【1】 耿素云,屈婉玲。离散数学(国家十五规划教材).高教出版社,2004。【2】 袁崇义,屈婉玲,王捍贫,刘田。离散数学及其应用(第4版,译著).机械工业出版社,2002。【3】 陆钟万。计算机科学中的数理逻辑.科学出版社,2002。【4】哈密尔顿,朱水林译。数理逻辑.华东师大出版社,1987。【5】 耿素云。离散数学习题集--数理逻辑与集合论分册.北大出版社,1993。【6】 张立昂。离散数学习题集--抽象代数分册.北大出版社,1990。【7】 耿素云。离散数学习题集--图论分册.北大出版社,1990。【8】 离散数学习题辅导软件【9】 命题逻辑教学软件【10】离散数学教程,耿素云,屈婉玲, 王捍贫,北京大学出版社,2002。【11】Discrete Mathematics and Its Applications,Sixth Edition,Kenneth H.RosenDiscrete Mathematics and Its Applications此书的价值已经被全世界几百所大学所证实,作为离散数学领域的经典教材,全世界几乎所有知名的院校都曾经使用本书作为教材。以我个人观点看来,这本书可以称之为离散数学百科.书中不但介绍了离散数学的理论和方法,还有丰富的历史资料和相关学习网站资源。更为令人激动的便是这本书少有的将离散数学理论与应用结合得如此的好.你可以看到离散数学理论在逻辑电路,程序设计,商业和互联网等诸多领域的应用实例。本书的英文版(第六版)当中更增添了相当多的数学和计算机科学家的传记,是计算机科学历史不可多得的参考资料.作为教材这本书配有相当数量的练习。每一章后面还有一组课题,把学生已经学到的计算和离散数学的内容结合在一起进行训练.这本书也是我个人在学习离散数学时读的唯一的英文教材,实为一本值得推荐的好书。
讲义安排
第一讲:数理逻辑
第二讲:集合论
第三讲:图论
第四讲:代数结构
第五讲:排列组合与容斥原理
第六讲:母函数与递推关系
第七讲:典型例题和真题讲解
第一讲:数理逻辑
一、命题
称能判断真假但不能既真又假的陈述句为命题
例1 、判断下列句子是否为命题
(1)8小于10
(2) 是有理数
(3)2是素数
(4)x + y > 10
(5)请把门开一开
(6)明年的劳动节和国庆节的晚上都是晴天
(7)21世纪末,人类将居住在太空
此种题型的关键
第一步判断是否是陈述句(陈述句才能为命题)
第二部能不能判断真假
第三部是不是既真又假
答案(1)真命题(2)假命题(3)真命题(4)不是命题(5)不是命题(6) 是命题(7)是命题(8)不是命题
解答(1)(2)(3)(6)(7)是命题,(4)(5)(8)不是命题
注意:命题必须为==陈述句==,不能为疑问句,祈使句,感叹句,命题必须具有真假值,但能判断真假,并不意味着现在就能确定其实真还是假,只要它==具有能够唯一确定的真假值==即可,如果命题的真值为真,则称为真命题,否则称为假命题,不能分成更简单的陈述句的命题为==简单命题或原子命题==,否则称为==复核命题==
2、复合命题的联结词
设p是任意命题,复合命题“非p”称为p的==否定(非)==,记为 p
设p和q是任意命题,复合命题“p且q”称为p和q的==合取(与)==,记为p q
设p和q是任意命题,复合命题“p或q”称为p和q的==析取(或)==,记为p q
设p和q是任意命题,复合命题“如果p则q”称为==p蕴含q==,记为p q
设p和q是任意命题,复合命题“p当且晋档q”称为==p与q等价==,记为p q
注意:联结词的优先顺序为: , , , , 从左到右,如有括号,括号在先
$ $
合取的优先级比析取高,故可以加括号,然后用分配律。