数字图像处理是利用计算机对图像信息进行加工以满足人的视觉心理或者应用需求的行为,应用广泛,多用于测绘学、大气科学、天文学、美图、使图像提高辨识等。这里学术堂为大家整理了一些数字图像处理毕业论文题目,希望对你有用。
1、基于模糊分析的图像处理方法及其在无损检测中的应用研究
2、数字图像处理与识别系统的开发
3、关于数字图像处理在运动目标检测和医学检验中若干应用的研究
4、基于ARM和DSP的嵌入式实时图像处理系统设计与研究
5、基于图像处理技术的齿轮参数测量研究
6、图像处理技术在玻璃缺陷检测中的应用研究
7、图像处理技术在机械零件检测系统中的应用
8、基于MATLAB的X光图像处理方法
9、基于图像处理技术的自动报靶系统研究
10、多小波变换及其在数字图像处理中的应用
11、基于图像处理的检测系统的研究与设计
12、基于DSP的图像处理系统的设计
13、医学超声图像处理研究
14、基于DSP的视频图像处理系统设计
15、基于FPGA的图像处理算法的研究与硬件设计
第一题:
答案:
第二题:
答案:
第三题:
答案:
第四题:
答案:
第五题:
答案:
这部分内容主要考察的是数字图像处理的知识点:
通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。数字图像处理的产生和迅速发展主要受三个因素的影响:一是计算机的发展;二是数学的发展(特别是离散数学理论的创立和完善);三是广泛的农牧业、林业、环境、军事、工业和医学等方面的应用需求的增长。
由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。
图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。
图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立“降质模型”,再采用某种滤波方法,恢复或重建原来的图像。
1 基于形态学运算的星空图像分割
主要内容: 在获取星图像的过程中,由于某些因素的影响,获得的星图像存在噪声,而且星图像的背景经常是不均匀的,为星图像的分割造成了极大的困难。膨胀和腐蚀是形态学的两个基本运算。用形态学运算对星图像进行处理,补偿不均匀的星图像背景,然后进行星图像的阈值分割。 要求: 1>
图像预处理:对原始星空图像进行滤波去噪处理; 2> 对去噪后的图像进行形态学运算处理; 3>
选取自适应阈值对形态学运算处理后的图像进行二值化;
4> 显示每步处理后的图像; 5>
对经过形态学处理后再阈值的图像和未作形态学处理后再阈值的图像进行对比分析。 待分割图像 直接分割图像
处理后的分割图像 2 基于数字图像处理的印刷电路板智能检测方法 主要内容:
通过对由相机实时获取的印刷电路板图像进行焊盘识别,从而提高电子元件的贴片质量,有效提高电路板的印刷效率。 要求: 1>
图像预处理:将原始彩色印刷电路板图像转成灰度图像,对灰度图像进行背景平滑和滤波去噪; 2> 对去噪后的图像进行图像增强处理,增强边缘提取的效果。 3> 对增强后的图像进行边缘提取(至少两种以上的边缘提取算法); 4> 显示每步处理后的图像(原始电路板图像可自行查找); 5>
图像处理后要求能对每个焊盘进行边缘提取,边缘清晰。