原文链接:
几何中的两个基本量是:线段的长度和角的大小.三角函数的本质就是用线段长度之比来表示角的大小,从而将两个基本量联系在一起,使我们可以借助三角变换或三角计算来解决一些较难的几何问题.三角函数不仅是一门有趣的学问,而且是解决几何问题的有力工具.
1. 角函数的计算和证明问题
在解三角函数问题之前,除了熟知初三教材中的有关知识外,还应该掌握:
(1)三角函数的单调性 当a为锐角时,sina与tga的值随a的值增大而增大;cosa与ctga随a的值增大而减小;当a为钝角时,利用诱导公式转化为锐角三角函数讨论.
注意到sin45°=cos45°=,由(1)可知,当时0<a<45°时,cosa>sina;当45°<a<90°时,cosa<sina.
(2)三角函数的有界性|sina|≤1,|cosa|≤1,tga、ctga可取任意实数值(这一点可直接利用三角函数定义导出).
例1(1986年全国初中数学竞赛备用题)在△ABC中,如果等式sinA+cosA=成立,那么角A是( )
(A)锐角 (B)钝角 (C)直角
分析 对A分类,结合sinA和cosA的单调性用枚举法讨论.
解当A=90°时,sinA和cosA=1;
当45°<A<90°时sinA>,cosA>0,
∴sinA+cosA>
当A=45°时,sinA+cosA=
当0<A<45°时,sinA>0,cosA>
∴sinA+cosA>
∵1, 都大于.
∴淘汰(A)、(C),选(B).
例2(1982年上海初中数学竞赛题)ctg67°30′的值是( )
(A)-1 (B)2- (C)-1
(D) (E)
分析 构造一个有一锐角恰为67°30′的Rt△,再用余切定义求之.
因为对于任意a∈r,都有在(a,a+π)内,f(x)与y=0有且只有两个交点
又因为函数为三角函数,且在区间长度为π的区间内恒成立!
所以π为该函数的一个周期!
因为函数为f(x)=sin(wx)。所以w=2π/π=2
研究性学习:“数学在生活中的应用”结题报告
上传: 金景 更新时间:2012-5-17 9:06:35
研究性学习:“数学在生活中的应用”结题报告
一、课题研究背景:
数学是一门很有用的学科。自从人类出现在地球上那天起,人们便在认识世界、改造世界的同时对数学有了逐渐深刻的了解。早在远古时代,就有原始人“涉猎计数”与“结绳记事”等种种传说。可见,在早期一些古代文明社会中已产生了数学的开端和萌芽。在bc3000年左右巴比伦和埃及数学出现以前,人类在数学上没有取得更多的进展,而在bc600—bc300年间古希腊学者登场后,数学便开始作为一名有组织的、独立的和理性的学科登上了人类发展史的大舞台。
如今,数学知识和数学思想在工农业生产和人们日常生活中有极其广泛的应用。譬如,人们购物后须记账,以便年终统计查询;去银行办理储蓄业务;查收各住户水电费用等,这些便利用了算术及统计学知识。此外,社区和机关大院门口的“推拉式自动伸缩门”;运动场跑道直道与弯道的平滑连接;底部不能靠近的建筑物高度的计算;隧道双向作业起点的确定;折扇的设计以及黄金分割等,则是平面几何中直线图形的性质及解直角三角形有关知识的应用。
由此可见,古往今来,人类社会都是在不断了解和探究数学的过程中得到发展进步的。数学对推动人类文明起了举足轻重的作用。
二、课题研究目的和意义:
1.感受数学,体会数学的价值。“数学在生活中的应用”的研究性学习让同学收集和开发自己生活中的素材,感受数学与我们现实生活的密切关系,让大家感受生活与数学同在,来体验数学自身价值。
2.领悟数学,思想升华。“数学在生活中的应用”的研究性学习让学生经历知识的再创造,体验知识的形成过程,形成自身有效的知识,使自己的思想得到进一步的升华。
3.会用数学。“数学在生活中的应用”的研究性学习让自己学会应用数学,达到直接为社会创造价值的最终目的。
三、研究过程
1.成立课题小组(第一学期第12周)。
2.开题(第一学期第13周)。组织学生做好开题报告,介绍本课题的选题背景、立意、课题论证和实施计划。
3.研究。(第一学期第14周至第二学期第15周)在老师的启发引导下,本课题小组同学积极参与,利用课余、课外时间,通过数学课本、化学资料等对“数学在生活中的应用”课题进行探索、研究和计算,还有部分同学对研究成果通过实验来验证,体现了大家严谨的科学态度。在老师的指导下,将有关“数学在生活中的应用”的研究成果和心得体会写成小论文。
四、课题:“数学在生活中的应用”的研究成果
小论文:不等式、数列、函数在生活中的应用(见附件1)
五、心得体会
通过这次研究性学习我们学会了很多东西,也懂得了很多。以前学数学一般是理论性的比较多,缺乏与实际的联系,学了不知道怎么用。这次研究性学习的最大所得,不在于取得什么成果,而是培养一种思维习惯,一种将现实生活中的现象转化为问题并进行研究的习惯。当我们在黑板上写字,用力过大而将粉笔折断时,是否想到了粉笔多长才是最优化长度;又当我们去打电话时,是否能够联想到这类似于“函数模型”,从而求出电话费与时间的函数。甚至当我们玩游戏时,能否用离散和概率的思想。不禁一笑后,你会发现,其实这些问题都来自于我们的生活,但是它们的复合与延伸,就可能涉及到今日科学的前沿。
另外感觉自己的知识面还是不够宽,例如老师给了很多有价值的问题,由于我们知识浅薄,最终我们选择了“函数、不等式、数列在生活中的应用”等进行探索、研究。对问题数据计算还可以,但对计出的数据找规律时,就遇到了困难,老师给我们作了指导。在如果平时学习时,多注意理论与实践的结合,学以致用,做起研究性学习就更能得心手。
研究性学习毕竟是个集体项目,它不仅培养了我们的合作精神,而且也培养了大家的团结友爱,互助协作的精神。所以组成小组后,我们组就常常在一起讨论题目,等到讨论成熟后,就进行计算研究。俗话说,三个臭皮匠顶个诸葛亮。大家在一起如果做出一些东西来,就会有一种成就感,这也是 研究性学习带给我们的乐趣所在。
研究性学习培养的是一种创新精神,以及快速解决问题的能力。参加研究性学习小组,也给了我们一次简单的科学研究工作的体验。科学工作所需要的严谨,大胆都在这样活动中有着完整的体现。使我们体会到了科研工作的艰辛,这些将对我们今后的学习与工作产生积极的作用和深远的影响。
应该是将几个题串联起来
稍加分析就行
网上有很多范文
希望可以采纳
我们也可以的
【摘要】高中数学函数求最值问题是高中数学最重要的课程之一,由于求最值问题的内容较散,方法难以选择,因此最值问题求解一直困扰我们的学习。最值问题是数学考试中常用的求解题目,我们在学习中要通过例题的练习熟悉最值求解问题的解题方法,并且通过精确例题来确认可能存在的解题陷阱,从而让同学们提高对这一部分题目的解题熟练度和准确度。
1.函数最值求解的理论知识
高中数学函数中求最值是整个阶段学习的核心内容,最值求解问题的覆盖度较广,在高考题目中屡次出现,这也体现了这一知识点的重要性。函数最值问题的定义是:假设y=f(x)的定义域为A,如果存在x0∈A,使得A范围内的任意x值都有f(x0)≤f(x),则成为函数的最大值,反之则成为函数的最小值,这是最值问题的严格定义,将函数最值问题和函数单调性结合在一起,我们在学习过程中,要注重函数单调性的理解,精确求解函数最值。
函数最值问题的`求解较为复杂,这也是导致我们学习出现障碍的症结所在,函数最值问题求解需要考虑的方面较多,如果忽略了函数定义域的处理,就会导致函数最值求解错误。我们在最值问题求解时会涉及到函数定义域和值域、三角函数、单调性等问题,涉及的数学方法和解题技巧也较多,因此对于这类问题的求解要注重解题细节,灵活运用最值求解方法。
2.函数中求最值需要注意的点
2.1区间上二次函数最值求解
二次函数最值求解是较为常见的函数问题,由于二次函数是非线性函数,讨论函数区间内的最值问题要综合考虑函数的特性,确定函数定义域区间内的最值,最值求解一定要在有意义的定义域区间内,我们要明确函数区间的开闭性,而此函数是给定的,其相应的函数值域也是确定的。例如已知二次函数f(x)=ax+bx+c(a>0),它的函数曲线是以直线x=-b/2a为对称轴,曲线为开口向上的抛物线,根据数形结合我们可以求解函数区间。我们在求解过程中,要注意函数区间(m、n)的界定,在函数区间内区分增区间和减区间,从而求解函数的最大值和最小值。
2.2动二次函数的区间最值求解
二次函数随着参数的变化而变化,其函数曲线是运动的,但是其区间固定在一个区域内,这种情况下的函数定区间最值求解要考虑函数区间的单调性。函数参数如果实在曲线开口上,就要针对函数曲线开口向上和开口向下进行重点讨论,如果函数参数出现在对称轴上,就针对函数区间左侧、右侧和中间定义域进行讨论,如果函数区间在对称轴区间的中间,要分为两种情况进行讨论,细分为对称轴是分为左侧或者右侧的端点。动二次函数包含了参数,去区间也是变化的,函数在闭区间的最值可能是出现在区间端点,顶点处取得,最后要对得出的参数值进行验证。同时函数最值求解要把握二次函数的图像开口方向,确定定点的横坐标,并确定函数的单调性和对称性。
2.3利用基本不等式求解最值问题
有些同学在利用基本不等式求解最值问题时,会忽视了等号成立条件的问题,在利用基本不等式求解最值时要必须对定理的前提的进行考虑,核实“一正二定三相等”的前提条件是否成立,否则求得的最值容易出现错误。例如对于例题:正数x、y满足x+2y=1,求解1/x+1/y的最小值,对于不等式最值求解可能会出现以下的错解,即由基本不等式可以得出x+2y=1≥。
所以可以得出xy≤1/8,我们可以将不等式变化带入到不等式1/x+1/y≥2≥4,其最小值为4。对于这种错误解题方法分析,第一次等号成立的条件为x=2y,但是第二次等号成立的条件是x=y,这两种之间的矛盾直接导致最值求解直接错误,因此我们在不等式求解最值时要格外注重等号成立条件的规定。
2.4数形结合求解函数最值
数形结合求解函数最值问题是我们往往忽略的方法,这种方法借助图形可以直接观察到函数的单调性,从而确定函数最值在哪个位置。图形可以直观表现函数曲线的走向,而数则可以精确计算函数区间,通过数和形的联系可以结合函数最值问题。我们可以根据函数画出相应的图形,将函数图形纳入到坐标系中,画出函数曲线中的对称线和区间端点,利用函数图形辅助最值求解,函数图形可以直观准确计算出两个变量表达式的数值,用导数求极值进而求最值,也要借助草图来画出函数的单调性才能确定最大最小值在哪取得;在区间上求二次函数的最值问题也要画出二次函数的图象才能确定最值,因此我们要合理利用数形结合来求解函数最值,灵活运用函数图像的辅助作用,提高函数区间单调性的把握,从而精确计算函数最值。
3.结语
综上所述,高中数学函数中求最值是最常见的数学问题,对于这一问题的学习,我们要掌握多种求解方法,根据函数特征灵活运用,同时要注意函数定义域和值域的范围,采用数形结合、分类讨论、区间划分及函数单调性等方法来计算函数最值,提高最值问题的解题准确性,避免由于疏忽而导致解题错误。高中生在函数最值求解学习中,要对最值求解问题进行系统练习,在习题练习中总结求解方法,攻克最值求解的学习难关。