您当前的位置:首页 > 发表论文>论文发表

高中数学三角函数论文1000字

2023-12-10 21:35 来源:学术参考网 作者:未知

高中数学三角函数论文1000字

2009年06月03日
数学(shuxue)建模论文范文--利用数学(shuxue)建模解数学应用题
数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。
强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的
高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好
数学应用问题进行剖析,希望得到同仁的帮助和指正。
一、数学应用题的特点
我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,
从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:
第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各
个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现
代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。
第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。
第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合
能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。
第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海
战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具
有广阔的发展空间和潜力。
二、数学应用题如何建模
建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:
第一层次:直接建模。
根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:
将题材设条件翻译
成数学表示形式
应用题 审题 题设条件代入数学模型 求解
选定可直接运用的
数学模型
第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要
的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。
第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。
第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车
流平稳,没有突发事件等才能建模。
三、建立数学模型应具备的能力
从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数
学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。
3.1提高分析、理解、阅读能力。
阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并
给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定
义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。
3.2强化将文字语言叙述转译成数学符号语言的能力。
将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。
例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?
将题中给出的文字翻译成符号语言,成本y=a(1-p%)5
3.3增强选择数学模型的能力。
选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函
数建模为例,以下实际问题所选择的数学模型列表:
函数建模类型 实际问题
一次函数 成本、利润、销售收入等
二次函数 优化问题、用料最省问题、造价最低、利润最大等
幂函数、指数函数、对数函数 细胞分裂、生物繁殖等
三角函数 测量、交流量、力学问题等
3.4加强数学运算能力。
数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前
功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只
重视推理过程,不重视计算过程的做法是不可取的。
利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高
学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质
教育所必须的,需要引起教育工作者的足够重视。
加强高中数学建模教学培养学生的创新能力
摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模
教学,培养学生的创新能力方面进行探索。
关键词:创新能力;数学建模;研究性学习。
《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生:
(1)学会提出问题和明确探究方向;
(2)体验数学活动的过程;
(3)培养创新精神和应用能力。
其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训
练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识
和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知
识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。
数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的
兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。
一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。
教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就
能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。
如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟
为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对
称的点A、D的位置,可以使矩形面积最大?
这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,
并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。
这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及
参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问
题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。
2.通过几何、三角形测量问题和列方程解应用题的教学渗透数学建模的思想与思维过程。
学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固
数学建模思维过程、教学中对学生展示建模的如下过程:
现实原型问题
数学模型
数学抽象
简化原则
演算推理
现实原型问题的解
数学模型的解
反映性原则
返回解释
列方程解应用题体现了在数学建模思维过程,要据所掌握的信息和背景材料,对问题加以变形,使其简单化,以
利于解答的思想。且解题过程中重要的步骤是据题意更出方程,从而使学生明白,数学建模过程的重点及难点就是据
实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数学模型
来解决问题。如利息(复利)的数列模型、利润计算的方程模型决策问题的函数模型以及不等式模型等。
3.结合各章研究性课题的学习,培养学生建立数学模型的能力,拓展数学建模形式的多样性式与活泼性。
高中新大纲要求每学期至少安排一个研究性课题,就是为了培养学生的数学建模能力,如“数列”章中的“分期
付款问题”、“平面向是‘章中’向量在物理中的应用”等,同时,还可设计类似利润调查、洽谈、采购、销售等问
题。设计了如下研究性问题。
例1根据下表给出的数据资料,确定该国人口增长规律,预测该国2000年的人口数。
时间(年份)
人中数(百万) 39 50 63 76 92 106 123 132 145
分析:这是一个确定人口增长模型的问题,为使问题简化,应作如下假设:(1)该国的政治、经济、社会环境稳
定;(2)该国的人口增长数由人口的生育,死亡引起;(3)人口数量化是连续的。基于上述假设,我们认为人口数
量是时间函数。建模思路是根据给出的数据资料绘出散点图,然后寻找一条直线或曲线,使它们尽可能与这些散点吻
合,该直线或曲线就被认为近似地描述了该国人口增长规律,从而进一步作出预测。
通过上题的研究,既复习巩固了函数知识更培养了学生的数学建模能力和实践能力及创新意识。在日常教学中注
意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力,如记住
一些常用及常见的数据,如:人行车、自行车的速度,自己的身高、体重等。利用学校条件,组织学生到操场进行实
习活动,活动一结束,就回课堂把实际问题化成相应的数学模型来解决。如:推铅球的角度与距离关系;全班同学手
拉手围成矩形圈,怎样围使围成的面积最大等,用砖块搭成多米诺牌骨等。
四、培养学生的其他能力,完善数学建模思想。
由于数学模型这一思想方法几乎贯穿于整个中小学数学学习过程之中,小学解算术运用题中学建立函数表达式及
解析几何里的轨迹方程等都孕育着数学模型的思想方法,熟练掌握和运用这种方法,是培养学生运用数学分析问题、
解决问题能力的关键,我认为这就要求培养学生以下几点能力,才能更好的完善数学建模思想:
(1)理解实际问题的能力;
(2)洞察能力,即关于抓住系统要点的能力;
(3)抽象分析问题的能力;
(4)“翻译”能力,即把经过一生抽象、简化的实际问题用数学的语文符号表达出来,形成数学模型的能力和对
应用数学方法进行推演或计算得到注结果能自然语言表达出来的能力;
(5)运用数学知识的能力;
(6)通过实际加以检验的能力。
只有各方面能力加强了,才能对一些知识触类旁通,举一反三,化繁为简,如下例就要用到各种能力,才能顺利解出。
例2:解方程组
x+y+z=1 (1)
x2+y2+z2=1/3 (2)
x3+y3+z3=1/9 (3)
分析:本题若用常规解法求相当繁难,仔细观察题设条件,挖掘隐含信息,联想各种知识,即可构造各种等价数学模型解之。
方程模型:方程(1)表示三根之和由(1)(2)不难得到两两之积的和(XY+YZ+ZX)=1/3,再由(3)又可将三根之积
(XYZ=1/27),由韦达定理,可构造一个一元三次方程模型。(4)x,y,z 恰好是其三个根
t3-t2+1/3t-1/27=0 (4)
函数模型:
由(1)(2)知若以xz(x+y+z)为一次项系数,(x2+y2+z2)为常数项,则以3=(12+12+12)为二次项系数的二次函f(x)
=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+( t-z)2为完全平方函数3(t-1/3)2,从而有t-x=t-y=t-z,而x=y=z再
由(1)得x=y=z=1/3,也适合(3)
平面解析模型
方程(1)(2)有实数解的充要条件是直线x+y=1-z与圆x2+y2=1/3-z2有公共点后者有公共点的充要条件是圆心(O、O)到直
线x+y的距离不大于半径。
总之,只要教师在教学中通过自学出现的实际的问题,根据当地及学生的实际,使数学知识与生活、生产实际联系起来,就
能增强学生应用数学模型解决实际问题的意识,从而提高学生的创新意识与实践能力。
数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学
应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模
解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得
到同仁的帮助和指正。
一、数学应用题的特点
我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决
的一类数学问题叫做数学应用题。数学应用题具有如下特点:
第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实
际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场
经济、环境保护、实事政治等有关的应用题等。
第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。
第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的
知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。
第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解
决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。
二、数学应用题如何建模
建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:
第一层次:直接建模。
根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:
将题材设条件翻译
成数学表示形式
应用题 审题 题设条件代入数学模型 求解
选定可直接运用的
数学模型
第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模
型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。
第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。
第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有
突发事件等才能建模。
三、建立数学模型应具备的能力
从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱
,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。
3.1提高分析、理解、阅读能力。
阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如
1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身
综合素质,这种理解能力直接影响数学建模质量。
3.2强化将文字语言叙述转译成数学符号语言的能力。
将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数
学建成模的基础性工作。
例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?
将题中给出的文字翻译成符号语言,成本y=a(1-p%)5
3.3增强选择数学模型的能力。
选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主
要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选
择的数学模型列表:
函数建模类型 实际问题
一次函数 成本、利润、销售收入等
二次函数 优化问题、用料最省问题、造价最低、利润最大等
幂函数、指数函数、对数函数 细胞分裂、生物繁殖等
三角函数 测量、交流量、力学问题等
3.4加强数学运算能力。
数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强
数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程
的做法是不可取的。
利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素
质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工
作者的足够重视

高中数学论文



  摘要】力度空前、理念新颖的数学课程改革,有力地促进了教师角色的转换,改变了 教师的教学教研观念和方式, 更改变了学生的学习方式和精神风貌。 作为新课程推行的主体 ——教师,想迅速成长,须合理、有效地对我们教学进行反思,才能达到“在发展学生的同 时实现教师自身的提高”的目的。
  【关键词】高中数学新课标
  教学反思
  “吾日三省吾身”是我国古代的教育家对反思问题的最简洁表达。新课程标准颁布,为 新一轮教学改革指明了方向,同时也为教师的发展指明了道路,作为教师的我们,须认真学 习新课程标准和现代教学教育理论, 深刻反思自己的教学实践并上升到理性思考, 尽快跟上 时代的步伐。我从事高中数学教学已有一段时间,在教学中,经历了茫然与彷徨,体验了无 所适从到慢慢摸索的课堂教学组织,其间不乏出现各种思维的碰撞,而正是这些体验、碰撞 不断的引起我对高中数学教学的反思, 更加坚定了课改的信念, 并从中得到启迪, 得到成长。
  一、教学观念上反思
  课改,首先更新教学观念,打破陈旧的教学理念,苏霍姆林斯基说过: “懂得还不等于 己知,理解还不等于知识,为了取得更牢固的知识,还必须思考。 ”作为新课程推行的主体 ——教师,长期以来已习惯于 “以教师为中心” 的教学模式, 而传统的课堂教学也过分强调了 教师的传承作用,思想上把学生看做消极的知识容器,单纯地填鸭式传授知识,学生被动地 接受,结果事倍功半。新课改强调学生的全面发展, 师生互动,培养学生终身学习的能力, 学生在老师引导下,主动积极地参与学习,获取知识,发展思维能力,让学生经过猜疑、尝 试、探索、失败,进而体会成功的喜悦,达到真正的学!所以,现在教师角色的定位需是在 动态的教学过程中, 基于对学生的观察和谈话, “适时” 地点拨思维受阻迷茫的学生, “适度” 地根据不同心理特点及不同认知水平的学生设计不同层次的思考问题, “适法”地针对不同 类型知识选择引导的方法和技巧。
  二、关注初高中衔接问题
  初教高一时,深感高中教材跨度大,知识难度、广度、深度的要求大幅高,这种巨大的 差异,使刚从初中升到高中的学生一下子无从适应,数学成绩出现严重的滑坡,总感数学难
  学,信心不足。由于大部分学生不适应这样的变化,又没有为此做好充分的准备,仍然按照 初中的思维模式和学习方法来学习高中数学知识, 不能适应高中的数学教学, 于是在学习能 力有差异的情况下而出现了成绩分化,学习情绪急降。作为教师应特别关注此时的衔接,要 充分了解学生在初中阶段学了哪些内容?要求到什么程度?哪些内容在高中阶段还要继续 学习等等, 注意初高中数学学习方式的衔接, 重视培养学生正确对待困难和挫折的良好心理 素质,适应性能力,重视知识形成过程的教学,激发学生主动的学习动机,加强学法指导, 引导学生阅读、归纳、总结,提高学生的自学能力,善于思考、勇于钻研的意识。
  三、教学中反思
  教学中进行反思,即及时、自动地在行动过程中反思。教学过程既是学生掌握知识的过 程,发展学生智力的过程,又是师生交往、积极互动、共同发展的过程。教学中的师生关系 不再是“人、物”关系,而是“我、你”关系;教师不再是特权式人物,教学是师与生彼此 敞开心扉、相互理解、相互接纳的对话过程。在成功的教学过程中,师生应形成一个“学习 共同体” ,他们一起在参与学习过程,进行心灵的沟通与精神的交融。波利亚曾说: “教师讲 了什么并非不重要, 但更重要千万倍的是学生想了些什么, 学生的思路应该在学生自己的头 脑中产生,教师的作用在于“系统地给学生发现事物的机会” 。教学中教师要根据学生反馈 的信息,反思“出现这样的问题,如何调整教学计划,采取怎样有效的策略与措施,需要在 哪方面进行补充” ,从而顺着学生的思路组织教学,确保教学过程沿着最佳的轨道运行,这 种反思能使教学高质高效地进行。 教学时应注意,课堂回答问题活跃不等于教学设计合理,不等于思维活跃,是否存在为 活动而活动的倾向,是否适用所有学生,怎么引起学生参与教学。教师必须围绕教学目的进 行教学设计,根据学生已有的知识水平精心设计,启发学生积极有效的思维,从而保持课堂 张力。设法由学生自己提出问题,然后再将学生的思考引向深入。学生只有经过思考,教学 内容才能真正进入他们的头脑, 否则容易造成学生对老师的依赖, 不利于培养学生独立思考 的能力和新方法的形成。有时我们在上课、评卷、答疑解难时,自以为讲清楚明白了,学生 受到了一定的启发,但反思后发现,自己的讲解并没有很好的针对学生原有的知识水平,从 根本上解决学生存在的问题,只是一味的想要他们按照某个固定的程序去解决某一类问题, 学生当时也许明白了,但并没有理解问题的本质性的东西。还有,教师在激发学生学习热情 时,也应妥善地加以管理,使课堂教学秩序有利于教师“教”和学生的“学” ,要引导学生 学会倾听,并加强学生合理表达自己观点的训练。
  四、对学生学习方法的反思
  就上面讲到的初高中数学存在巨大差异,高中无论是知识的深度、难度和广度,还是能 力的要求,都有一次大飞跃。学生有会学的,有不会学的,会学习的学生因学习得法而成绩 好,成绩好又可以激发兴趣,增强信心,更加想学,成绩越拔尖,能力越提高,形成了良性 循环。不会学习的学生开始学习不得法而成绩不好,如能及时总结教训,改变学法,变不会 学习为会学习,经过一番努力能赶上去;如不思改进,不作努力,成绩就会越来越差,当差 距拉到一定程度以后,就不容易赶上去了,成绩一差会对学习丧失兴趣,不想学习,越不想 学成绩越降,继而在思想上产生一种厌恶,害怕,对自我怀疑,对学习完全失去了信心,甚 至拒绝学习。由此可见,会不会学习,也就是学习方法是否科学,是学生能否学好数学的极 其重要的因素。当前高中生数学学习方法还处在比较被动的状态,存在问题较多,主要表现 在:1、学习懒散,不肯动脑;2、不订计划,惯性运转;3、忽视预习,坐等上课,寄希望 老师讲解整个解题过程,依赖性较强,缺乏学习的积极性和主动性;4、不会听课,如像个 速记员,边听边记,笔记是记了一大本,但问题也有一大堆;有的则一字不记,只顾听讲; 有的学生只当听老师讲故事时来精神等等; 5、死记硬背,机械模仿,教师讲的听得懂,例 题看得懂,就是书上的作业做不起;6、不懂不问,一知半解;7、不重基础知识,基本方法, 基本技能,而对那些偏、难、怪题感兴趣,好高骛远,影响基础学习;8、不重总结,轻视 复习。 对于我们面上中学,大部分是居于中等及以下的学生,基础知识、基本技能、基本数学 思想方法差, 思维能力、 运算能力较低, 空间想象能力以及实践和创新意识能力更无须谈说。 上面所谈到的学生问题表现尤为突出,因此教师需多花时间了解学生具体情况、学习状态, 对学生数学学习方法进行指导,力求做到转变思想与传授方法结合,课上与课下结合,学法 与教法结合,统一指导与个别指导结合,促进学生掌握正确的学习方法。只有凭借着良好的 学习方法,才能达到“事半功倍”的学习效果。
  五、对小组合作学习的反思
  《高中数学新课程标准》指出,教师应倡导“自主、合作、探究”的学习方式,促进学 生在教师的指导下主动、有个性地学习,促进学生能力的发展,培养学生良好的合作品质和 学习习惯。现“小组合作学习”已经成为新课标理念下的一项重要教学组织形式,但在实践 中,我们发现小组合作学习方式的实施存在着误区: (1)小组合作活动流于形式,缺乏实质 的合作。 教师为追求学习方式的多样化, 不根据教学内容的特点和学生实际盲目地采用小组 合作学习方式。(2) 合作人员搭配不合理,责任扩散和"搭车"现象时有发生, 不利于让不同
  特质、不同层次的学生进行优势互补、相互促进。(3)学生社交技能欠缺,之间缺乏沟通和 深层次的交流,合作效率低下,结果是优等生的想法代替了小组其他成员的意见和想法,差 生成了陪衬。(4)教师课前对合作学习的目的、时机及过程没有认真设计,也有教师在合作 学习中只是按照预定的设计,把学生往教学框架里赶。(5)合作时间给予不足。在小组合作 学习时,往往是教师呈现问题后未留给学生片刻思考的时间就宣布“合作学习开始” ,不到 几分钟就叫“合作学习停止” 。这时,有的小组还未真正进入合作学习主题,有的小组才刚 刚开始。 这样的小组合作学习不但达不到合作学习的目的, 而且很容易挫伤学生合作学习的 热情,养成敷衍了事的不良习惯,下次开展合作活动学生也懒得配合了。(6) 表面上的“假 热闹” ,实际上“活而无序” 课堂秩序混乱,学生发言七嘴八舌,听不清究竟谁的思维不 。 严密,谁的思维缺少条理性。教师对小组学习缺乏必要的计划、调控等组织技能,指导作用 没有跟上,当学生和小组面临问题时,教师无法对一些问题进行辨别、分析并对学生们进行 帮助。(7)评价体系没有跟上,三重三轻突出,小组合作名存实亡。小组代表或个别优等生 的发言多数一听就知不是代表本组意见,而是代表个人意见。合作学习结果变为:重个体评 价轻小组评价;重学习成果评价轻合作意识、合作方法、合作技能评价;重课堂随机评价轻 定期评价等。 我们应明确,合作学习这只是有效学习方式中的一种,教学中根据教学目标、教学内容 等合理的选择教学行为和学习方式,要避免“将所有的原料配料放入合作学习之盘” 教师 。 需关注学情,提前建立评价建体系,挖掘合作点,顺学而导,使学生掌握技能会合作,同时 应提供充裕的合作学习时间,激活内因真正促发展。
  六、对习题、试卷评讲的反思 对习题、
  习题、试卷评讲不能停留于指出不足、改正错误及讲解方法,而应当着眼于数学能力的 培养。要结合示例挖掘、归纳其中的思想方法,抓“通病”与典型错误,抓“通法”与典型 思路,加深学生对思想方法的认识,使其领悟思想方法实质,不断提高解题能力和纠错、防 错能力。 在数学教学中需要反思的地方很多,没有反思,专业能力不可能有实质性的提高,教师 要在数学教学过程中充分理解新课程的要求,不断地更新观念、不断探索,提高自身的学识 和身心修养,掌握新的专业要求和技能,在教学过程中只有勤分析,善反思,不断总结,以 适应新课程改革的需要,教育教学理念和教学能力才能与时俱进,全面开展素质教育。

高一数学论文

高中数学多媒体教学的探索与思考摘要:现代教育技术是当前教育的制高点。如何利用多媒体进行辅助教学,探讨多媒体教学模式已成为教育界关注的话题,数学作为一门独立的自然科学,有它自身的特点、体系和规律,本文就两年来从事数学多媒体教学的收获与困惑谈几点体会。关键字:多媒体、高中数学、课堂教学21世纪人类已进入信息时代,以计算机和网络为核心的现代科学技术不断发展,其应用已逐步进入教育领域。使我们的教育由“一支粉笔、一块黑板、一本书”的枯燥无味的课堂教学走向生动活泼的“屏幕教学”,真正向创新型教育教学发展。去年,我校在高中部全面实行多媒体辅助教学模式,让多媒体的最佳效果完全深入课堂,增大课堂容量、提高课堂效益、活跃课堂气氛、提高学生学习的兴趣。逐渐地,数学教师改变以往的讲述、板书等手段、“一支粉笔、一个三角板(圆规)等媒介,借助多媒体强大的图形处理功能和动画处理功能,出色的完成每一堂数学课。数学是一门集数形关系知识于一身的学科,而多媒体教学的交互性、可控制性、大容量性、快速灵活性,正好符合数学教学的要求。在此,本人就一年多来的对数学多媒体辅助教学的探索谈几点体会;根据现状请同行们思考几个问题:一、 高中数学多媒体课堂教学的优越性(1) 运用多媒体的声像效果,创设情境、导入新课、激发兴趣俗话说:“好的开始是成功的一半”。在数学课的开始阶段,迅速集中学生的注意力,把他们思绪带进特定的学习情境,激发起学生浓厚的学习兴趣和强烈的求知欲,对一堂数学课的成败与否起着至关重要的作用。数学课直白地提问复习引入新课,平淡无奇。不如运用多媒体的声光、色形、图象的翻滚、闪烁、定格及色彩变化、声响效果更能有效地开启学生思维闸门,由被动到主动,轻松愉快地进入新知识的学习。 例如1:在引入《四种命题》时,通过flash动画演示一个故事情节:有一个主人很热情地约了四个朋友一起过生日,结果只有三个朋友赴约,主人见人没来齐,便说:“该来的没来”。过一会儿,有一个朋友走了。主人又说:“不该走的走了”。这时另一位朋友也走了。主人见情形不对,对剩下的一位说:“我又没说他”。结果三个全走了。提问:主人的朋友为什么会走?激发学生强烈的探索欲。例如2:在讲解高二数学(人教版)上册《直线的倾斜角和斜率》引入时,利用Powpoint制作幻灯片。画有两个一大一小的正方形,提问:有一把三角板怎样画出两个正方形的对角线?(注:大正方形的对角线长大于等腰直角三角板的斜边长) 图1 (一点与一角确定一条直线) (两点确定一条直线)(2)运用多媒体的动画效果,突出重点、突破难点、呈现过程爱因斯坦曾说过:“教育应该使提供的东西,让学生直接轻松地作为一种宝贵的礼物来享受,留下深刻印象,而不是作为一种艰苦的任务要他负担。”因而要求在课的重点、难点讲解阶段,由浅入深、由易到难、由具体到抽象,这就需要运用多媒体的动态画面展示事物发展或推理全过程。利用它的图画特性将抽象的、理论的东西形象化,将空间的、难以想象的内容化。在突出重点方面例如1在讲函数y=Asin(ωx+φ)的图象时,传统教学只能将A、ω、φ代入有限个值,观 察各种情况时的函数图象之间的关系;利用《几何画板》则可以以线段b、T的长度和A点到x轴的距离为参数作图(如图1),当拖动两条线段的某一端点(即改变两条线段的长度)时分别改变三角函数的φ和ω,拖动点A则改变其振幅 ,这样在教学时既快速灵活,又不失一般性。在突破难点方面y 例如2:在讲解圆锥曲线的第二定义时,为使学生更好地体会轨迹是随 的“量变”而怎样发生“质变”的,可利用FLASH动画展示 的变化对曲线形状的改变,有利于学生更好地总结比较圆锥曲线的异。

求2000字三角函数的应用开题报告

开题报告
三角学的起源与发展
三角学之英文名称 Trigonometry ,约定名于公元1600年,实际导源于希腊文trigono (三角)和metrein (测量),其原义为三角形测量(解法),以研究平面三角形和球面三角形的边和角的关系为基础,达到测量上的应用为目的的一门学科。早期的三角学是天文学的一部份,后来研究范围逐渐扩大,变成以三角函数为主要对象的学科。现在,三角学的研究范围已不仅限于三角形,且为数理分析之基础,研究实用科学所必需之工具 一、课题提出的背景
高中学习的紧张,高中学科的繁多。在数学学科上三角函数始终是高中学生们的一个心结,一个想得高分却无法做对的心结。并且三角函数与平面向量中的数学思想方法贯穿于整个学习过程内容中,是解决三角函数与平面向量问题的指南.由于数学学习是具体性较差、与现实有一定距离的活动,自我一时的作用更加突出,更加需要有学习活动与对活动的自我反省和调节间的协调统一。然而,目前数学教学中并没有意识到这个重要性,轻视基本概念教学,迷恋大运动量解题训练,以获得正确答案为满足,不对解题过程进行反思,不总结解题经验和教训,更不对问题进行引申、一般化和概括数学思想方法,结果是导致数学学习的“高投入,低产出,”师生双方的负担都非常重

二、所要解决的主要问题
1、通过实际问题培养学生经历概念的形成能力。
2、研究如何培养学生数形结合的数学思想和整体代换的思想。 3、研究如何培养学生对题分析和解决能力。
4、培养学生良好的解决问题的数学思想和方法,使学生对解题充满信心。
三、课题的理论价值和实践意义
理论价值:本课题的研究有助于学生养成利用数学知识解决现实问题的良好习惯,掌握基本的数学思想和方法,真正体会数学知识的实际意义,培养学生良好的数学意识。
实践意义:本课题的研究体现了数学教学的实际意义和新课程基本要求,提高学生数学学习兴趣,培养数学应用能力。 四、研究内容
1、对学生数学的应用能力进行调查,找出影响应用能力的因素。 2、对学生进行图形语言和数学符号语言相结合练习,培养学生数形结合的思想方法。

3、研究学生解决实际问题过程中学生自主探索,合作交流的能力,寻求多样化的解题方法,培养学生的创新意识。

采纳有好报

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页