频域图像分析
1.熟悉MATLAB软件的使用。 2.掌握频域图像分析的原理及数学运算。
1.自选一幅图像,并对其分别添加一定强度的周期噪声和高斯噪声,然后分别采用高斯模板、中值滤波的时域方法以及傅里叶变换和小波变换的频率滤波方法对该含噪图像进行去噪处理,并基于PSNR值和视觉效果这两个指标来比较这四种滤波方法对两种不同噪声的去噪能力。 2.编写一个程序,要求实现下列算法:首先将阁像分割为8x8的子图像,对每个予图像进行FFT.对每个了图像中的64个系数。按照每个系数的方差来排序后,舍去小的变换系数,只保留16个系数,实现4: I的图像压缩。 3.给定一幅行和列都为2的整数次幕图像,用Haar小波基函数对其进行二维小波变换,试着将最低尺度近似分量置零再反变换,结果是什么?如果把垂直方向的细节分量置零,反变换后结果又是什么呢?试解释一下原因。 4.基于小波变换对图像进行不同压缩比的压缩。在同压缩比情况下,对于基于小波变换和基于傅里叶变换的压缩结果,比较=二者保留原图像能里百分比情况。
Win10 64位电脑 MATLAB R2017a
1.傅里叶变换 从纯粹的数学意义上看,傅里叶变换是将一个函数转换为一系列周期函数来处理的。从物理效果看,傅里叶变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域。换句话说,傅里叶变换的物理意义是将图像的灰度分布函数变换为图像的频率分布函数。 傅里叶逆变换是将图像的频率分布函数变换为灰度分布函数傅里叶变换以前,图像(未压缩的位图)是由对在连续空间(现实空间)上的采样得到一系列点的集合,通常用一个二维矩阵表示空间上各点,记为z=f(x,y)。又因空间是三维的,图像是二维的,因此空间中物体在另一个维度上的关系就必须由梯度来表示,这样我们才能通过观察图像得知物体在三维空间中的对应关系。 2.小波变换 小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节带噪声信号经过预处理,然后利用小波变换把信号分解到各尺度中,在每一尺度下把属于噪声的小波系数去掉,保留并增强属于信号的小波系数,最后再经过小波逆变换回复检测信号。 小波变换在去除噪声时可提取并保存对视觉起主要作用的边缘信息,而传统的基于傅里叶变换去除噪声的方法在去除噪声和边沿保持上存在着矛盾,因为傅里叶变换方法在时域不能局部化,难以检测到局域突变信号,在去除噪声的同时,也损失了图像边沿信息。由此可知,与傅里叶变换去除噪声的方法相比较,小波变换法去除噪声具有明显的性能优势。 3.PSNR算法 peak的中文意思是顶点。而ratio的意思是比率或比列的。整个意思就是到达噪音比率的顶点信号,psnr一般是用于最大值信号和背景噪音之间的一个工程项目。通常在经过影像压缩之后,输出的影像都会在某种程度与原始影像不同。为了衡量经过处理后的影像品质,我们通常会参考PSNR值来衡量某个处理程序能否令人满意。它是原图像与被处理图像之间的均方误差相对于(2 n-1) 2的对数值(信号最大值的平方,n是每个采样值的比特数),它的单位是dB。
SNRP算法
haar基函数进行小波变换
七、实验结果与分析
图 1原图
1.加入周期噪声、高斯噪声
2.对添加了高斯噪声和周期噪声的图像进行高斯滤波
PSNR值 1.对高斯噪声进行高斯滤波后 23.0287 2.对周期噪声进行高斯滤波后 23.4837
2.中值滤波
PSNR值: 1.对高斯噪声进行中值滤波 23.9931 2.对周期噪声进行中值滤波 24.3134
3.傅里叶变换滤波
PSNR值: 1.对添加了高斯噪声的图像进行傅里叶变换滤波 20.4922 2.对添加了周期噪声的图像进行傅里叶变换滤波 18.9736
4.小波变换滤波
PSNR值: 1.对添加了高斯噪声的图像进行小波变换滤波 23.4712 2.对添加了周期噪声的图像进行小波变换滤波 24.4525
分析: 对于高斯噪声,高斯滤波和傅里叶变换滤波声的除噪效果较好,中值滤波效果较差,小波变换滤波的处理效果也比较好 对于周期噪声,中值滤波和高斯滤波效果不是很好,傅里叶变换变换滤波对噪声的去处效果比较好,对于原图像损坏不大,小波变换对原图的损坏较大,但是图片可以看出噪声也去除的比较好。
5.图像压缩(4:1压缩) 原图-左 压缩后-右
分析: 图像压缩算法就是先将一副图像分成很多小块,然后分别对这些小块进行变换,这里采用的是傅里叶变换,然后过滤掉冗余的像素点,然后再利用反变换得到压缩后的图像即可。 小波变换 1.定义 小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节带噪声信号经过预处理,然后利用小波变换把信号分解到各尺度中,在每一尺度下把属于噪声的小波系数去掉,保留并增强属于信号的小波系数,最后再经过小波逆变换回复检测信号。 2.优点 小波变换在去除噪声时可提取并保存对视觉起主要作用的边缘信息,而传统的基于傅里叶变换去除噪声的方法在去除噪声和边沿保持上存在着矛盾,因为傅里叶变换方法在时域不能局部化,难以检测到局域突变信号,在去除噪声的同时,也损失了图像边沿信息。由此可知,与傅里叶变换去除噪声的方法相比较,小波变换法去除噪声具有明显的性能优势。 Haar基函数进行小波变换 图 2原图
图 3 haar变换
图 4 haar反变换后
图 5 最低分量近似置零
图 6 垂直分量置零
小波变换进行图像压缩与傅里叶变换压缩对比
1.压缩比 1:2(左-小波压缩 右-傅里叶压缩)
2.压缩比 1:4(左-小波压缩 右-傅里叶压缩)
通过这次实验,学到了很多。特别是在傅里叶变换和小波变换等方面,开始的时候连傅里叶变换的基础基础也不懂,后来在csdn上看了一篇讲解傅里叶变换的文章,豁然开朗,傅里叶变换居然可以将一个时域信号转化到频域,而且自己还对与i有了更加深刻的理解。虽然傅里叶变换可以把信号从时域转换到频域,但是频域与时域的对应关系却无法一一对应,所以诞生了小波变换。小波变换的特别之处就是可以把一个时域上的信息转换为时域-频域一一对应,这对应特殊信号的提取是有很好的效果,在一定程度上比傅里叶变换更厉害。但是在傅里叶、小波等基础概念知识方面,自己还是涉猎的比较少,原理的论证公式太复杂了。
2. 噪声及其噪声的 Matlab 实现
imnoise 函数
格式:J=imnoise(I,type)
J=imnoise(I,type,parameter)
说明:J=imnoise(I,type) 返回对图像 I 添加典型噪声后的有噪图像 J ,参数 type 和 parameter 用于确定噪声的类型和相应的参数。
加权领域平均算法来进行滤波处理
由实验我们可以看出,一般的滤波器在对图像进行噪声滤除的同时对图像中的细节部分有不同程度的破坏,都不能达到理想的效果。但是采用加权的邻域平均算法对图像进行噪声滤除, 不仅能够有效地平滑噪声, 还能够锐化模糊图像的边缘。 加权的邻域平均算法的基本思想是: 在一个邻域内, 除了可以利用灰度均值外, 灰度的上偏差和下偏差也能够提供某些局部信息。算法的计算公式描述如下, 用f (x ,y ) 表示原始图像, g (x , y ) 为平滑后点(x , y ) 的灰度值,V x , y 表示以点(x , y ) 为中心的邻域, 该邻域包含N 个象素,m (x , y ) 表示邻域V x , y 内的灰度均值。NI表示邻域内大于平均值的像素个数,Ng表示小于平均值的像素个数,而N0表示等于平均值的像素个数。则修正的邻域平均法由下式给出:
m - A�0�3 m l; N l > max{N g ,N 0}
g(x,y)= m + A�0�3 m g; N g > max{N l ,N 0} (1)
m ; else
(1)式(1) 中, A为修正系数, 取值范围为0~ 1, 其大小反映V x , y 中的边缘状况。 以上是我认为在图像处理中比较有价值的两点,有兴趣的可以上网查阅相关的资料。
3. 图像滤波的 Matlab 实现
3.1 conv2 函数
功能:计算二维卷积
格式:C=conv2(A,B)
C=conv2(Hcol,Hrow,A)
C=conv2(...,'shape')
说明:对于 C=conv2(A,B) ,conv2 的算矩阵 A 和 B 的卷积,若 [Ma,Na]=size(A), [Mb,Nb]=size(B), 则 size(C)=[Ma+Mb-1,Na+Nb-1]; C=conv2(Hcol,Hrow,A) 中,矩阵 A 分别与 Hcol 向量在列方向和 Hrow 向量在行方向上进行卷积;C=conv2(...,'shape') 用来指定 conv2 返回二维卷积结果部分,参数 shape 可取值如下:
》full 为缺省值,返回二维卷积的全部结果;
》same 返回二维卷积结果中与 A 大小相同的中间部分;
valid 返回在卷积过程中,未使用边缘补 0 部分进行计算的卷积结果部分,当 size(A)>size(B) 时,size(C)=[Ma-Mb+1,Na-Nb+1]。
3.2 conv 函数
功能:计算多维卷积
格式:与 conv2 函数相同
3.3 filter2函数
功能:计算二维线型数字滤波,它与函数 fspecial 连用
格式:Y=filter2(B,X)
Y=filter2(B,X,'shape')
说明:对于 Y=filter2(B,X) ,filter2 使用矩阵 B 中的二维 FIR 滤波器对数据 X 进行滤波,结果 Y 是通过二维互相关计算出来的,其大小与 X 一样;对于 Y=filter2(B,X,'shape') ,filter2 返回的 Y 是通过二维互相关计算出来的,其大小由参数 shape 确定,其取值如下:
》full 返回二维相关的全部结果,size(Y)>size(X);
》same 返回二维互相关结果的中间部分,Y 与 X 大小相同;
》valid 返回在二维互相关过程中,未使用边缘补 0 部分进行计算的结果部分,有 size(Y)<size(X) 。
3.4 fspecial 函数
功能:产生预定义滤波器
格式:H=fspecial(type)
H=fspecial('gaussian',n,sigma) 高斯低通滤波器
H=fspecial('sobel') Sobel 水平边缘增强滤波器
H=fspecial('prewitt') Prewitt 水平边缘增强滤波器
H=fspecial('laplacian',alpha) 近似二维拉普拉斯运算滤波器
H=fspecial('log',n,sigma) 高斯拉普拉斯(LoG)运算滤波器
H=fspecial('average',n) 均值滤波器
H=fspecial('unsharp',alpha) 模糊对比增强滤波器
说明:对于形式 H=fspecial(type) ,fspecial 函数产生一个由 type 指定的二维滤波器 H ,返回的 H 常与其它滤波器搭配使用。
噪声如下:
高斯模糊,也叫高斯平滑,其作用是使图像变得模糊且平滑,通常用它来减少图像噪声以及降低细节层次。
高斯滤波是一种线性平滑滤波,适用于消除高斯噪声,广泛应用于图像处理的减噪过程。通俗的讲,高斯滤波就是对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值经过加权平均后得到。
简介:
高斯模糊,也叫高斯平滑,是在Adobe Photoshop、GIMP以及Paint.NET等图像处理软件中广泛使用的处理效果,通常用它来减少图像噪声以及降低细节层次。这种模糊技术生成的图像,其视觉效果就像是经过一个毛玻璃在观察图像,这与镜头焦外成像效果散景以及普通照明阴影中的效果都明显不同。
高斯白噪声:如果一个噪声,它的幅度分布服从高斯分布,而它的功率谱密度又是均匀分布的,则称它为高斯白噪声。 热噪声和散粒噪声是高斯白噪声。 所谓高斯白噪声中的高斯是指概率分布是正态函数,而白噪声是指它的二阶矩不相关,一阶矩为常数