1.The existence of time delay would deteriorate the performance of system or even be the important source of instability. 时滞的存在可能会破坏系统性能,甚至造成不稳定 2.Time delays are frequently encountered in many fields of science and engineering, and they are often a source of degradation in system performance or instability. 时滞现象频繁出现在许多科学和工程的领域中,并且它通常是导致系统性能下降或不稳定的原因。 3. In both delayed control and delayed measurement, the delay is usually considered undesirable since it has the tendency to deteriorate the system performance or even destabilize the system. 在具有延时的控制和测量中,时滞是不受待见的,因为它具有使系统性能恶化甚至使系统不稳定的趋势。 4. The last decade has shown an increasing research activity on time-delay and/or sampled-data systems analysis and control due to both emerging adapted theoretical tools and also practical issues in the engineering field and information technology (see Sipahi, Niculescu, Abdallah, Michiels, and Gu (2011) and Zhang, Branicky, and Phillips (2001) and references therein). 在过去的十年中,由于出现了新的适应性理论工具以及工程领域和信息技术领域的实际问题,因此在时延和/或采样数据系统分析和控制方面的研究活动不断增加(请参见Sipahi,Niculescu,Abdallah,Michiels ,以及Gu(2011)和Zhang,Branicky和Phillips(2001)以及其中的参考文献)。 5.Recently, there has been rapidly growing interest in the stability of the system with time-varying delays, which has strong background in engineering field , such as a networked control system, see for example [1,2]. 最近,时滞系统的稳定性问题引起了广泛的关注,这在工程领域有很强的背景,如网络控制系统 6.The derived delay-dependent criteria based on the LKF approach are usually expressed in forms of linear matrix inequalities (LMIs), whose conservatism is often judged by the upper bound of the time-varying delay.1.The method of Lyapunov-Krasovskii function (LKF) is one of the most popular approaches. In LKF, some useful terms are not ignored but considered, which makes the result much less conservative. LF泛函方法是重要的方法。考虑一些被忽略的项,能够降低保守性1. Delays can cause oscillations or bad performance in a system. This makes it necessary to study stability of time-delayed systems. In addition to stability, for some applications, it may be crucial to determine the convergence rate or the transient decaying rate of system states. 时滞会产生差的系统性能。研究时滞系统是必要的。除了稳定性以外,对于某些应用而言,确定系统状态的收敛速率或瞬态衰减速率可能至关重要。 1. Cross-coupling control idea is widely used to design the synchronization controller, which can be seen in literatures[2–8,11,13–17,20,22]. 交叉控制思想已经广泛被用于设计同步控制器,如文献[2-8] 2. Steel rolling mill control is an example of measurement delay, which is found in Sbarbaro-Hofer [240]. 轧机控制是测量延迟的一个例子,可以在Sbarbaro Hofer[240]中找到。 3. Analysis of the delayed resonator as well as its applications are reported in [216, 217, 63, 125]. [216,217,63,125]对延迟谐振器及其应用进行了的分析。 4. For example, the finite dimensional systems could represent a dynamic controller for a system modeled by a PDE ( see d’Andréa Novel, Boustany, Conrad, and Rao (1994), Krstic (2009) and references therein ). 例如,有限维系统可以代表由PDE建模的系统的动态控制器(请参见d'AndréaNovel,Boustany,Conrad和Rao(1994),Krstic(2009)及其参考)。 5. Instead , a system of ordinary differential equations (ODEs) can model a component coupled to a phenomenon described by PDEs as in Daafouz, Tucsnak, and Valein (2014). 相反,如Daafouz,Tucsnak和Valein(2014)所述,常微分方程组(ODE)可以对与PDE描述的现象耦合的组件进行建模。 6. In the past few decades, fruitful results have been obtained for the robust stability of uncertain systems with time-varying delays by using the LKF approach. 过去几十年,时滞不确定系统的鲁棒稳定性已经取得丰硕研究成果,通过使用LKF方法 7.The core idea behind an event-triggered control is that the update of control commands is only executed after the occurrence of an event rather than the lapse of time in a periodic fashion注意:介绍具体的现有研究工作,不是简单的堆叠,需要有层次,逻辑,目的。简单的说,要通过现有的结果,凸显出研究的必要性和重要性。基本上可以采取总—分—总的结构, 总:研究的主要方向,思路,方法 分:针对不同的方向,列举参考文献;注意不应随意列举,要有代表性,并且对文章有所点评,指出不足或优点。这部分的目的仍然是要突出 自己文章的优越性。 总:综上所述,本文研究的目的是为了解决现有文献中的哪些不足 1. The time domain method based on Lyapunov stability theory is abroad exploited . Among some inequality-based stability conditions, the linear matrix inequality (LMI) approach becomes a powerful and popular means to tackle the stability issues of power systems with time-varying delays (see [4], [6], and [9]–[12]). 基于Lyapunov稳定理论的时域方法广泛研究。一些基于不等式的稳定性条件中,线性矩阵不等式的方法是解决具有时变时滞电力系统稳定问题的有效工具 2. To handle the time-varying and random delays, the time domain indirect methods based on Lyapunov stability theory and linear matrix inequality techniques (LMIs) have been proposed as an effective method to obtain approximate value of the delay margin [13]. 为了处理时变时滞和随机时滞,基于Lyapunov稳定理论的时域直接方法和线性矩阵不等式技术已经成为获得时滞裕度近似值的一个有效方法 3. In order to diminish the conservatism for the stability conditions of time-varying delay systems, many approaches were developed. The main efforts have been focused on two aspects: one is the techniques of constructing L–K functional , such as delay-division functional, functional with matrices dependent on the time delays [13], functional including the ones with triple-integral terms [14], and quadratic terms which is multiplied by a higher degree scalar function [15] .The other is the analyzing methods for estimating the derivatives of L–K functionals with respect to time , such as improved majorization technique, free weighting matrix method [16], integral inequality including Jensen inequality [11], Wirtinger inequality [17], auxiliary function-based integral inequality [18], and convex combination ideas incorporating linear convex analysis [19], reciprocal convex technique [20], and quadratic convex approach [21]. 许多方法被用来减少时变时滞系统稳定判据的保守性。主要工作集中在两个方面:一是L-K泛函的构建,如:时滞分割函数,其函数矩阵决于时滞[13],具有三重积分项的函数[14],和高阶标量函数相乘的二次项[15]。另一方面是估计L-K泛函时间导数的分析方法,如:改进的专业化技术,自由加权矩阵方法[16],Jensen不等式[11],Wirtinger不等式[17],基于辅助函数的积分不等式[18]以及结合线性凸分析的凸组合思想[19] ,倒凸技术[20]和二次凸方法[21]。 4. The last decade has seen a tremendous emergence of research devoted to the construction of Lyapunov–Krasovskii functionals which aims at reducing the inherent conservatism of this approach. 过去10年中,大量研究致力于构造L-K泛函,旨在减少固有保守性 4.1 Apart the choice of the functional, an important source of conservatism relies also on the way to bound some cross terms arisen when manipulating the derivative of the Lyapunov–Krasovskii functional. 除了泛函的选择,保守性的另一个来源是处理L-K泛函导数时产生的交叉项 1. Zhang et al. [1] have developed chaotic speed synchronization controller for multiple induction motors by using stator flux regulation. xx[1] 利用 定子磁通量调节技术 开发 了 用于 多个感应电动机的混沌速度同步控制器。 2. Starting from a semi-group modeling of the PDEs, the authors of Gahlawat and Peet (2017) construct a very general Lyapunov functional whose parameters are optimized via a sum of square procedure ( see also Ahmadi, Valmorbida, & Papachristodoulou, 2016). 起始于PDEs的半群模型,(2017)中的作者构建了一个非常一般化的Lyapunov 泛函,其参数通过平方和流程优化 1. In combination with a simple choice of Lyapunov–Krasovskii functionals, this inequality leads to new stability criteria for linear time-delay and sampled-data systems. 结合简单选择的Lyapunov–Krasovskii函数,这种不等式能够得到线性时滞和采样数据系统的新稳定性标准。1. 在现有文献中 reported in the literature 2. 近年来/多年 in the last decade 3.研究结果被推广 The result of this study can be generalized for … 4. 本文旨在讨论 It is the aim(intend, purpose) of this paper to discuss (present, describe) 5. 已经得到 have concluded, gained, obtained, yielded, arrived at, generated, acquired, achieved 6. 结果表明 This result(fact, demonstration, illustration, classification, comparison, analyses) gives (shows) 7.公式是基于 The formulas is derived for … according to … 1. Do not hesitate to contact me if I can be of any assistance.
不等式理论简史及离散型Hilbert不等式[论文摘要]本文首先介绍了不等式理论发展的历史,然后引入了离散型Hilbert不等式,介绍了Hilbert不等式的一个初等证明,最后对Hilbert不等式的推广形式作了简要的总结。[关键词]不等式理论 Hilbert不等式初等证明 权函数[Abstract]In this passage,we introduce the history of inequality theory first.Then we introduce the Hilbert’s inequality with a primary prof.At the end,we make a summary of a series forms of Hilbert’s inequality.[Keywords]Theory of inequality Primary proof of Hilbert’s inequality Weight function 1 引 言1.1 选题背景 众所周知,不等式理论在数学理论中占有重要地位,它渗透到数学的各个领域,因而有必要对不等式理论的发展历史有一个清晰的认识。Hilbert不等式提出以来,众多数学家给出了各种证明,本文介绍了一个初等证明。同时,总结了Hilbert不等式的各种推广形式。1.2本文的主要内容本文的工作主要有三个方面:(1)、介绍不等式理论的发展历史(2)、介绍Hilbert不等式并给出了一个初等证明(3)、总结Hilbert的各种推广形式2 不等式理论简史和Hilbert不等式2.1 不等式理论简史 数学不等式的研究首先从欧洲国家兴起, 东欧国家有一个较大的研究群体, 特别是原南斯拉夫国家。目前,对不等式理论感兴趣的数学工作者遍布世界各个国家。在数学不等式理论发展史上有两个具有分水岭意义的事件,分别是: Chebycheff 在 1882 年发表的论文和 1928 年Hardy任伦敦数学会主席届满时的演讲;Hardy,Littlewood和 Plya的著作 Inequalities的前言中对不等式的哲学 (philosophy) 给出了有见地的见解: 一般来讲初等的不等式应该有初等的证明, 证明应该是“内在的”,而且应该给出等号成立的证明。A. M.Fink认为, 人们应该尽量陈述和证明不能推广的不等式. Hardy认为, 基本的不等式是初等的.自从著名数学家 G. H. Hardy,J. E. Littlewood和G. Plya的著作 Inequalities由Cambridge University Press于1934年出版以来, 数学不等式理论及其应用的研究正式粉墨登场, 成为一门新兴的数学学科, 从此不等式不再是一些零星散乱的、孤立的公式综合, 它已发展成为一套系统的科学理论。20 世纪 70 年代以来 , 国际上每四年在德国召开一次一般不等式 ( General Inequalities) 国际学术会议 , 并出版专门的会议论文集。不等式理论也是 2000 年在意大利召开的第三届世界非线性分析学家大会 (“The ThirdWorld Congress of Nonlinear Analyst s” ( WCNA - 2000) )的主题之一。2000 年和 2001 年在韩国召开的第六届和第七届非线性泛函分析和应用国际会议 ( InternationalConference on Nonlinear Functional Analysis andApplications) 与 2000 年在我国大连理工大学召开的ISAAC都将数学不等式理论作为主要的议题安排在会议日程之中。2001 年的不等式国际会议 IN EQUAL IT IES于 2001 年 7 月 9 日至 14 日在罗马尼亚 University of t heWest 召开。历史上 , 华人数学家在不等式领域做出过重要贡献 ,包括华罗庚、樊畿、林东坡、徐利治、王忠烈、王兴华等老一代数学家。最近几年我国有许多数学工作者始终活跃在国际数学不等式理论及其应用的领域 , 他们在相关方面做出了独特的贡献 , 引起国内外同行的注意和重视。例如王挽澜教授、石焕南教授、杨必成教授、高明哲教授、张晗方教授、杨国胜教授等。20世纪80年代以来在中国大地上出现了持续高涨的不等式研究热潮。 20世纪80年代杨路等教授对几何不等式研究的一系列开创性工作,将我国几何不等式的研究推向高潮;在代数不等式方面,王挽澜教授对Fan ky不等式的深人研究达到国际领先水平。祁锋教授及其所领导的研究群体在平均不等式及其他不等式方面取得了大量而系统的前沿研究成果;对分析不等式,胡克教授于1981年发表在《中国科学》上的论文《一个不等式及其若干应用》[5],针对Holder不等式的缺陷提出一个全新的不等式,被美国数学评论称之为"一个杰出的非凡的新的不等式",现在称之为胡克(HK)不等式。胡克教授对这个不等式及其应用作了系统而深刻的研究。 目前我国关于数学不等式理论及其应用的研究也有较丰富的成果。例如匡继昌先生的专著《常用不等式》一书由于供不应求 , 在短短的几年内已经出版了第二版 ,重印过多次。对于数学专著来讲 , 这是少有的现象。第二本较有影响的专著是王松桂和贾忠贞合著的《矩阵论中不等式》。另外 , 国内还有一个不等式研究小组比较活跃 , 主办一个《不等式研究通讯》的内部交流刊物 , 数学家杨路先生任顾问。对Hilbert不等式,是由Hilbert 在他的积分方程的讲座中提出。 此后,许多著名数学家如Feier(1921),Framcis,Littlewood (1928),Hardy (1920),Hardy-Littlewood-Polya(1926),Mulhoand(1928,1931),Owen(1930),Polya和Szegb,Schur(1911),F. Wiener (1910)等都做出过贡献。为此,Hardy等在文献「1」中的第9x章中专门讨论Hilbert不等式及其类似情形和推广。 20世纪90年代以来,我国一大批学者如徐利治,杨必成教授等对Hilbert不等式及其类似情形和推广的研究取得了举世瞩目的成果。由于这些结果在理论和实际运用方面都有重要意义,引起一系列广泛研究,当中取得各式各样的进展,成果在众多报刊杂志上被发表。综上所述 , 数学不等式理论充满蓬勃生机、兴旺发达。2.2 Hilbert不等式的初等证明 命题1 (Hilbert 不等式)如果 、 是平方可和实数列,则二重级数 是收敛的,且 (1)不等式严格成立,等式成立当且仅当 、 恒为零,(1)式中 是最优的。 命题一的证明须应用两个引理。 引理一 对每一个正数m,有 < 证明 设点(0,0),(0, ),( , )分别用C,Y, (n=0,1,2,•••)表示,S表示圆心在点C半径为 的从点 到Y 圆的面积, 是直线C 与过点 的竖线的交点(n=1,2,3,•••)。此外,设 表示扇形 C 的面积(如下 图1) 用 表示 的面积,于是,得到 =S= > = = • = > 因此, < .现在可以证明Hilbert不等式了。记 = 应用Schwarz不等式,得。以上应用了引理1,显然,最后不等式严格成立当且仅当序列 、 恒为零。往证 不能被比它小的常数代替。引理2 对每一个自然数m>1,有 > - 。证明 设 表示直线 和直线 (n=0,1,2,•••,m-1)的交点, 表示扇形 的面积(如下图2), 则显然有 = < = + = + = + 因此, > - 下证Hilbert不等式中的 是最优常数,考虑序列: = = ,当 时, = =0,当 > 时,这里k是自然数,则 + + (由引理2) -( )因此 - 因此, 是Hilbert不等式中的最优常数。至此完成了Hilbert不等式的初等证明。2.3 Hilbert不等式的推广 Hilbert提出不等式 (1) (2)后,Hardy把这些结果扩展,他得出了如下不等式 (3) (4)在这里, , 0, + =1,且p q>1。不等式(3)(4)被成为Hardy-Hilbert重级数不等式,且等号成立当且仅当 、 恒为零。多年以来,很多数学家对Hilbert不等式进行了研究,得到了一系列的成果。下面简单回顾一下这些研究的历程。先介绍在Hilbert最原始的不等式基础上取得的成果,然后再展示在Hardy-Hilbert不等式上的一系列成就。1990年,L.C.Hsu et al仔细分析Hardy最初的方法技术,引入一个权函数w(n)= ,得到了改进后的不等式: (5)不久,Hsu和王把权函数精简为 ,寻找能使式(5)成立θ的最大可能值的问题被提及。稍后,L.C Hsu和高明哲使用不同方法得出θ的下确界,θ=1.281+接着得到了θ的上确界λ(λ=1.4603545+),从而使问题得到解开。至于不等式(2),高明哲作了改进, w(n)= (n)>0(n=1,2,…)。然后高应用了Euler公式对权函数w作出估计:w(n)≤ ,θ=17/20类似地,在Hardy-Hilbert不等式上得到一些新结果。在研究Hardy-Hilbert不等式(3)的过程中,含参数n的求和式的值被估算,如 同是1990年,Hsu和Guo率先引入权函数: 不等式(3)拓展为 然后,权函数被Hsu和高明哲改进为 ,两年以后,高再给出权函数的精确形式: 再不久,杨和高得到 的一个下界,也就意味着,在权函数方面取得一个更好的结果: c是Euler常数,而(1-c)被证明为使不等式成立的最佳常数,高明哲证明了 的一个上界是: ρ(t)=t-[t]-1/2而 被估计为 若 > ,不等式不再成立,问题得到完全解开。有关不等式(4),杨必成得到如下较好的结果: ,r=p,q,c是常数。1998年,杨必成和Debnath给出了另一形式的带权函数的Hardy-Hilbert不等式: 除了上面所述以外,杨还有以下结果: 若把s(n,r)在上述表达式变为 ,会得到另一些结果.21世纪初,谭立通过引入一个形如 的权系数改进了不等式(3),若, 那么, 当中=ln2-13/48+/1920(0<<1),它是与r无关的最佳常数。并得到下面推论:设 ,当q充分大时,有 当中 引进适当的参数会使学习和研究对象更具概括性,也是常用的一种方法。在此部分,总结一下具广义性的含参数形式的Hilbert不等式.最近,就关于离散形式的Hilbert不等式,杨必成先引入参数A,B及λ从而不等式(1)得以拓展,他建立了如下新的不等式: < A,B>0,0<λ≤2,B(p,q)是beta函数而常数 是最佳,杨更得到如下结果: < A,B,C>0, ,0<λ≤2, 也被证明为最佳。对不等式(4),杨和Debnath给出一个推广: < ,常数 = 为最佳,其中,2-min(p,q)< 2,B(m,n)是beta函数。最近,匡继昌和Debnath给出一般形式的Hardy-Hilbert不等式: , p>1,1/p+1/q=1,1/2<min(p,q),K(x,y)是非负次数为-t(t>0)的齐次函数。若在(0,+∞)上有四阶连续微商,当n=1,2,3,4, ,当m=0,1,y+ <+ =p,q那么 < ,其中 = >0,r=p,q。更新的是,考虑不等式(3)和(4),杨和Debnath建立了含参数A,B,λ的新不等式: 常数因子3 为最佳。特别的,(1) λ=1,A,B>0 (2) λ=2,A,B>0 (3) 2-min{p,q}<λ≤2,A=B=1, 以上的常数因子都是最佳。以另外方式引入参数λ,杨得出以下结果: 常数因子π/(λsinπ/p)为最佳。特别地,(1) λ=1, (2) p=q=λ=2, 以上不等式的常数因子都是最佳。再新,匡继昌建立一个新的Hilbert不等式的一般形式 1/p+1/q=1,对每个正整数N<+∞,N=+∞,定义: 若1
看杨必成教授的专著
设a>0,b>0,1/p+1/q=1(p,q>0),则a的p次幂除以p+b的q次幂除以q大于等于ab. 数学分析,高等教育出版社,第五版,上册,P292,书中把它作为了例14呵呵,开始我是翻的笔记,所以没太注意出处。
178 浏览 2 回答
312 浏览 5 回答
120 浏览 4 回答
192 浏览 2 回答
208 浏览 4 回答
123 浏览 3 回答
164 浏览 3 回答
280 浏览 3 回答
273 浏览 3 回答
315 浏览 5 回答
125 浏览 3 回答
170 浏览 3 回答
194 浏览 4 回答
110 浏览 4 回答
323 浏览 8 回答