按照以下思路写:
一、一题多解的意义
二、一题多解的题例分析
三、培养学生一题多解的途径
四、一题多解应注意的问题
数学论文题目是 一题多解所体现的数学思想
此类的论文帮忙
我们写过的参考文献:
没什么格式,就像写作文一样。
如题目:数学数学,数理人生
数学是这样一种东西:她提醒你有无形的灵魂,她赋予她发现的真理以生命;她唤起心神、澄清智慧;她给我们的内心思想增添光辉;她涤尽我们有生以来的蒙昧和无知。
数学方法的万能性与广泛性使它能够处理种类众多的问题,如空间的和运动的,机会的和概率的,统计的和社会科学的,艺术的和文学的,逻辑的和哲学的,音乐的和建筑的,政治的和战争的,食品的和医药的,遗传的和变异的,人类思维的和电脑的。
数学文化是是人类文明中的精华部分。数学提供了理性思维的范式,它可以使人的思维条理化和敏捷化。数学提供了完善的方法论,可以使人严密化、客观化,排除感情和偏见的介入,从而做出正确的判断。
1.数学与对知识的探求。
我们首先问,有独立于人的物理世界存在吗?答案历来有两种。唯物主义认为,存在;而唯心主义认为,不存在。我们是唯物主义者,认为存在一个独立于人的客观世界。这正是我们研究的起点和探索的对象。
其次,自然要问,我们如何获取关于外部世界的知识呢?为了获取关于外部世界的知识,每一个人都不得不依靠自己的感官知觉。人类共有几种知觉?五种:视觉、听觉、触觉、味觉和嗅觉。亚里士多德认为,知识是感觉的结果。他说:“如果我们不能感觉任何事情,我们将不能学会或弄懂任何事情;无论我们何时何地思考什么事情,我们的头脑必然是在同一时间使用着那件事情的概念。”他还说:“感觉和感官经验是科学知识的基础。”那么,通过感官获取的知识正确吗?精确吗?要回答这两个问题,就要对我们日常的经验做些认真的考察了。因为我们日常的生活都是在经验的指导下进行的,也并没有出多少错。但是,当我们依着较高原则的标准,来推论,来思考,来反省事物的本性时,我们就会发现问题了。把一根棒的一部分放在水里,我们看到什么?我们将看到一根弯曲的棒。如果把一根直棒放在水里,也把一根弯棒放在水里,恐怕你很难辨别哪一个是直的吧?这说明,感官具有粗糙性,有时还具有欺骗性。更令人遗憾的是,许多重大的物理现象根本不是感官所能知觉到的:
有谁感到地球在自转,而且还绕太阳公转?
有谁感到行星受到太阳的引力,而绕太阳公转?
有谁感到电磁波的存在?
既然重大的物理现象不是感官所能知觉到的,那么人类是如何发现这些现象的呢?答案是借助数学这一强大的工具。在探索宇宙的奥秘中,数学是一个本质的、关键的、具有穿透力的工具。
事实上,数学方法的运用是科学和前科学的分水岭。例如,静电吸引的现象,虽然古人早就知道,但是直到库仑定律发表的时候,电学才进入科学的行列。
2. 数学的精神。正如克莱因所指出的:
“数学是一种精神,一种理性精神。正是这种精神激发、促进、鼓舞并驱使人类的思维运转到最完善的程度,也正是这种精神试图决定性地影响人类的物质、道德和社会生活;试图回答人类自身提出的问题:努力去理解和控制自然;尽力去探求和确立已经获得的知识的最深刻和最完美的内涵”。因此,充分认识数学精神及其价值,实现数学与人文的结合是当前素质教育的首要目标。现在,我们对数学本身作些考察。因为,如果对数学本身的认识不本质、不全面、不系统,我们不可能学好和教好数学。
3.五个质不同的时期。
数学史大致可以分为五个质不同的时期。精确地区分这些阶段是不可能的,因为每一个阶段的本质特征都是在前一阶段中酝酿形成的。
第一个时期——数学形成时期.这是人类建立最基本的数学概念的时期.人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最简单的几何形式,逐步地形成了理论与证明之间的逻辑关系的“纯粹”数学.算术与几何还没有分开,彼此紧密地交织着.�
第二个时期称为初等数学,即常量数学的时期.这个时期的最基本的、最简单的成果构成现在中学数学的主要内容.它从公元前5世纪开始,也许更早一些,直到17世纪,大约持续了两千年,逐渐形成了初等数学的主要分支: 算术、几何、代数、三角.
这时的几何学以现实世界中的形的关系为主要研究对象。它的主要成果就是欧几里得的《几何原本》及其延续。《几何原本》把几何学的研究推到了高度系统化和理论化的境界,使得人们对于空间的认识和理解在深度上和广度上都大大前进了一步,这是整个人类文明发展史上最辉煌的一页。代数学则研究数的运算。这里的数指自然数、有理数、无理数,并开始包含虚数。解方程的学问在这个时期的代数学中居中心地位。
第三个时期是变量数学的时期.从17世纪开始的数学的新时期——变量数学时期,可以定义为数学分析出现与发展的时期.变量数学建立的第一个决定性步骤出现在1637年笛卡儿的著作《几何学》.这本书奠定了解析几何的基础,它一出现,变量就进入了数学,从而运动进入了数学.恩格斯指出:“数学中的转折点是笛卡儿的变数.有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了……”在这个转折以前,数学中占统治地位的是常量,而在这之后,数学转向研究变量了.变量数学发展的第二个决定性步骤是牛顿和莱布尼茨在17世纪后半叶建立了微积分.
第四个时期为公理化数学时期.19世纪初,数学发生了质的变化,开始了从变量的数学向公理化数学的过渡。主要体现在下面几个方面:数学的研究对象发生了质的变化。在19世纪之前,数学本质上只涉及两个常识性的概念:数和形。此后数学的研究范围大大地扩展了,数学不必把自己限制于数和形,数学可以有效地研究任何事物,例如,向量、矩阵、变换、运动等,而这些事物常常以某种方式与数和形发生关联。数学与现实世界的关系也发生了质的变化。这之前,经验是公理的唯一来源,实际上,当时只有一套公理体系——欧氏几何学的公理体系;这之后,数学开始有意识地背离经验。这之前,数学研究经验世界,那时只存在一种几何学—欧氏几何学;这之后,数学研究可能世界,出现了多种几何学:欧氏几何学、双曲几何学;椭圆几何学、拓扑学等。人类的思维可以自由创造新的公理体系。数学的抽象程度进入更高的阶段。数学常常被看作逻辑过程,并不与哪个特别的事物相关。这就引出了20世纪初罗素的数学定义:数学可以定义为这样一门学科:我们不知道在其中我们说的是什么,也不知道我们说的是否正确。数学家不知道自己所说的是什么,因为纯数学与实际意义无关;数学家不知道自己所说的是否正确,因为作为一个数学家,他不去证实一个定理是否与物质世界相符,他只问推理是否正确。
第五个时期为信息时代的数学。计算机的诞生和广泛使用使数学进入了一个新的时代。几乎同时,信息论和控制论也诞生了,数学迎来了一个新高潮。
信息时代,就是以计算机来代替原来由人来从事的信息加工的时代。由于计算机的应用,需要数学更加自觉,更加广泛地深入到人类活动的一切领域。“数学工作”的含义已经发生深刻的变化。信息加工时代的数学工作包括
数学研究工作,数学工程工作和数学生产工作。
数学研究工作有了新的含义。它研究的领域大大扩大了。数学模型具有更大的意义。
数学工程是指需要有数学知识、数学训练的人来从事的信息工程。计算机的软件工程就是一类数学工程,但不限于此,机器证明也属于数学工程。
数学生产是实现数学工程,形成产品的工作,就是软件生产。
由于数学工程和数学生产的发展,建立数学模型的工作有了更为广泛的需要。并且,离散数学处于更加重要的地位。
4.四个高峰期。从前面的论述可以看出,在整个数学史上出现了四个高蜂期。
1) 欧几里得《几何原本》的诞生。数学从经验的积累变成了一门理论科学,数学科学形成了。
2) 解析几何与微积分的诞生。这使人们在认识和利用自然规律方面大大地前进一步,使力学、物理学有了强有力的工具。引起了整个科学的繁荣。
3) 公理化的数学诞生于19世纪末与20世纪初,数学进入成熟期:巩固了自身的基础,并发现了自身的局限性。
4) 与计算机结合的当代数学进入更加广阔的领域,并影响到人类文明的一切领域,数学进入新的黄金时代。
5.六次飞跃。数学不只是算法和证明,它分出了层次。数学思想的发展,数学领域的扩大呈现了六次大的飞跃。
从数字运算到符号运算的飞跃,这就是从算术到代数学的发展。发生在16到17世纪。数学符号的诞生到今天不到400年,但是它大大地促进了数学的发展。
从常量数学到变量数学的飞跃,这就是微积分的诞生。出现在17世纪。微积分的诞生对科学技术的发展带来了根本性的影响。可以说是现代世界和古代世界的分水岭。最突出的是航天时代的到来和信息时代的到来。
从研究运算到研究结构的飞跃。这主要体现在抽象代数学的诞生。发生在19世纪。这使得数学的研究对象超越了数和形的藩篱,从而研究更加广泛的对象。
从必然性数学到或然性数学的飞跃。这就是概率论和统计学的诞生。虽然这两门学科诞生得相当早,但它们的成熟发展却是在20世纪。这个学科促使人们的思考方式发生了新的飞跃。使传统的一一对应的因果关系转变为以统计学作基础。这深刻地影响了理论与经验资料相互联系的方式。
从线性到非线性的飞跃。非线性科学的诞生和发展是在20世纪。混沌学的诞生是一个重要标志。混沌是指,由定律支配的无定律状态。数学家梅在1976年说:“不仅学术界,而且在日常的政治学界和经济学界里,要是更多的人认识到,简单的系统不一定具有简单的动力学性质,我们的状况会更好些。“
从明晰数学到模糊数学的飞跃。出现在20世纪。
当我们综观数学思想这些飞跃发展的时候,我们会有沧海桑田之感。正象一个修仙人,若干年后回到自己的家乡,发现一切都变了:
惟有门前鉴池水,春风不改旧时波。
我们会感到,旧的课本合上了。我们在学校所学的知识,已经随着新的发明和发现而变得陈旧了。“科学所带来的最大变化是变化的激烈程度。科学所带来最新奇的事是它的新奇程度。”所以,我们面临的现实是,
请君莫奏前朝曲,听唱新翻杨柳枝。
6.数学的特点。
数学区分于其它学科的明显特点有三个:第一是它的抽象性,第二是它的精确性,第三是它的应用的极端广泛性。
抽象性。抽象不是数学独有的特性,任何一门科学都具有这一特性。因此,单是数学概念的抽象性还不足以说尽数学抽象的特点。数学抽象的特点在于:第一,在数学的抽象中只保留量的关系和空间形式而舍弃了其它一切;第二,数学的抽象是一级一级逐步提高的,它们所达到的抽象程度大大超过了其它学科中的一般抽象;第三,数学本身几乎完全周旋于抽象概念和它们的相互关系的圈子之中。如果自然科学家为了证明自己的论断常常求助于实验,那么数学家证明定理只需用推理和计算。这就是说,不仅数学的概念是抽象的、思辨的,而且数学的方法也是抽象的、思辨的。
数学的抽象性帮助我们抓住事物的共性和本质。维钠说:“ 数学让人们抓住本质而忽略非本质的东西。数学也容许人们在不同的领域提出相同的问题,而不必囿于某一特定专业领域。对那些视野开阔、敏感严谨的数学家而言,数学无疑是发现和发明的工具。”
关于抽象的作用,数学家辛富(J.Singh) 说:
数学之所以能够以令人吃惊的程度深入到科学和技术的每一个分支中去,其原因在于数学的思想是纯粹抽象的,而抽象化正是科学和技术的主要动力。数学越是远离现实(即走向抽象),它就越靠近现实。因为不管它显得多么抽象,它归根到底还是从某些现实范围中抽象出来的,一定的本质特征的具体表现。
数学的抽象性帮助我们抓住事物的共性和本质。正是数学的抽象性使得数学能够处理种类众多的问题,如空间的和运动的,机会的和概率的,艺术的和文学的,音乐的和建筑的,战争的和政治的,食物的和医药的,遗传的和继承的,人类思维的和电脑的等。
数学的抽象性显示了思维的广阔性:越抽象的东西,应用的领域就越广。
抽象的另一个作用是不断地对日益扩大的数学知识总体进行简化和统一化。
数学的精确性表现在数学定义的准确性、推理和计算的逻辑严格性和数学结论的确定无疑与无可争辩性。当然,数学的严格性不是绝对的、一成不变的,而是相对的、发展着的,这正体现了人类认识逐渐深化的过程。
数学中的严谨推理和一丝不苟的计算,使得每一个数学结论都是牢固的、不可动摇的。这种思想方法不仅培养了科学家,而且它也有助于提高人的科学文化素质,它是全人类共同的精神财富。
爱因斯坦说:“为什么数学比其它一切科学受到特殊的尊重?一个理由是,它的命题是绝对可靠的和无可争辩的,而其它一切科学的命题在某种程度上都是可争辩的,并且经常处于被新发现的事物推翻的危险之中。…数学之所以有高声誉,还有一个理由,那就是数学给精密自然科学以某种程度的可靠性,没有数学,这些科学是达不到这种可靠性的。”
数学的精确性是思维严谨性的典范。
数学应用的极其广泛性也是它的特点之一。正像已故著名数学家华罗庚教授曾指出的,宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,数学无处不在,凡是出现“量”的地方就少不了用数学,研究量的关系,量的变化,量的变化关系,量的关系的变化等现象都少不了数学。数学之为用贯穿到一切科学部门的深处,而成为它们的得力助手与工具,缺少了它就不能准确地刻画出客观事物的变化,更不能由已知数据推出其它数据,因而就减少了科学预见的。
N.布特勒说:“现代数学,这个最令人惊叹的智力创造,已经使人类心灵的目光穿过无限的时间,使人类心灵的手延伸到了无边无际的空间。”
数学应用的广泛性是思维广阔性的具体体现。
7.数学的教育价值。
首先,数学的抽象性使得数学问题的解决伴随着困难。在解决数学问题的过程中,使学生体验到挫折和失败,而这正是砥砺意志和打磨心理品质的绝好时机。愈挫愈奋,百折不挠的良好心理素质不会在温室中形成。如果学生在学校里没有尝尽为求解问题而奋斗的喜怒哀乐,那么数学教育就在一个重要的地方失败了。
记住马克思的话:“在科学上是没有平坦大道可走的,只有在崎岖的攀登上不畏劳苦的人,才有希望达到光辉的顶点。”
其次,数学的严密性和精确性可以使学生在将来的工作中减少随意性。英国律师至今要在大学中学习许多数学知识,并不是律师工作要多少数学,而是出于这样一种考虑:经过严格的数学训练可以使人养成一种独立思考而又客观公正的办事风格和严谨的学术品格。数学教育是培养学生诚信观念的重要渠道之一。在数学课上形成的诚信观是持久的,根深蒂固的。前苏联的数学家辛钦说:“数学教学一定会慢慢地培养青年人树立起一系列具有道德色彩的特性,这种特性中包括正直和诚实。”
再次,数学是思想的体操。进行数学推导和演算是锻炼思维的智力操。这种锻炼能够增强思维本领,提高抽象能力、逻辑推理能力和辨证思维能力,培养思维的灵活性和批判性。思维的灵活性表现在不受思维定式的束缚,能迅速地调整思维方向,并善于从旧的或传统的思维轨道上跳出来,另辟蹊径。数学中的一题多解是培养思维灵活性的有效途径。思维的批判性指,对论证和解答提出自己的看法。数学中常用的反证法和构造反例是思维批判性的具体表现。
数学不仅仅是一种工具,它更是一个人必备的素养。它会影响一个人的言行、思维方式等各个方面。一个人,如果他不是以数学为终生职业,那么他的数学素养并只不表现在他能解多难的题,解题有多快,数学能考多少分,关键在于他是否真正领会了数学的思想,数学的精神,是否将这些思想融会到他的日常生活和言行中去。日本的米山国藏说:“我搞了多年的数学教育,发现学生们在初中、高中接受的数学知识因毕业了进入社会后,几乎没有什么机会应用这些作为知识的数学,所以通常是出校门不到一、两年就很快忘掉了。然而,不管他们从事什么业务工作,惟有深深铭刻于头脑中的数学精神,数学的思维方法,研究方法和着眼点等,都随时随地发生作用,使他们受益终生。”
数学还有另外的作用。数学家狄尔曼说:“数学能集中、强化人们的注意力,能够给人以发明创造的精细和谨慎的谦虚精神,能够激发人们追求真理的勇气和信心,…数学更能锻炼和发挥人们独立工作精神。”
数学已成为现代人的基本素养。
这是一篇标准的数学论文,你可以参造其中的论述方式。你可以像文稿中一样分条陈述,可以引用一些名句或例子来充实文章。至于叫我写,怕不如你意,慢慢来总会写好的。
由于 七年级数学 是重要的教学工作,教师要注重激发学生学习数学的兴趣。下面是我为大家整理的七年级数学教学论文,供大家参考。
【关键词】七年级新生 数学教学解决 方法
学生刚从小学升入中学时,心理和生理都发生着巨大的变化,而数学教学也发生着重大的转变,初中数学在小学数学的基础上增加了复杂的平面几何、代数、有理数、实数、一次函数与二次函数等,内容多,难度大,学生感到吃不消,因此对数学产生畏惧感。以下针对七年级学生学习初中数学时出现的问题,谈谈具体的解决方法。
一、提升学生的数学学习能力
初中数学较之小学数学更为复杂、抽象,特别是数字到字母的转变、具象到抽象的转变等,一些逻辑推理能力稍差的学生学习起来感到十分吃力,学生在七年级阶段学不好,会影响到今后对数学的深入学习。因此,提升学生的数学学习能力尤为重要。逻辑推理能力是学生学习初中数学的首要必备能力,在具体教学中,教师要注重对学生逻辑推理能力的培养。
例如,在几何教学中,培养学生将文字语言转化为数学语言的 逻辑思维 。
师:已知:HC是∠ACB的角平分线,同学们从已知条件可以知道什么?
生:因为HC是角平分线,所以∠HCA和∠HCB两个角相等。
师:没错,不仅∠HCA=∠HCB,而且别忘记∠HCA=∠HCB=∠ACB。
师:已知AB//CD,直线EF分别与直线AB和CD交于点G和H,请同学把图画出来。
学生根据对条件的理解画出图形,如图1。
师:∠AGH和∠GHD是内错角,所以∠AGH=∠GHD,同学们根据老师的思路,还能推理出什么?
生:因为AB//CD,所以∠FHD=∠FGB,并且∠AGH+∠CHG=180°。
教师先举例说明,再让学生自己进行观察推理,使学生不至于因为知识点理解有困难而走偏路。通过步步引导,逐渐提高学生的理解能力和逻辑推理能力。
二、把握教学内容的衔接
与小学数学相比,初中数学的内容更加系统丰富,如果教师处理不好中小学数学教学内容衔接的问题,会直接导致学生在初中数学的学习中脱轨。因此,在教学过程中,教师必须注意初中数学和小学数学的衔接,在接触一个新的知识点时,先分析小学数学与初中数学的差异,让学生意识到数学在初中阶段的系统化,同时,又要给予学生充分的信心,使学生不会因为初中数学与小学数学的巨大差异而产生恐惧心理。
例如,在“有理数”的教学中,我的教学过程如下:
师:小学数学是在算术数中研究问题的,我们现在开始学习一个新的知识――有理数。
学生从书上找到有理数的概念,师引入负数,并举例说明其用法。
师:同学们,我们怎样区别山峰的海拔高度与盆地的海拔高度这两个具有相反意义的量呢?
生:用负数,就像零上几度和零下几度一样。
师:没错。事实上,有理数与算术数的根本区别在于有理数由两部分组成:符号部分和数字部分,数字部分也就是算术数。
生:也就是说,有理数相比小学的算术数只是多了符号的变化。
师:对,例如:(-5)+(-3),同学们可以先确定符号是“-”,再把数字的部分相加。
生:答案是(-5)+(-3)=-(5+3)=-8。
在算术数到有理数这一重大转变中,教师明确了切入的方向和步骤,使教学内容与小学数学的内容很好地衔接,同时,又能帮助学生在小学的基础上理解有理数,使学生感受到初中数学与小学数学内容上的一脉相承,从而适应初中数学的学习。教师在教学中要注意由小学数学内容或生活中的实例引入教学,拉近学生与新知识的距离,加深对知识的理解,再实战练习,让学生不再对初中数学望而生畏。
三、培养学生良好的学习习惯
良好的学习习惯对于初中阶段的数学学习极其重要,在小学阶段,学生大多没有形成特定的学习习惯,往往以完成教师布置的作业为主要目标,临近考试才看书“临时抱佛脚”。大多数学生在进入初中后,面对快节奏的学习显得十分不适应。因此,教师要致力于培养学生良好的学习习惯,让学生面对高强度的学习任务也能游刃有余。在初中数学的学习习惯中,预习和复习尤显重要。
1.重视预习
进入初中阶段,数学教学进度陡然加快,学习难度也逐步加深,学生一时难以适应,在听课过程中,学生由于没有预览新知识,对教师所讲内容十分茫然,从而产生焦虑急躁的情绪,影响继续听讲。久而久之,不仅听课效率下降,更打击了学生学习初中数学的信心和兴趣。因此,教师应在布置当天学习内容的作业时,将预习次日学习内容作为一项作业布置给学生,并提出预习的具体要求,指导学生预习的方法,让学生逐渐养成预习的习惯。
2.正确把握复习的节奏和掌握复习的方法
复习也是一个极其重要的学习习惯。根据艾宾浩斯遗忘规律曲线,在识记的最初阶段遗忘速度很快,以后逐步减缓。因此,在学习新知后若不及时加以巩固复习,学习效果将大打折扣。教师应向学生强调复习的重要性,明确要求学生在做作业之前先复习当天所学内容,并阶段性回顾单元章节知识,以强化学习效果。
复习主要包括两部分,一部分是新授课后对已学知识点的回顾和巩固,另一部分是考试前对知识的回忆和温习。首先是新授课后对已学知识点的回顾和巩固,在这一环节,学生总感觉学习时间不够,光是完成教师布置的作业就已经很吃力了,更别说复习,这就要求学生学会把握复习的节奏。教师应该适时在课堂上复习已学知识或点评新旧知识点的联系,用课堂讲习题的方式间接提醒学生复习的重要性,使学生在潜移默化中适应教师的复习节奏和方法,最终化为自己的习惯和方法。其次是考试前对知识的回忆和温习。教师应提醒学生,复习要以教材为本,深入理解知识点,把握重点内容。另外,考过的测试卷也是复习的好资料,考试中暴露的问题正是学生应该重视的复习内容,尤其是七年级新生,不知复习从哪儿下手时,更应该珍惜每一份试卷,认真分析,找出自身知识点的薄弱环节, 总结 失败的教训,从中得到成长与进步。
以上观点均是结合自身的教学 经验 所谈,教师应根据所教班级学生的特点因材施教,切勿生搬硬套。
摘要:学习数学对七年级的学生来说,首先是获得适应初中数学学习的能力,以缩短小学学习向初中学习的过渡期。要使数学教学更有效地帮助学生获取数学知识和适应能力,有些问题应在我们的数学教学中应予以重视。
关键词:七年级;数学;重视
1.重视“小练习”,以体现数学思想 教育
进行数学思想方法教学应遵循的几个原则:一是化隐为现原则。就是有意识地让学生将数学思想方法作为明确的学习对象,教学应当以知识为载体,把隐藏在知识中的思想方法揭露出来。二是循序渐进原则。必须结合教学内容和学生认知水平,反复孕育结论发展形成的过程,采用“小步走”、“多层次”的方式,以体现数学思想方法的教学。三是学生参与原则。应当认识到学生参与教学,是数学活动过程的教学,具有动态性、重思辨的特点,要求有学生积极参与其中,使学生逐步领悟、形成和掌握数学思想方法。
我们应当按照这些原则教学。例如,应用题对七年级学生来说是一个数学学习的难点。这个阶段的应用题,尽管在很大程度上还没有真正涉及到实际的应用题,即使这样,也有一些学生对此感到头痛。为了处理好这个问题,我们应按上述原则,在教学中重视设置一些与讲授问题相关、简单且有层次的小练习,让学生通过这些小练习,逐渐体会如何分析问题以及解决问题的方法或思路。例如:
甲、乙两站相距450km,一列慢车从甲站开出,每小时行驶65km ,一列快车从乙站开出,每小时行驶85km。(1)两车同时开出,相向而行,多少小时相遇?(2)快车先开出30分钟后慢车开出,两车相向而行,慢车行驶了多少小时与快车相遇?
讲解该问题前,我们可按解题思路先让学生想想两种车在具体时间内各走了多少路程,并推出x小时内所走路程的表达式;再让学生想想两车“相遇”在时间上有何特点,各自所走路程与两站间距离有何关系;然后让学生想想“快车先开出30分钟”对各自所走路程以及与两站间距离的关系会产生的影响等问题。通过这类小练习让学生沿着正确的解题方法做一遍,以理解解题的思想。
这类小练习应具有由浅入深、由简单到复杂、每步过渡都有铺垫等特点,若再加上适当的图示,学生做起来就不会感觉有太大困难。显然,小练习是在教师引导下由学生自己完成,符合“学生参与原则”;围绕原问题,小练习按“小步走”的方式依次提问题,难度由浅入深,符合“循序渐进原则”;小练习将原问题的基本面目逐步展现出来,让学生看到解决原问题的方法与自己熟悉的方法之间的关系,符合“化隐为显原则”。
2.要关注学生的个体差别
在曾经的教学中,学生常常是被动地学习,没有机会主动地学习和自主地选择决策,这样学生就失去了作为学习主人的创造力创新精神。新一轮基础教育课程改革十分重视尊重学生的个体差别,尊重学生的各式性,激发勉励学生各个方面进行发展,采用不一样的教育方法和评估标准,为每个学生的发展创造条件。作为初中数学老师需要在教育思想、教育观念上创新,要树立适应时代发展必要的新的教育观、人才观和质量观,在全面落实素质教育的基础上,不停改革 教学方法 ,提升教育教学质量,创建符合学生身心发展规律的班级课程授教体系,刺激引发学生学习的主动性和创造性,应对学生有充实的信心和支持带领学生在各个方面进行发展的基础上寻找本性突破(意为打开缺口突破难关)。值得注意的是,个性化(就是非一般大众化的东西。在大众化的基础上增加独特、另类、拥有自己特质的需要,独具一格,别开生面的一种说法。打造一种与众不同的效果。)的课程和教学条件正在逐步形成。信息技术的发展,多媒体计算机和网络(网络就是用物理链路将各个孤立的工作站或主机相连在一起,组成数据链路,从而达到资源共享和通信的目的)技术在学校教学整个过程中应用范围日益扩大,给个性化(就是非一般大众化的东西。在大众化的基础上增加独特、另类、拥有自己特质的需要,独具一格,别开生面的一种说法。打造一种与众不同的效果。)教学和对学习的人的志趣、能力等具体情况进行不同教育带来新的机遇,也给初中数学老师带来了新的挑战。
3.数学教师应正确认识数学教学的本质
树立正确的数学教学观教学曾被简述为“教师教、学生学的活动”。但这样说过于简单,不利于对数学教学的全面理解。苏联教育学家斯卡特金认为:教学是一种传授社会经验的手段,通过教学传授的是社会活动中各种关系的模式、图式、总的原则和标准。这是一种侧重于传授内容的总体叙述。美国心理学家布鲁纳认为:教学是通过引导学生对问题或知识体系循序渐进的学习来提高学生正在学习中的理解、转换和迁移能力。这是侧重于学生获得发展的叙述。不论是从认识心理学的角度构筑的数学教学理论,还是着眼于未来,注重 学习方法 的掌握与创造精神发挥的数学教学理论,都必须研究数学教学过程的本质、数学教学的原则和教学方式及方法的开拓,探讨数学教学的科学性与艺术性及其统一。特别地,要与信息社会发展的总体趋势相适应,着眼于促进学生全面、持续、和谐地发展。“义务教育阶段国家数学课程标准(实验稿)”第四部分“课程实施建议”中指出:“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程”。这里,强调了数学教学是一种活动,是教师和学生的共同活动,这对广大教师树立正确的数学教学观具有重大的意义。在新课程中,教师将由传统的知识传授者转变为课堂教学的组织者、引导者和合作者。教学工作越来越找不到一套放之四海而皆准的模式。因此,教师必须在教学工作中随时进行 反思 和研究,在实践中学习和创造,这样才能得到发展。另外,数学教学过程不再是机械地执行教材的过程,而是师生从实际出发,利用更广泛的课程资源,共同开发课程和丰富课程的过程,教学真正成为师生富有个性化的创造过程。新的课程呼唤着创造型的教师,新的时代也将造就优秀的教师。
摘 要: 新世纪需要的是高素质人才,兴趣是各种素质培养的前提条件,培养学生的兴趣是数学教学的关键。数学兴趣的培养要从入门抓起,要从课堂教学抓起,要从学习习惯抓起。教师要以数学的趣味性、教学的艺术性感染学生,引起学生学数学的兴趣,同时培养学生各方面能力,真正实现素质教育。
关键词: 学习兴趣 课堂导入 实践操作 学习习惯
学生升入七年级伊始,对数学有着浓厚的兴趣,可是没多久,兴趣就慢慢消失了,这几乎成了七年级数学教学的普遍性问题。长期以来,教师为保持学生的学习兴趣一直进行着不懈努力。那么,如何提高七年级学生的学习兴趣呢?经过不断探索和实践,我认为应该从以下几个方面入手。
一、要充分把握入门阶段的教学
“良好的开端是成功的一半”,这是义务教育课程标准试验教科书编写者的指导思想。七年级学生翻开刚拿到的数学课本后,一般都感觉新奇、有趣,想学好数学的求知欲较为迫切。因此,教师要不惜花费时间,深下功夫,让学生在学习的入门阶段留下深刻的印象,产生浓厚的兴趣。为此教师在教学七年级数学上册第一章“几何图形的初步认识”时,可多运用几何体教具进行教学,还有多让学生观察日常生活中的几何体,课上多动手操作,来引发学生的学习兴趣。如在教学第三节“几何体表面展开图”时,让学生以组为单位,剪、展纸盒,通过动手实际操作激起学生的学习兴趣。这样通过第一章的学习,一点点诱发学生的学习兴趣,消除学生害怕学数学的心理,以数学的趣味性、教学的艺术性给学生以感染,使其像磁铁上的铁屑离不开磁铁一样。
二、要保持课堂教学的生动性、趣味性
学生对数学学习有了初步兴趣后,要保持七年级学生学数学的永久兴趣,教师还应抓住七年级学生情绪易变、起伏较大的心理、生理特点,要求以“活的东西去教活的学生”,来培养学生持久的学习兴趣。对此,我的具体做法:
(一)注重课堂教学中的导入环节
一个好的导入设计,能使这堂课先声夺人,引人入胜,更为重要的是,好的导入能激发学生的学习兴趣和旺盛的求知欲,并创造良好的学习氛围,为授课的成功奠定良好的基础。以下是我教学实践过程中总结的几种课堂导入的方法。
1.设置情境,激发兴趣。
创设良好的导入情境,激发探索动机是引导学生探索学习的前提。因而,在导入阶段教师应注重情境的创设,创设好奇、疑惑、生动、有趣的情境,让学生对学习产生兴趣,进而产生主动探索的强烈欲望。如在教学“用平面截几何体”时教师可用实际切豆腐演示的方法导入,从而激发学生的学习兴趣。
2.设置疑点,引起兴趣。
“学贵有疑”,这是常理。学生在学习数学的过程中不断发现问题,学习数学才有兴趣,才会主动。亚里士多德曾说过:“思维是从疑问和惊奇开始的。”因此教师在导入教学过程中,还可以设置障碍,故意制造疑团和悬念,提出一些必须学习了新知识才能解答的问题,点燃学生的好奇之火,激发学生的求知欲,从而形成一种学习的动力。
3.联系生活,灵活应用。
生活中处处有数学的存在。要培养学生数学的应用意识,教会学生去观察生活,领悟生活的数学因素,教师就应注意课堂中实际生活的渗透,巧妙设置情境;启发学生从生活实际中发现某些规律,从而导入新课,这种方法可使学生在发现的喜悦中提高学习的兴趣,同时有利于学生对新知识的理解和记忆。
(二)课堂教学中充分让学生参与实践操作
教材针对七年级学生喜欢观看、喜欢动手的性格特征,安排了大量的实践性内容,以激发学生的学习兴趣。教师要抓住教材这一编排特点在教学中让学生参与实践操作,如在教学“有理数的混合运算”一节时,教师可把学生分成几个小组,每组一副扑克牌(去掉大、小王牌),让学生任意抽取四张牌,然后根据牌面上的数字进行加、减、乘、除、乘方混合运算,使运算结果为24或-24,来激发学生的学习兴趣和求知欲。
此外,教师可讲与数学知识有关的小 故事 ,做小游戏等,适当增加趣味成分,使看似枯燥的数学变得形象具体,这样也可以使课堂教学变得生动有趣。
三、教学中要注重培养学生学习习惯
七年级数学在每章节内容的编排上安排了“观察与思考”、“一起探究”、“做一做”、“大家谈谈”等栏目,独具匠心、面目一新。其宗旨是设法使学生学有趣、学有法、学有得。为此我在教学实践中从培养学生学习兴趣入手,逐渐使学生养成良好的学习习惯,使数学兴趣真正变成永久兴趣。具体做法:
(一)培养观察习惯
学生对图形、对实验的观察特别感兴趣,教师就可以引导他们有的放矢、积极主动去观察,边观察、边提问、边引导学生进行讨论。根据他们观察、分析的情况逐步引导出知识点。这样能使学生体会观察的收获与兴奋,自觉养成观察的习惯。
(二)培养思考习惯
具体方法是课前或课中出示思考题,如教学“用一元一次方程解决实际问题”时,可出示思考题:你还能想出另外的方法解这道应用题吗?鼓励学生思考多种方法,表扬回答正确的学生,使学生有获得成功之喜悦,从而产生兴趣,养成爱思考的习惯。
(三)培养探究的习惯
教师通过提问,引发学生积极探讨数学知识,逐步培养学生合作探究的习惯。特别是一题多解的题目或需要分类讨论的问题,如在教学“平行线的特征”时,可以让学生进行分组探究。通过探讨,归纳出平行线的性质。
以上只是我个人在七年级数学教学过程中对如何培养学生学习兴趣方面一点粗浅的看法,还望各位同仁给予指教。教师在实际教学中,其方法、 措施 是多种多样的,体会也各不相同,对于数学教学还有待于我们共同的研究和探讨。
参考文献:
[1]尹安群编著.有效教学――初中数学教学中的问题与对策.东北师范大学出版社.
1. 浅谈七年级数学相关论文
2. 初中数学的教学论文
3. 关于初中数学教学论文
4. 初中数学教学论文范文
5. 初中数学教育教学论文
七年级数学小论文怎么写?下面是小编搜集的七年级数学小论文500字范文,希望对大家有帮助!
七年级数学小论文500字(一) 在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙.
例如,三角形.三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形.通过实验和研究,我们知道,三角形的内角和是180度,外角和是360度.用6个正三角形就可以铺满地面.
再来看正四边形,它可以分成2个三角形,内角和是360度,一个内角的度数是90度,外角和是360度.用4个正四边形就可以铺满地面.
正五边形呢?它可以分成3个三角形,内角和是540度,一个内角的度数是108度,外角和是360度.它不能铺满地面.
六边形,它可以分成4个三角形,内角和是720度,一个内角的度数是120度,外角和是360度.用3个正四边形就可以铺满地面.
七边形,它可以分成5个三角形,内角和是900度,一个内角的度数是900/7度,外角和是360度.它不能铺满地面.
由此,我们得出了.n边形,可以分成(n-2)个三角形,内角和是(n-2)*180度,一个内角的度数是(n-2)*180÷2度,外角和是360度.若(n-2)*180÷2能整除360,那么就能用它来铺满地面,若不能,则不能用其铺满地面.
我们不但可以用一种正多边形铺满地面,我们还可以用两种、三种等更多的图形组合起来铺满地面.
例如:正三角形和正方形、正三角形和六方形、正方形和正八边形、正五边形和正八边形、正三角形和正方形和正六边形……
现实生活中,我们已经看到了用正多边形拼成的各种图案,实际上,有许多图案往往是用不规则的基本图形拼成的.
七年级数学小论文500字(二) 1证明一个三角形是直角三角形
2用于直角三角形中的相关计算
3有利于你记住余弦定理,它是余弦定理的一种特殊情况。中国最早的一部数学着作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:
周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”
商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的呵。”
从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方
用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得:
勾2+股2=弦2
亦即:
a2+b2=c2
勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。
在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为:
弦=(勾2+股2)(1/2)
即:
c=(a2+b2)(1/2)
定理:
如果直角三角形两直角边分别为a,b,斜边为c,那么a^平方+b^平方=c^平方;即直角三角形两直角边的平方和等于斜边的平方。
如果三角形的三条边a,b,c满足a^2+b^2=c^2,如:一条直角边是3,一条直角边是四,斜边就是3*3+4*4=X*X,X=5。那么这个三角形是直角三角形。(称勾股定理的逆定理)
七年级数学小论文500字(三) 我每次做数奥都是拿起一道题拉起来就做,因为我觉得这样做起来很快。可是今天做数奥时,有一道题改变了我的看法,做得快不一定是做得对,主要还是要做对。
今天,我做了一道题目把我难住了,我苦思冥想了好几个小时都没有想出来,于是我只好乖乖地去看基础提炼,让它来帮我分析。这道题目是这样的:求3333333333的平方中有多少个奇数数字?分析是这样的:3333333333的平方就是3333333333×3333333333,这道乘法算式由于数字太多使计算复杂,我们可以运用转化的方法化繁为简,也就是把一个因数扩大3倍,另一个因数缩小3倍,积不变。使题目转化为求9999999999×1111111111=(10000000000-1)×1111111111=11111111110000000000-1111111111=11111111108888888889因此,乘积中有十个奇数数字。这道题,我们还可以位数少的两个数相乘算起,就能发现积中奇数的数字个数。即3×3=9→积中有1个奇数数字。33×33=1089→积中有2个奇数数字。333×333=110889→积中有3个奇数数字。3333×3333=11108889→积中有4个奇数数字。……
从上面试算中,容易发现积是由1,0,8,9四个数字组成的,1和8的个数相同,比一个因数中的3的个数少1,0和9各一个,分别在1和8的后面。积中奇数的数字个数与一个因数中3的个数相同,可以推导出原题的积是:11111111108888888889,积中有10个奇数数字。
做了这道题,我知道做数奥不能求快,要求懂它的方法。
七年级数学小论文500字(四) 今天,我遇到两道数学题,并得到了一些窍门。
第一题:幼儿园买进大小两种毛巾各40条,共用58。8元。大毛巾比小毛巾的2倍多0.12元。这两种毛巾各多少元?其实,这道题还是较简单的。只要用解方程就行了。先算出大小毛巾的价钱,在计算,不一会,我就做完了。
乔布斯水果店原来将一批苹果按100%的利润(即利润是成本的100%)定价出售,由于定价过高,无人购买。后来不得不按38%的利润重新定价,这样售出了其中的40%。此时,因害怕剩余水果腐烂变质,不得不再次降价,售出了剩余的全部水果。结果,实际获得的总利润是原定利润的30.2%,那么第二次降价后的价格是原来定价的62.5%。第二次降价的利润是:(1.302-40%×1.38-0.6)÷(1-40%)=25%,价格是原定价的(1+25%)÷(1+100%)=62.5%。接着道题要把这批苹果看成1,价格也看成1,这批苹果总共分两次卖,第一次卖了0.4,第二次卖了0.6。总的利润是30.2%,总的售出价格就是1.302,第一次卖了40%×1.38,1.302-40%×1.38就是第二次卖出的总货款。再减掉二次的成本60%,就得到第二次多卖出的钱。利润就是销售价比成本价多出来的钱再除以成本,所以用这个钱除以第二次的成本1-40%,就等于第二次降价后的利润,这时候需要注意,原来的定价应该是(1+100%),所以用(1+25%)÷(1+100%)相除就等于所要答案。
某高速公路收费站对于过往车辆收费标准是:大客车30元,小客车15,小轿车10元。某日通过该收费站的大客车和小客车数量比是5:6,小客车与小轿车数量比是4:11,收取小轿车通行费比大客车多210元。求这天这三种车辆通过的数量。解题思路:先把两个比换算成同样的比例,这样三个之间就可以作比较。小轿车比大轿车多出210元,车子的数量比是33:10,实际上收费比是3:1,这样形成的差33×1-10×3=3,210除以3就等于每个配给的量是70辆。就是5:6=10:12,4:11=12:33,30:10=3:1,33×1-10×3=3,210÷3=70(辆);大客车:70×30÷30=70(辆),小客车:70×6÷5=84(辆),小轿车:84×11÷4=231(辆)。
不要担心题目有多难,无论什么数学题总会有答案的,数学就是这么简单,就要看你逻辑性、思维和分析能力是否强。希望你们也爱上数学!
七年级数学小论文500字(五) 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
[七年级数学小论文500字]相关文章:
1.趣味数学小论文
2.数学小论文作文
3.数学小论文的作文
4.数学小论文200字
5.关于数学小论文
6.数学高中小论文
7.小学有关数学小论文
8.高中的数学小论文
9.数学与生活(小论文)精选
10.数学生活小论文