您当前的位置:首页 > 发表论文>论文发表

人教版小学五年级数学教学论文

2023-12-11 23:52 来源:学术参考网 作者:未知

人教版小学五年级数学教学论文

1、生活中的数学
数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具,而生活也是缺不了数学的。
现实生活中,我们会看到用正多边形拼成的各种图案,例如,平时在家里、在商店里、在中心广场、进入宾馆、饭店等等许多地方会看到瓷砖。他们通常都是有不同的形状和颜色。其实,这里面就有数学问题。
在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙。这些形状的地砖或瓷砖为什么能铺满地面而不留一点空隙呢?
例如,三角形。三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形。我们知道,三角形的内角和是180度,外角和是360度。用6个正三角形就可以铺满地面。
再看正四边形,它可以分成2个三角形,内角和是360度,一个内角的度数是90度,外角和是360度。用4个正四边形就可以铺满地面。
正五边形呢?它可以分成3个三角形,内角和是540度,一个内角的度数是108度,外角和是360度。它不能铺满地面。
……
由此,我们得出了。n边形,可以分成(n-2)个三角形,内角和是(n-2)*180度,一个内角的度数是(n-2)*180÷2度,外角和是360度。若(n-2)*180÷2能整除360,那么就能用它来铺满地面,若不能,则不能用其铺满地面。
瓷砖,这样一种平常的东西里都存在了这么有趣的数学奥秘,更何况生活中的其它呢?
至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理.
正如华罗庚先生所说的:近100年来,数学发展突飞猛进,我们可以毫不夸张地在用:宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,用“无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.
可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域

小学五年级数学论文

抓好基础知识,重视培养思维能力
一、基础知识必须让学生切实学好
1.从学生已有的知识和经验出发进行教学
数学具有严密的逻辑性,前后知识联系紧密,某一新的知识点往往是前一部分知识的发
展和延伸,同时又 是后一部分知识的基础。就课本上新知识点来说,一般包含着许多旧有
知识。因此,充分利用学生已有知识和 经验学习新知识,能激发学生学习兴趣,提高学习
积极性,又能形成良好的知识结构。如分数乘法中分数乘以 整数的意义没有变,仍是求几
个相同加数的和的简便算法。教学时通过对原有知识的复习,学生是容易理解的 。在讲例
1前我们可以提出:4个2是多少?用加法如何计算?用乘法如何计算?此时我们可以提问:
整数乘法的 意义是什么?在此基础上,我们进一步提出:4个2/9是多少?用加法如何列
式?用乘法又如何列式?学生列出(2/9)+(2/9)+(2/9)+(2/9),(2/9)×4。因为做分数加法时是以
原来的分母做分母,分子部分是相同加数求和, 所以(2/9)×4=(2×4)/9=8/9;引导学生观
察算式得出:分数乘以整数的方法是用分数的分子和整数相乘的积 作分子,分母不变。本
册分数除法中分数除以整数的意义与整数除法意义相同,教学时可通过学生已有知识引 入,
使学生掌握新知识。
2.通过实物、教具、学具或者实际事例使学生在理解的基础上掌握知识
小学阶段是儿童从形象思维向抽象逻辑思维发展的转变阶段,仍应重视运用实物、教具、
学具进行教学, 增加感性认识,促进学生对知识的理解和掌握。如长方体和正方体是学生
第一次接触的立体图形,如果空间观 念不强,在计算长方体的表面积与体积时就会混淆。
教师要重视实物、教具的演示作用,教学时可分为以下三 步:一是让学生搜集大小不同、
形状各异的长方体实物,引导学生观察,使学生对长方体的特征有一个初步的 感性认识。
二是用“切土豆”的方式使学生认识长方体的特征,如取一个较大的土豆,切一刀切出一个
平面, 切两刀出来两个面、一条棱,切三刀出来三个面、三条棱和一个顶点……切六刀就
成为六个面、十二条棱、八 个顶点的长方体(注意面与面要成直角)。三是出示长方体的框
架模型,让学生指出长方体的面、棱和顶点, 并画出长方体的直观图,引导学生对照长方
体框架模型指出相对应的面、棱和顶点。这样才能使学生牢固掌握 长方体的特征,形成长
方体的概念。

二、引导学生参与获取知识的思维过程,培养思维能力
1.计算教学要让学生参与探究法则和算理的形成
法则和算理是计算的根据,掌握法则和算理对于提高计算能力会起到重要作用。因此在
计算教学时要让学 生参与探究法则和算理的形成,从而帮助学生熟练地掌握、使用算理和
法则。
教学分数乘以分数的计算法则时,教师先出示例题:“一台拖拉机每小时耕地3/5公顷,
3/4小时耕地多少 公顷?提问:如果把已知条件换成整数或小数应怎样计算?接着让学生根
据整数和小数乘除法的算理给例题列 式,这样学生就能明白,分数乘除法的算理和计算法
则是从整数和小数的计算法则中演绎过来的。然后教师出 示下列三幅图,引导学生观察、
分析、思考,并演示计算过程,最后让学生讨论归纳出分数乘以分数的计算法 则,这样,
学生得到的不仅仅是法则。
引导学生得出:任何物体都占有一定的空间,“物体所占空间的大小叫做物体的体积”。这样
教学,学生得到的绝不仅仅是一个文字概念。

2.几何教学让学生参与公式的推导过程
长方体的体积公式:长方体的体积=长×宽×高,学生记住这个公式并不难,但是要理
解为什么计算长方 体的体积要这样计算是比较困难的,为此,我们必须让学生参与公式的
推导过程。教学时可这样进行:
(1)把一个土豆(或萝卜及其他容易切开的物体)切成一个长4厘米、宽3厘米、高2
厘米的长方体,引导学 生观察后指导学生把这个长方体切成1立方厘米的小正方体,再让
学生数一数这个长方体切成了多少个1立方厘 米的小正方体,并说明小正方体的总和就是
这个长方体的体积,每个小正方体都是这个长方体的体积单位。然 后组织学生讨论:是怎
么切的,长方体的体积应如何计算?
(2)让学生把24块1立方厘米的正方体,摆成体积是24立方厘米的长方体,进行操作
实验,然后整理出如下 的摆法: 每排块数 排数 层数 总块数(体积) 4 3 224 6 4 1 24 6 2
2 24 8 3 1 24 12 2 1 24
引导学生从上面实验得出:长方体的体积=长×宽×高。
为了全面提高教学质量,着眼于学生素质的提高,数学教学还应注重学生的操作和实践
活动,在操作和实践活动中培养学生解决简单实际问题的能力。

小学五年级数学论文

小学数学教学论文:“分数的意义”课后反思
1、《课标》中指出:通过数学学习,学生能够积极参与数学学习活动,对数学有好奇心与求知欲。在数学学习活动中获得成功的体验,建立自信心。在“分数的意义”一课中有如下体现:(1)师:我们通过平均分一个物体,得到的一份或几份可以用分数来表示。今天我们继续研究分数,我们是仍然来分一个物体呢,还是试着来分一堆物体? 生:分一堆吧。教师创设条件,由学生选择教学的起点,充分体现了以人为本的教育理念。奥苏伯尔说过:“影响学生的最重要原因是学生已经知道了什么,学生还想知道什么。”在教师的组织下,学生主动参与教学过程,自觉地成为学习的主体。(2)师:出示一个装有苹果的果盘,果盘上用布遮盖,使学生能看到苹果,但无法看到苹果的个数。 师:老师这里有一堆苹果,如果把这堆苹果看作一个整体,平均分成2份,你们能根据已有的知识,说一说1份与这个整体之间的关系吗?把苹果盖起来,无法看到苹果的个数,这对小学生来说是有趣的,令人好奇的,虽然不好猜苹果的个数,但部分与整体的关系还是比较清楚的,这一环节的设计不仅抓住了学生的求知欲,更重要的是巧妙地铺垫了平均分的一堆物品具体有多少个并不重要,重点要研究平均分份后,部分与整体的关系。2、《课标》中指出:教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在动手实践,自主探索与合作交流的过程中真正理解和掌握基本的数学知识与技能,数学思想和方法。“分数的意义”是一节概念课,在概念课的教学中更要注重数学活动的过程。本节课先后2次安排学生通过操作逐步经历从现实生活中抽象出分数的过程。(1)在复习阶段设计了“用你手中的学具能得到哪些分数?”目的在于帮助学生复习回忆对分数的已有认识。(2)在学习新知阶段设计了“请大家用纸袋内的学习材料动手分一分,然后用分数来表示你想要的部分。请同学们分组讨论后,用填表的形式记录讨论结果。”学生通过操作领悟到平均分的是什么物品不重要,平均分的是1个物品还是多个物品组成的群体也不重要,重要的是平均分了几份,我们要表示的是几份,学生在几十分钟的学习探索中,能对分数有如此深刻的认识,应归功于大量的数学活动。3、《课标》中指出:数学课程应突出体现发展性,数学学习内容应当是富有挑战性的,学生的学习活动应当是一个生动活泼、主动和有个性的过程。让概念教学具有一定的开放度,有利于提高学生的创造能力,实现不同的人在数学上得到不同发展。(1)本课在设计2次动手操作时具有一定的开发度。表现在学习材料是开放的,即每组学具的物品不同,多少也不同。使每组学生的操作结果各不相同。(2)在理解单位“1”时,具有一定的开发度。表现在分组探讨前面的谈话:“如果这不是一堆苹果,是一堆棋子、一堆卡片、一堆硬币……,你们能通过不同的分法,得到不同的分数吗?”以及抽象概括,构建新知时设问:“既然与分的是什么、是多少没关系,那么我们给象这样的一个物体、一个图形、一个计量单位、以及多个物体组成的一个整体,起个统一的名字叫做单位“1”。单位“1”除了可以是这些,还可以是哪些?”

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页