您当前的位置:首页 > 发表论文>论文发表

生物信息学文章怎么写

2023-12-08 17:00 来源:学术参考网 作者:未知

生物信息学文章怎么写

刚开始写文章的时候,总会是有种恐惧感。脑袋里思绪万千,可是真要表达出来,却总觉得一片空白。虽然看了一肚子的学术文章,但是写下来的文字就跟小说或者散文一样,零零碎碎地弄不成一片。那么多的术语也不知道怎么摆放才好。这种焦虑一开始多多少少都会有一些,都需要用时间和练习去弥补。

写学术文章其实有点像编程。刚开始学习编程语言的时候,不明白语法规则,就不敢乱写。即使写了,编译器老是报错,找原因的时候又觉得语法规则怎么设计得那么复杂,找了半天都不知道是什么原因。但是当最终掌握了这门编程语言之后,写起代码来就是信手拈来了,该定义的自然而然就定义了,该用函数地方的就用函数了。不复杂的流程都可以边想边写了。复杂的流程,只要把逻辑想清楚了,一切似乎就是顺其自然地完成了。这个时候再回头看语法规则,又会觉得有规则限定就是好,要是代码写成了散文,调试起来会疯掉的。

科研写作也是一个技术活,也要经历一个熟能生巧的过程,首先你要熟悉学术写作的基本方式。在能够基本上准确的传达信息的基础上,自然而然地就会开始发展自己的写作风格。不要一开始就去复制导师的写作风格,因为对问题的了解程度肯定是达不到的,强行去模仿别人的风格就会太牵强。

同时在写文章的时候,就把文章当做一段代码来思考就行了,不用想的太复杂。不要把堆砌学术术语当作是写作的目标,成功的作家并不是要把事物用很复杂的方式呈现出来,而是准确的传递自己的信息。就跟写出来的代码主要是能正确的运行,写得好看不好看,那是下一步的要求了。比如读者看科技新闻或者文章的时候,也不会是抱着欣赏艺术的方式,而是能够很快的从中提取到自己有用的信息。

在写作初期,多收集同事或者同行的反馈意见是最有用的,可以帮助自己发现各种各样的问题,然后才能在后续的写作中知道要提高什么。写作後期, 如过是英文论文,可以请专业的论文润色公司如英论阁 提供语言协助 收起

请问生物信息学毕业论文该怎样做?觉得很抽象。。。。。。

最好先阅读几篇相应文章和相今似的论文,比如你的课题是油菜,你可以搜有关其他物种如小麦的。根据论文写作步骤制定实验计划。要练习使用一些常用软件,如NCBI,GenBank,在用时最好先下载安装有道词典,因为是英文网站,不容易懂,专业名词也太多!不要怕,万事开头难!好好准备,入了门就好了!

如何做生物信息,学发 SCI 文章

就有人问,生信的文章能发到多少分?如果你是像华科薛宇教授一样的大牛,弄一套算法,编一个生信分析工具,十几分妥妥的,引用量杠杠的。但是,那是大牛,一般来说,按「常规套路」出牌的这种生信分析文章分值在 0-2 分之间。但也有些不做实验的生信分析文章能发到个 4-5 分,那么生信分析的文章怎么样能达到一个比较高的层次呢?
这里,我们给大家分享两篇文章来说一说一些进阶的文章思路,一篇是发表在我们的老朋友「Oncotarget」上的,另一篇是发表在「Journal of Proteome Research」(IF = 4.1)上的。
先看 Oncotarget 这篇「Genomic expression differences between cutaneous cells from red hair color individuals and black hair color individuals based on bioinformatic analysis」,文章是做的黑色素瘤的两种不同表型的个体的差异基因的生信分析。
Abstract 里说到 MC1R 这个基因的突变会导致高患癌率的 RHC 表型两种不同的表型,其中 RHC 表型会增加皮肤癌的发生率,那么 MC1R 的突变究竟影响了哪些基因?文章通过 PPI 网络分析,分别对比分析两个不同表型(RHC 和 BHC)的正常皮肤细胞和癌细胞中的差异基因。结果表明,在癌细胞的对比中没有差异,而在正常皮肤细胞中筛选出 23 个 hub 基因,并且其中 8 个基因异常表达,这一结果提示这 8 个基因的异常表达可能是 RHC 表型患癌风险提高的重要原因。

这篇文章利用了 3 个数据包进行综合分析,从而得到了一个 novel 的结论,文章利用 GSE44805 中的差异基因构建 PPI 网络筛选 hub 基因,再利用别的数据包中的测序结果验证这些基因确实存在异常表达,多方验证说明自己生信分析结果是可靠的。虽然作者一点实验也没有做,但是从数据量还有可靠性上来说,可能比自己辛辛苦苦地做小样本量测序还要靠谱。

文章中的分析方法(差异基因以及 PPI 分析)都是我们非常熟悉的。筛选出差异基因,将上调和下调的基因分别构建 PPI 网络,得到文中的 4 张图(不管怎么说,这图的颜值比上一期套路中分析的文章要高得多)。

这张图的构建方法这里不再赘述
小结
这篇文章的方法完全是可以借鉴和复制的,难点在于找到足够多的具有相似性和可比性的数据结果,以及找到一个合适的切入点得到一个相对 novel 的结论。
下面看 Journal of Proteome Research 上的这篇文章「Weighted Protein Interaction Network Analysis of Frontotemporal Dementia」。
一看这流程图就觉得这文章是生信专业的人做的文章。(本宫上学的时候,就觉得我们生命学院的学生都是码农,生物信息专业、生物医疗工程、生物科学这些专业的人天天都在编代码,完全感受不出生物专业的气息。)

这文章讲得啥咧,就是先选出 13 个种子基因,然后根据 PPI 数据库中蛋白质互作关系构建这 13 个种子基因的第一层网络结构。

再以第一层网络为种子构建第二层网络结构(然后电脑就死机了)。

然后分析第二层网络的拓扑学结构,从中筛选出 hub 基因(图中绿点表示最初的 13 个种子基因,蓝点表示第一层的基因)。在构建过程中,随着基因数量的不断增加,最先选出的 13 个种子基因未必就是后来的 hub 基因。文中还设置了对照组,并详细讲述了这 13 个种子基因的筛选方法。因为整个分析过程都是建立在生信分析的基础上,属于完全架空的,所以整个研究过程十分讲究逻辑上的严谨性。
小结
之所向大家介绍这篇文章,是觉得这种思路在生信分析的文章中可以借鉴,种子基因的选择可以通过临床上疾病中基因突变的概率来进行筛选,然后构建两层 PPI 网络,进行 GO,KEGG 分析,从而预测新的未知的疾病相关基因,如果后续能从别的数据包中得到表达量的验证或者是自己在临床样本中进行验证,那么整个文章的内容将会更加丰富。
局限性:PPI 数据库中其实很多蛋白质互作结果是没有意义的,因为在实际生物体中很多蛋白质互作情况是不可能发生的,只有在实验人为干预情况下才会发生。

生物信息学毕业论文,如何选题?格式有要求吗

生物信息学推荐系统设计
关键词:推荐系统;生物信息学
推荐系统(RecommenderSystem)[1]是个性化信息服务的主要技术之一,它实现的是“信息找人,按需服务”;通过对用户信息需要、兴趣爱好和访问历史等的收集分析,建立用户模型,并将用户模型应用于网上信息的过滤和排序,从而为用户提供感兴趣的资源和信息。生物信息学(Bioinformatics)[2,3]是由生物学、应用数学和计算机科学相互交叉所形成的一门新型学科;其实质是利用信息科学的方法和技术来解决生物学问题。20世纪末生物信息学迅速发展,在信息的数量和质量上都极大地丰富了生物科学的数据资源,而数据资源的急剧膨胀需要寻求一种科学而有力的工具来组织它们,基于生物信息学的二次数据库[4]能比较好地规范生物数据的分类与组织,但是用户无法从大量的生物数据中寻求自己感兴趣的部分(著名的生物信息学网站NCBI(美国国立生物技术信息中心),仅仅是小孢子虫(Microsporidia)的DNA序列就达3399种),因此在生物二次数据库上建立个性化推荐系统,能使用户快速找到自己感兴趣的生物信息。特别是在当前生物信息数据量急剧增长的情况下,生物信息学推荐系统将发挥强大的优势。
1推荐系统的工作流程
应用在不同领域的推荐系统,其体系结构也不完全相同。一般而言,推荐系统的工作流程[5]如图1所示。
(1)信息获取。推荐系统工作的基础是用户信息。用户信息包括用户输入的关键词、项目的有关属性、用户对项目的文本评价或等级评价及用户的行为特征等,所有这些信息均可以作为形成推荐的依据。信息获取有两种类型[6],即显式获取(Explicit)和隐式获取(Implicit),由于用户的很多行为都能暗示用户的喜好,因此隐式获取信息的准确性比显式高一些。
(2)信息处理。信息获取阶段所获得的用户信息,一般根据推荐技术的不同对信息进行相应的处理。用户信息的存储格式中用得最多的是基于数值的矩阵格式,最常用的是用m×n维的用户—项目矩阵R来表示,矩阵中的每个元素Rij=第i个用户对第j个项目的评价,可以当做数值处理,矩阵R被称为用户—项目矩阵。
(3)个性化推荐。根据形成推荐的方法的不同可以分为三种,即基于规则的系统、基于内容过滤的系统和协同过滤系统。基于规则的推荐系统和基于内容过滤的推荐系统均只能为用户推荐过去喜欢的项目和相似的项目,并不能推荐用户潜在感兴趣的项目。而协同过滤系统能推荐出用户近邻所喜欢的项目,通过用户与近邻之间的“交流”,发现用户潜在的兴趣。因此本文所用的算法是基于协同过滤的推荐算法。
(4)推荐结果。显示的任务是把推荐算法生成的推荐显示给用户,完成对用户的推荐。目前最常用的推荐可视化方法是Top-N列表[7],按照从大到小顺序把推荐分值最高的N个事物或者最权威的N条评价以列表的形式显示给用户。
2生物信息学推荐系统的设计
综合各种推荐技术的性能与优缺点,本文构造的生物信息学推荐系统的总体结构如图2所示。
生物信息学推荐系统实现的主要功能是在用户登录生物信息学网站时,所留下的登录信息通过网站传递到推荐算法部分;推荐算法根据该用户的用户名从数据库提取出推荐列表,并返回到网站的用户界面;用户访问的记录返回到数据库,系统定时调用推荐算法,对数据库中用户访问信息的数据进行分析计算,形成推荐列表。
本系统采用基于近邻的协同过滤推荐算法,其结构可以进一步细化为如图3所示。算法分为邻居形成和推荐形成两大部分,两部分可以独立进行。这是该推荐系统有别于其他系统的优势之一。由于信息获取后的用户—项目矩阵维数较大,使得系统的可扩展性降低。本系统采用SVD矩阵降维方法,减少用户—项目矩阵的维数,在计算用户相似度时大大降低了运算的次数,提高了推荐算法的效率。
(1)信息获取。用户对项目的评价是基于用户对某一个项目(为表示简单,以下提及的项目均指网站上的生物物种)的点击次数来衡量的。当一个用户注册并填写好个人情况以后,系统会自动为该用户创建一个“信息矩阵”,该矩阵保存了所有项目的ID号以及相应的用户评价,保存的格式为:S+编号+用户评价,S用于标记项目,每个项目编号及其评价都以“S”相隔开;编号是唯一的,占5位;用户评价是用户点击该项目的次数,规定其范围是0~100,系统设定当增加到100时不再变化。这样做可防止形成矩阵时矩阵评价相差值过大而使推荐结果不准确。(2)信息处理。信息处理是将所有用户的信息矩阵转换为用户—项目矩阵,使用户信息矩阵数值化,假设系统中有M个用户和N个项目,信息处理的目的就是创建一个M×N的矩阵R,R[I][J]代表用户I对项目J的评价。
(3)矩阵处理。协同过滤技术的用户—项目矩阵的数据表述方法所带来的稀疏性严重制约了推荐效果,而且在系统较大的情况下,它既不能精确地产生推荐集,又忽视了数据之间潜在的关系,发现不了用户潜在的兴趣,而且庞大的矩阵增加了计算的复杂度,因此有必要对该矩阵的表述方式做优化,进行矩阵处理。维数简化是一种较好的方法,本文提出的算法应用单值分解(SingularValueDecomposition,SVD)技术[8],对用户—项目矩阵进行维数简化。
(4)相似度计算。得到降维以后的用户矩阵US,就可以寻找每个用户的近邻。近邻的确定是通过两个用户的相似度来度量的。本文采用Pearson相关度因子[9]求相似度。(5)计算用户邻居。该方法有两种[10],即基于中心的邻居(Center-BasedNeighbor)和集合邻居(AggregateNeighbor)。本系统采用了第一种方法,直接找出与用户相似度最高的前N个用户作为邻居,邻居个数N由系统设定,比如规定N=5。
(6)推荐形成。推荐形成的前提是把当前用户的邻居ID号及其与当前用户的相似度保存到数据库中,而在前面的工作中已找出各用户的邻居以及与用户的相似度,推荐形成部分只需要对当前登录用户进行计算。推荐策略是:对当前用户已经访问过的项目不再进行推荐,推荐的范围是用户没有访问的项目,其目的是推荐用户潜在感兴趣的项目;考虑到系统的项目比较多,用户交互项目的数量很大,所以只筛选出推荐度最大的N个项目,形成Top-N推荐集,设定N=5。
3生物信息学推荐系统的实现
生物信息学推荐系统的实现可以用图4来表示。数据库部分主要存储用户信息和项目信息,用SQLServer2000实现。
数据访问层实现了与用户交互必需的存储过程以及触发器,也使用SQLServer2000,主要完成以下功能:初始化新用户信息矩阵;插入新项目时更新所有用户的信息矩阵;用户点击项目时更新该用户对项目的评价;删除项目时更新所有用户的信息矩阵。用户访问层主要涉及网页与用户的交互和调用数据访问层的存储过程,在这里不做详细的介绍。
推荐算法完成整个个性化推荐的任务,用Java实现。(1)数据连接类DataCon。该类完成与SQLServer2000数据库的连接,在连接之前必须要下载三个与SQLServer连接相关的包,即msutil.jar、msbase.jar和mssqlserver.jar。
(2)数据操作类DataControl。该类负责推荐算法与数据库的数据交换,静态成员Con调用DataCon.getcon()获得数据库连接,然后对数据库进行各种操作。把所有方法编写成静态,便于推荐算法中不创建对象就可以直接调用。
(3)RecmmendSource与CurrentUserNeighbor。这两个类作为FCRecommand类的内部类,RecmmendSource用于保存当前用户的推荐列表,包括推荐项目号和推荐度;CurrentUserNeighbor用于保存邻居信息,包括邻居ID号、相似度及其访问信息。
(4)协同过滤推荐算法FCRecommand。该类实现了整个推荐算法,主要分为邻居形成方法FCArithmetic和推荐形成方法GenerateRecommend。
下面给出方法FCArithmetic的关键代码:
Matrixuser_item=this.User_Item_Arry();//获取用户—项目矩阵
user_item=this.SVD_Calculate(user_item);//调用SVD降维方法
Vectorc_uservector=newVector();//当前用户向量
Vectoro_uservector=newVector();//其他用户向量
Vectorc_user_correlate_vector=newVector();
//当前用户与其他用户之间相似度向量
for(inti=0;ifor(intj=0;jc_uservector.addElement(user_item.get(i,j));
//1.获得当前用户向量
for(intk=0;ko_uservector.clear();
for(intl=0;lo_uservector.addElement(user_item.get(k,l));
//2.获得其他用户的向量
//3.计算当前用户与其他用户的相似度
usercorrelativity=this.Correlativity(c_uservector,o_uservector);
c_user_correlate_vector.addElement(usercorrelativity);
}
//4.根据当前用户与其他用户的相似度,计算其邻居
this.FindUserNeighbor(i,c_user_correlate_vector);
}
根据邻居形成方法FCArithmetic,可以得到每个用户的邻居。作为测试用例,图6显示用户Jack与系统中一部分用户的相似度,可以看出它与自己的相似度必定最高;并且它与用户Sugx访问了相同的项目,它们之间的相似度也为1,具有极高的相似度。
4结束语
在传统推荐系统的基础上,结合当前生物信息学网站的特点,提出一个基于生物信息平台的推荐系统,解决了传统生物信息网站平台信息迷茫的缺点,为用户推荐其感兴趣物种的DNA或蛋白质序列。
优点在于协同过滤的推荐算法能发现用户潜在的兴趣,能促进生物学家之间的交流;推荐算法的邻居形成与推荐形成两部分可以单独运行,减少了系统的开销。进一步的工作是分析生物数据的特点及生物数据之间的关系,增加用户和项目数量,更好地发挥推荐系统的优势。
参考文献:
[1]PAULR,HALRV.Recommendersystems[J].CommunicationsoftheACM,1997,40(3):56-58.
[2]陈新.生物信息学简介[EB/OL].(2001).http://166.111.68.168/bioinfo/papers/Chen_Xin.pdf.
[3]林毅申,林丕源.基于WebServices的生物信息解决方案[J].计算机应用研究,2005,22(6):157-158,164.[4]邢仲璟,林丕源,林毅申.基于Bioperl的生物二次数据库建立及应用[J].计算机系统应用,2004(11):58-60.

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页