士多德的学说与____教义结合,这样的结合让他的学说成为权威,两千多年来一直没有人质疑他的观点,直到伽利略用著名的斜面理想实验推翻了他的观点。伽利略认为将人们引入歧途的是摩擦力,在日常生活运动中,摩擦是难以避免的。
他注意到当小球沿水平面运动时,由于摩擦力的作用,球最终会停下来。他发现表面越光滑,球会运动得越远,于是,他推断:若没有摩擦力,球将永远运动下去。
伽利略为了证明他的思想,设计了著名的斜面理想实验,实验过程如下:
第一步:让小球从斜面静止开始向下运动,小球将会冲上另一个斜面,如果没有摩擦,小球将冲上原来的高度;
第二步:减小第二个斜面的倾角,小球仍然会达到同一个高度,但是小球在斜面上运动的距离要远一些。继续减小斜面的倾角,小球达到同一个高度时运动的距离就会更远;
第三步:如果将第二个斜面放平,球会到达多远的位置?
在第一步和第二步的基础上,很容易得出结论:球将永远运动下去,不需要力推动。他指出力并不是维持物体运动的原因。伽利略构想的理想实验(又称假想实验)是以可靠的事实为基础的,把实验与逻辑推理和谐地结合在一起,这种科学探究 方法 有力地推动了科学发展和进步。
3.探路者―笛卡尔
笛卡尔是与伽利略同时代的法国著名科学家,相对于亚里士多德和伽利略,很多学生对笛卡尔的贡献了解得更少,很多老师讲解时一笔带过,学生认为笛卡尔的思想和伽利略的思想相似,并没有什么发展,这是不对的。
笛卡尔指出:如果运动中的物体没有受到力的作用,它将继续以同一速度沿同一直线运动,既不停下来又不偏离原来的方向。
笛卡儿最早认识到惯性定律是解决力学问题的关键所在,最早把惯性定律作为原理加以确立,这对后来牛顿的综合工作有极其深远的影响。笛卡尔 想象力 丰富,他的许多观点都具有启发性,笛卡尔的贡献就在于他是第一个认识到力是改变物体运动状态的原因的。
4.铺路者―牛顿
“如果说我比别人看得更远些,那是因为我站在了巨人的肩上”,这句话大家耳熟能详,这是著名的科学家牛顿说过的话。牛顿在伽利略和笛卡尔工作的基础上,在隔了一代人之后,在《自然哲学的数学原理》一书中定义了力和惯性的概念,把物体运动的原因加以概括和提炼,提出了牛顿第一定律,这也是牛顿三大定律中最基本的定律。
他认为一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种运动状态。把物体具有保持原来匀速直线运动状态或静止状态的性质叫作惯性,所以牛顿第一定律也叫惯性定律。牛顿之所以能够成功,是因为他站在巨人的肩膀上,勤奋学习,不断发现新知识。
这些科学家的贡献是巨大的,牛顿第一定律不断地发展,逐渐地完善,是几代人共同不懈努力的结果,一个规律的发现并不是一帆风顺的,一开始的认识可能是错误的,需要人类不断探索才能发现真理。
这些科学家在科学研究过程中是极其艰难的,需要付出大量精力和心血,才能发现现象背后的真理。通过对物理学历史发展过程的考察,有助于学生了解科学家认识和发现物理定理、定律的基本方法,从而“以史为鉴”,培养学生以科学家认识世界的方式认识世界。
参考文献:
[1]郭桂周,于海波.“牛顿第一定律”物理学史辨――兼论宗教对近代科学起源的推动作用[J].物理教师,2012,33(11).
[2]李良杰.牛顿第一定律的教材编制摭论[J].课程教学研究,2013(2).
2017物理学术论文篇2
牛顿第一定律的探索
摘 要: 牛顿第一定律是经典力学中的三大定律之一,也叫作惯性定律,确立了运动和力之间的关系,是动力学的奠基石,为后面学习共点力平衡的知识打下了坚实的基础,为后续牛顿定律的学习做好了准备。
关键词: 牛顿第一定律 伽利略 匀速直线运动 惯性
牛顿第一定律选自人教版必修一第四章第一节,放在运动学和力学内容之后,教材安排合理,知识点紧凑,但是很多教师在讲这节内容时对牛顿第一定律的起源讲解得比较少,因此学生对相关科学家的贡献了解得非常少。
要想深刻理解牛顿第一定律的内容,就必须了解亚里士多德、伽利略、笛卡尔和牛顿这几位科学家做出的贡献,接下来沿着历史足迹重现这个物理思想的形成过程。
1.引路者―亚里士多德
在了解亚里士多德的贡献之前,我们先了解一下亚里士多德这个人。亚里士多德是古希腊哲学家、科学家和教育学家,他是柏拉图的学生、亚历山大大帝的老师。他一生勤奋致学,写下了大量著作,研究的领域非常广泛,包括物理学、诗歌(包括戏剧)、音乐、生物学、动物学、逻辑学等,堪称古希腊的百科全书。
在物理学中亚里士多德的成就很多,但是最常被提到的却是他所犯的错误。在研究自由落体运动时,根据生活经验,他认为重的物体比轻的物体下落的速度快,最终被伽利略推翻。
他在研究力和运动之间的关系时,提出假设“凡是运动的物体,一定有推动者在推着它运动”。当看到一个物体在运动,必然有一个物体在推动它,当没有推力时,它就会停止移动。如风过树摆,风停树静,这些日常生活现象很好地符合他的观点,于是他在日常观察基础上经过思考之后得出结论――力是维持物体运动的原因。
虽然他的观点最终被伽利略推翻,但是他所做的贡献是不可磨灭的,他的贡献在于他把运动和力结合起来。
2.探路者―伽利略
当时亚里士多德的学说与____教义结合,这样的结合让他的学说成为权威,两千多年来一直没有人质疑他的观点,直到伽利略用著名的斜面理想实验推翻了他的观点。伽利略认为将人们引入歧途的是摩擦力,在日常生活运动中,摩擦是难以避免的。
他注意到当小球沿水平面运动时,由于摩擦力的作用,球最终会停下来。他发现表面越光滑,球会运动得越远,于是,他推断:若没有摩擦力,球将永远运动下去。
伽利略为了证明他的思想,设计了著名的斜面理想实验,实验过程如下:
第一步:让小球从斜面静止开始向下运动,小球将会冲上另一个斜面,如果没有摩擦,小球将冲上原来的高度;
第二步:减小第二个斜面的倾角,小球仍然会达到同一个高度,但是小球在斜面上运动的距离要远一些。继续减小斜面的倾角,小球达到同一个高度时运动的距离就会更远;
第三步:如果将第二个斜面放平,球会到达多远的位置?
在第一步和第二步的基础上,很容易得出结论:球将永远运动下去,不需要力推动。他指出力并不是维持物体运动的原因。伽利略构想的理想实验(又称假想实验)是以可靠的事实为基础的,把实验与逻辑推理和谐地结合在一起,这种科学探究方法有力地推动了科学发展和进步。
3.探路者―笛卡尔
笛卡尔是与伽利略同时代的法国著名科学家,相对于亚里士多德和伽利略,很多学生对笛卡尔的贡献了解得更少,很多老师讲解时一笔带过,学生认为笛卡尔的思想和伽利略的思想相似,并没有什么发展,这是不对的。
笛卡尔指出:如果运动中的物体没有受到力的作用,它将继续以同一速度沿同一直线运动,既不停下来又不偏离原来的方向。
笛卡儿最早认识到惯性定律是解决力学问题的关键所在,最早把惯性定律作为原理加以确立,这对后来牛顿的综合工作有极其深远的影响。笛卡尔想象力丰富,他的许多观点都具有启发性,笛卡尔的贡献就在于他是第一个认识到力是改变物体运动状态的原因的。
4.铺路者―牛顿
“如果说我比别人看得更远些,那是因为我站在了巨人的肩上”,这句话大家耳熟能详,这是著名的科学家牛顿说过的话。牛顿在伽利略和笛卡尔工作的基础上,在隔了一代人之后,在《自然哲学的数学原理》一书中定义了力和惯性的概念,把物体运动的原因加以概括和提炼,提出了牛顿第一定律,这也是牛顿三大定律中最基本的定律。
他认为一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种运动状态。把物体具有保持原来匀速直线运动状态或静止状态的性质叫作惯性,所以牛顿第一定律也叫惯性定律。牛顿之所以能够成功,是因为他站在巨人的肩膀上,勤奋学习,不断发现新知识。
这些科学家的贡献是巨大的,牛顿第一定律不断地发展,逐渐地完善,是几代人共同不懈努力的结果,一个规律的发现并不是一帆风顺的,一开始的认识可能是错误的,需要人类不断探索才能发现真理。
这些科学家在科学研究过程中是极其艰难的,需要付出大量精力和心血,才能发现现象背后的真理。通过对物理学历史发展过程的考察,有助于学生了解科学家认识和发现物理定理、定律的基本方法,从而“以史为鉴”,培养学生以科学家认识世界的方式认识世界。
参考文献:
[1]郭桂周,于海波.“牛顿第一定律”物理学史辨――兼论宗教对近代科学起源的推动作用[J].物理教师,2012,33(11).
[2]李良杰.牛顿第一定律的教材编制摭论[J].课程教学研究,2013(2).
牛顿三大定律包括牛顿第一运动定律、牛顿第二运动定律和牛顿第三运动定律三条定律,由艾萨克·牛顿在1687年于《自然哲学的数学原理》一书中总结提出。
艾萨克·牛顿(1643年1月4日—1727年3月31日)爵士,英国皇家学会会长,英国著名的物理学家,百科全书式的“全才”,著有《自然哲学的数学原理》、《光学》。
他在1687年发表的论文《自然定律》里,对万有引力和三大运动定律进行了描述。这些描述奠定了此后三个世纪里物理世界的科学观点,并成为了现代工程学的基础。他通过论证开普勒行星运动定律与他的引力理论间的一致性,展示了地面物体与天体的运动都遵循着相同的自然定律;为太阳中心说提供了强有力的理论支持,并推动了科学革命。
牛顿第一运动定律,简称牛顿第一定律。又称惯性定律、惰性定律。常见的完整表述:任何物体都要保持匀速直线运动或静止状态,直到外力迫使它改变运动状态为止。
英国物理学家艾萨克·牛顿于1687年,在巨著《自然哲学的数学原理》里,提出了牛顿运动定律,牛顿第一运动定律就是其中一条定律。
牛顿第二运动定律的常见表述是:物体加速度的大小跟作用力成正比,跟物体的质量成反比,且与物体质量的倒数成正比;加速度的方向跟作用力的方向相同。该定律是由艾萨克·牛顿在1687年于《自然哲学的数学原理》一书中提出的。牛顿第二运动定律和第一、第三定律共同组成了牛顿运动定律,阐述了经典力学中基本的运动规律。
牛顿第三运动定律的常见表述是:相互作用的两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上。该定律是由艾萨克·牛顿在1687年于《自然哲学的数学原理》一书中提出的。牛顿第三运动定律和第一、第二定律共同组成了牛顿运动定律,阐述了经典力学中基本的运动规律。
牛顿与经典力学的建立
吕增建
焦作大学
摘要 牛顿一是一位伟大的物理学家、数学家和天文学家。他
在自然科学史上占有独特的地位。他的科学巨著《自然哲学的数学原理》的出版,
标志着经典力学体系的建立。经典力学理论体系的科学成就和科学的方法论启迪了
人类征服自然的无穷智慧, 对现代化科学技术发展和社会进步产生了极其深远的影
响。
关键词 牛顿经典力学贡献
牛顿是伟大的物理学家, 在他所处的时代, 哥白尼提出了日心说, 开普勒从第谷的观测
资料中总结了经验的行星三定律, 伽利略又给出了力、加速度等概念并发现了惯性定律和自
由落体定律。但是, 这些物理概念和物理规律是孤立的, 在逻辑上是各自独立的东西。牛顿
正是“ 站在这些巨人的肩上” 对行星及地面上的物体运动作了整体的考察和研究, 用数学方法, 使物理学成为能够表述因果性的一个完整体系。正如牛顿所说“ 自然哲学应称之为
“ 物理学,’ 的目的在于发现自然界的结构和作用, 并且尽可能地把它们归结为一些普遍的法则和一般的定律—用观察和实验来建立这些法则, 从而导出事物的原因和结果⋯ ⋯” 牛顿对力学的研究成果集中体现在他的科学巨著《自然哲学的数学原理》以下简称《原理》
中, 这本书是科学史上极为重要的伟大著作。牛顿在《原理》书中, 提出了力学的三大定律
和万有引力定律, 对宏观物体的运动给出了精确的描述, 总结了他自己的物理发现和哲学观
点。可以说在整个科学史上没有一部著作在创新或思维方面可以和该书相媲美, 在取得伟大
成就方面也是如此。它不仅标志了十六、十七世纪科学革命的顶点, 也是人类文明进步的划
时代标志, 它不仅总结和发展了牛顿之前物理学的几乎全部重要成果, 而且也是后来所有科
学著作和科学方法的楷模。该书的出版, 标志着经典力学体系的建立, 立即作为新科学的经
典著作而受到崇敬, 在科学发展史上建立了一个不朽的丰碑。
1.1划时代的巨著《原理》
《原理》一书分为两大部分, 在第一部分中, 牛顿首先明确了当时人们常常混淆的几个
重要概念, 如质量、惯性、外力、向心力、时间、空间等, 然后提出了运动的基本定理和定
律, 即牛顿力学三定律, 力的合成与分解、动量守恒定律、质心运动定律、相对性原理以及
力的等效原理等。这一部分虽然篇幅不大, 但它是全书的基础, 内容极为重要。第二部分是
这些定律的应用, 又分为三篇, 前两篇是用演绎推理的方法导出了万有引力定律, 确定了这
一定律的具体形式讨论了阻尼运动、流体动力学以及流体静力学等。在第三篇中, 用已发,
第期吕增建牛顿与经典力学的建立现的规律解释宇宙体系, 研究天体的观测资料, 其中包括行星围绕太阳的运动, 卫星围绕行星的运动, 地面上物体的降落运动和抛射运动, 慧星轨道的确定, 岁差以及潮汐现象与万有引力的符合程度等, 首次把地上的运动与天体运动用数学方式联系起来。
牛顿的时空观是绝对的, 它虽然不能正确揭示作为物质存在形式的空间和时间的统一
性, 不能正确揭示物质和运动的统一性, 但它正确反映了当速度远低于光速时的经典理论的
基础, 它是在当时实验条件下的科学总结, 是人类认识自然的一个里程碑。
1.2著名的牛顿三定律
在明确了这些概念, 建立了时空观以后, 牛顿又精辟地阐述了著名的运动三定律。
“ 定律工每个物体继续保持其静止或沿一直线作等速运动的状态, 除非有力加于其上
迫使它改变这种状态。”
“ 定律运动的改变和所加的动力成正比, 并且发生在所加的力的那个直线方向上。”
“ 定律每个作用总有一个相等的反作用和它相对抗, 或者说, 两物体彼此之间相互
作用永远相等, 并且各指其对方。”
牛顿三定律是在观察和实验的基础上发现的, 已被公认为宏观自然规律, 并成为数学
演绎的基础。第一定律是在伽利略、笛卡儿关于惯性定律的基础上建立起来的, 对当今的物
理学家来说, 它几乎自然地成了力学的基础。第二定律是在明确了质量概念以后, 对伽利略
动力学思想的发展, 它是运动三定律的核心。牛顿第一和第二定律是密切相关的。第一定律
表明一个不受干扰力的质点保持它的原有的运动状态第二定律则表明, 力只能引起原有运
动状态的改变。故这两个定律否定了伽利略—牛顿时代以前关于必须有力才能保持运动的
错误观点。第三定律的指出, 可以说是牛顿对力学发展的一个最具创造性的独到的贡献, 这
个定律的确立指出了每一个力都有其反作用力, 从而对力的概念作了完整的概括。这三个看
起来非常简单的物体运动定律作为一个整体是动力学的基础。这个基础, 从牛顿奠定之后又
成为近代动力学和天体力学研究的基本出发点, 因此得到物理学家, 甚至所有科学家和自然
哲学家的极大重视。
1.3万有引力定律
在引力问题上, 牛顿在观念上肯定了地球上的重力与天体间引力的同一性, 这在科学史上有特别重要的意义。他从建立总的力学体系出发, 排除次要因素, 发挥他高超的数学才能处理变量问题, 在前人已知引力平方反比定理的基础上, 把向心力与物体天体的质量联系起来,并利用了他的反作用定律, 从而推广为普适的万有引力定律峡。利用万有
引力理论, 人们发现了海王星、冥王星, 解释了今后几百年内极多的地面现象与天体现象, 例如哈雷慧星、地球的扁形等。定律经过了实践的严格检验, 得到了全世纪的公认。直到今天, 万有引力定律仍是最精密可靠的基本定律之一, 也是天体力学和宇宙航行计算的基础。
牛顿的功绩及经典力学的创立对现代科学发展的影响和启示
恩格斯在谈到牛顿的成就时说, 牛顿“ 借助于万有引力定律而创造了科学的天文学, 借助于对光学的分解而创造了科学的光学, 借助于二项式定理和无穷级数理论而创立了科学的数学, 借助于对力的本性认识而创造了科学的力学” 。对牛顿的科学贡献作了极高的评价。牛顿是一位伟大的物理学家、数学家和天文学家。他一生的重要贡献是集十六、十七世纪科学先驱们成果的大成。以《原理》出版为标志创立了一个完整的经典力学理论体系, 把天地间万物的运动规律概括在一个严密的统一理论中, 正确地反映了宏观物体低速运动的宏观运动规律, 从而完成了人类文明史上第一次自然科学的大综合。以牛顿命名的力学是经典物理学和天文学的基础, 也是现代工程力学以及与之有关的工程技术的理论基础。此外, 为了说明天体现象和物理规律, 牛顿在数学上创建的微积分微积分之发明, 史学家也归功于莱布尼兹, 他们几乎同时创立了微积分学与微分方程, 为后来自然科学的发展提供了最为必要的思想工具和数学手段, 开创了数学发展的新纪元。同样, 牛顿在热学、光学、天文学等方面都做出了自己的卓越贡献。如同历史上一切伟大人物一样, 牛顿虽然对人类作出了巨大的贡献, 但他也不能不受时代的限制。他对那些暂时无法解释的自然现象归结为上帝的安排, 提出所谓“ 第一推动力” , 花费后半生的心血写出巧万字的神学著述。牛顿虽然有这样或那样的缺点或不足, 然而正是经典力学的建立表明了一个新时代和新科学文明的到来。
牛顿是近代理论物理学的创始人, 他所建立的力学理论体系不仅能说明已有的理论已经说明的现象, 更重要的是, 经典力学理论能预见到新的物理现象和物理事实, 并能以天文观测或实验证实它们的正确性。诺贝尔物理学奖获得者杨振宁教授在谈到物理学发展时曾指出物理学发展的动力有两个, 一个是实验, 另一个是物理学本身的结构。理论物理学是以实验为基础的, 没有实验, 没有对客观现象的分析和研究就不可能有物理学的发展。和经典力学体系相应的是, 牛顿建立了研究自然科学的新方法。他站在巨人的肩上以培根的实验归纳方法为基础, 又吸收了笛卡儿的数学演绎体系, 形成了他的比较全面的科学方法通过实验和观察即分析现象, 然后加以概括和总结为普遍法则即综合方法, 启开了实验科学的大门, 使作为实验科学的物理学形成了一个光辉的体系。这已成为人类认识事物本质的智能体现和重要的方法论之一, 三百年来为自然科学的繁荣立下了不朽功勋。
牛顿的经典力学体系和他的方法论使物理学在十八、十九世纪期间得以迅速发展, 并成为那时理论物理学的纲领或规范, 直到麦克斯韦电磁理论诞生, 人类对客观世界的认识扩展到电磁领域, 提出电磁场概念。这也可以认为是牛顿引力场理论的一次重大飞跃。量子力学和相对论的建立以及人们对自然过程的物理认识都可以看作是牛顿思想的一种系统的发展。
牛顿是位伟大的科学家。他在自然科学史上占有独特的地位, 给两个多世纪的自然科学的
内容和结构打上了自己的烙印。他的经典力学体系所奠定的物理基础和方法启迪了人们征服
自然的无穷智慧, 二百多年来受到人们的高度崇敬。他的科学成就和哲学观点不仅对当时的学术界和思想界起着重大推动作用, 而且还影响了的后来的一些社会变革, 对现代化科学发展和社会进步都产生了极其深刻的影响。
参考文献
谷世义物理学史简编 天津和科学技术出版社,
陈毓芳, 邹延肃物理学史简明教程 北京师范大学出版社,
丁士章等简明物理学史 山西人民出版社,
周培源在纪念牛顿《原理》三百周年大会上的讲话 物理通报,
钱令希等中国大百科全书物理学 中国大百科全书出版社,
梅益等中国大百科全书物理学 中国大百科全书出版社,